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Abstract

We find the radius of starlikeness of order a, 0 < o < 1, of normalized analytic functions
f on the unit disk satisfying either Re(f(2)/g(z)) > 0 or |(f(z)/g(z)) — 1] < 1 for some
close-to-star function g with Re(g(z)/(z + 2%/2)) > 0 as well as of the class of close-to-
star functions f satisfying Re(f(z)/(z + 22/2)) > 0. Several other radii such as radius of
univalence and parabolic starlikeness are shown to be the same as the radius of starlikeness
of appropriate order.
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1. Introduction

Let D, := {2z € C:|z|] <r}and D :=D;. Let A := {f : D — C|f is analytic, f(0) =
1/(0) — 1 =0} and let 8 be its subclass consisting of univalent functions. For each f € 8,
we associate the function sy : D — C defined by sf(z) = zf/(2)/f(z). For 0 < a < 1, the
class 8*(«a) of functions starlike of order « is the subclass of 8 consisting of functions f
satisfying the inequality Re(s¢(2)) > . The class 8* := 8§*(0) is the usual class of starlike
functions. The image k(D) of the Koebe function k(z) = z/(1 — 2)? is not convex but the
image k(D,_, ) is convex and 2 — /3 is the largest such radius. This radius is known as
the radius of convexity of the Koebe function. More generally, given a class of functions
F and another class § characterised by a property P, the largest number Rg(F) with
0 < Rg(F) < 1 such that every function in F has the property P, in each disk D, for each
r with 0 < r < Rg(F) is called the G radius of F. Kaplan [11] introduced the class of close-
to-convex functions f satisfying Re(f’(z)/¢'(z)) > 0 for some convex function g. In [17,18],
MacGregor found the radius of starlikeness for the class of functions f satisfying either
Re(f(2)/g(2)) > 0or |(f'(2)/d'(2)) — 1] < 1 for some g € §; related radius problems were
discussed in [3-7,10,13,14,16,21,22]. Reade [23] defined a function f € A, with f(z) # 0
for z € D\ {0}, to be close-to-star if there exists a starlike function g (not necessarily
normalized) satisfying Re(f(2)/g(z)) > 0. The function f(z) = z + 22/2 maps D onto the
domain bounded by the cardioid v + 1/2 = cost(1 + cost) and v = sint(1 + sint) and
therefore starlike in ID. This function f also satisfies the inequality |f’(z) — 1] < 1 (which
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also implies univalence of f). Using this starlike function, we introduce the following three
classes:

Fi:={f e A:Re(f(2)/9(2)) >0, Re(g(z)/(z+22/2)) >0 for some g in A},

Fo:={feA:|(f(2)/g9(2)) =1 <1, Re(g(z)/(z+2%/2)) >0 for some g in A},
and

Fy:={f € A:Re(f(2)/(z + 22/2)) > 0}.

These classes F1, Fo and F3 are nonempty. Indeed, if the functions f; : D — C,i=1,2,3,
are defined by

(1 +2)%(z+22/2) (14 2)%(z+2%/2)
fl(z) - (1—2)2 ) fQ(Z) - (1—2z) (1'1)

. (14 2)( +22/2)
+2)(z+ 2

then it follows that f; belongs to the class F;; the functions f; and fo satisfy the respective
condition with ¢ = f3. It is also clear that the class JF3 is a subclass of close-to-star
functions while the classes F; and Fo are not. The functions in these classes are also
not necessarily univalent. Indeed, the radius of univalence Rg(F1) ~ 0.210756, Rs(F2) ~
0.248032, Rg(F3) ~ 0.347296 are respectively the smallest positive zero of the polynomials
P; given by

Pi(r)=1=5r4+r2 413 Py(r)=2—8 —r* 4 3r3, (1.3)
and
Py(r) =1—3r 413 (1.4)
These radius are in fact the radius of starlikeness of the respective classes (see Theo-
rems 2.1, 3.1 and 4.1). The sharpness of these radii follows as the first derivative of fi,
fo and f3, given by

(14 2)(1+ 5z + 22 — 23) (14 2)(2+ 82 — 2% — 323)

fl() = A B) = e )
and L3 5
e =~ (16)

clearly vanishes at z = —Rg(%F;) for i = 1,2, 3 respectively.

Several subclasses of starlike functions are defined through subordination. An analytic
function f is subordinate to the analytic function g, written f < g, if there exists an
analytic function w : D — D with w(0) = 0 and f(z) = g(w(z)) for all z € D. For univalent
superordinate function g, we have f < g if f(D) C ¢g(D) and f(0) = g(0). Consider the
functions ¢; : D — C defined by ¢1(2) := Vz+ 1, pa(z) := €%, p3(z) := 1+ (4/3)z +
(2/3)2%, pa(z) :=1+sinz, p5(z) = 2+ V1 + 22, g(2) :== 1+ ((2k + 2%)/(k* — kz)) where
k= v/2+1and p7(z) := 14+(2 (log((1 + v2)/(1 — v2)))? /a2). For o = @i, (i = 1,2,...,7)
the class 8*(¢) := {f € A : sy < p} respectively becomes S, 87, 87, 8%, ¢, 8% and
8;; these classes were studied in [8,15,19,20,24,28,29]. For these ¢;, we study the §*(¢)
radius of the classes F;, ¢ = 1,2,3 introduced above (see [1,12,25] for related works).
For example, for the class F1, we have shown that the radius of starlikeness of order «,
0 < a < 1, is the smallest positive root in (0,1) of the equation

(0 —2)7r3 — 20+ 2)r* 4 (10 — a)r 4+ 20 — 2 = 0.
In addition to finding radius of lemniscate starlikeness, we have also shown that Rg = Rg-«,
Rs+(12) = Ry, Rs«(1/e) = Rz Rge(1-sin1) = Rsy,0 Rse(ya1) = Bsg s Bse(ay2-1)) = sy,

and Rg«(1/3) = Rg+,. Similar results have been proved for the other two classes.
(1/3) c
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2. Radius problem for J;

For the function f € J7, we first determine the disk containing the image of the disk D,
under the mapping zf/(z)/f(z). This is done by associating the function f with suitable
functions with positive real part and then applying the inequality (see [26, Lemma 2])

2p/(2) 2(1 — a2

p(z) |7 (1= |z))(1+ (1 - 2a)[2])
for the function p in the class &(a) of all analytic function p : D — C with p(0) = 1
and Rep(z) > a. We also need to know the image of the disk D, under the transform

w(z) = (z+1)/(2#+2). This is a linear fractional transformation and it maps the disk D,
onto the disk defined by

(z € D) (2.1)

2 — 2 < _T
4—r2| = 4—92%
Since f € JF, there is a function g € A such that Re(f(z)/g(z)) > 0 and Re(g(2)/(z +

22/2)) > 0 for all z € D. Thus, the functions p1,ps : D — C defined by p1(2) = f(2)/9(2)
and p2(z) = g(2)/(z + 2%/2) are functions in P(0) and

f(z) = p1(2)p2(2) (z + z2/2) (z € D). (2.3)
From (2.3), it follows that

! / / 2 1
f(z) pz)  pa(z) z+2
Using (2.1) (with a = 0) and (2.2) in (2.4), we see that the image of the disk D, under

the mapping zf(z)/f(z) is contained in the disk defined by
zf'(z) 44— 272 67(3 —1?)

w(z) — (2:2)

f(2) 4 —r2 = (1—r2)(4—r2) (2.5)
From (2.5), it readily follows that
2/'(2) 4-27 6r(3—r* 21 =5r+1r° 473
R ( f(z) ) gz A-—r)Ed—12)  2-n-r (Jz] <7).  (2.6)

Let Rg« ~ 0.2108 be the unique zero in (0,1) of the polynomial 1 — 5r + 2 4 3. Then,
for every function f € 1, the inequality (2.6) shows that Re(s¢(z)) > 0 in each disk D,,
for 0 <r < Rg«. For the function f; defined in (1.1), we have

zfi(2)  2(1+5z+422—23)

Sh (Z) = = )

f1(2) 2+2)(1-2%)
and hence Re(sy, (2)) vanishes at z = —Rg«. Thus, the radius of starlikeness Rg« for the
class J; is the unique positive zero in (0, 1) of the polynomial P; defined in (1.3) and is

the same as the radius of univalence Rg. Using the inequality (2.5), we now determine
8 (a), 8%, 8p, 85, 8, 8% ¢ and Sp radii for the class F7.

(2.7)

sin»
Theorem 2.1. The following sharp radii results hold for the class Fi:
(i) For any 0 < a < 1, the radius Rg«(q) is the smallest positive root of the equation

(0 —2)r% — (20 +2)r2 + (10 — a)r + 20 — 2 = 0. (2.8)
(i) The radius Rg: (~ 0.0918) is the smallest positive root of the equation
2-V2)r® — (2+2v2)rP + (V2 - 10)r + 22 -2 = 0. (2.9)

(iii) The radius Rs: (= 0.1092) is the same as Rg«(1/2)-
(iv) The radius Rsx (= 0.1370) is the same as Rg«(1/e)-
(v) The radius Rgx (= 0.17969) is the same as Rg«(1_gin1)-
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(vi) The radius RS*C( ( ~ 0.12734) is the same as Rg.(a-1y-
(vii) The radius Rss, (= 0.0380) is the same as Rg.o(va-1))
(vili) The radius Rsy, (=~ 0.14418) is the same as Rgx(1/3).-
Proof.(i) Let the function f € F1 and a € [0,1). Let R := Rg«(,) be the smallest positive
root of the equation (2.8) so that
2(1 -5R+ R*+ R®) = a(2 - R)(1 — R%). (2.10)
The function
2(1 - 243
h(r) = (1 =5r4+7r+41r°)
CERITe)
is decreasing in [0, 1) and hence, for 0 < r < R, we have, using (2.6) and (2.10),
R (zf’(z)) _201—5r +7r24+7r3)  2(1 -5R+ R?>+ R®)
fley )= (2-m@A-r?) (2-R)(1-R?)
This proves that the function f is starlike of order « in each disk I, for 0 < r < R. At

the point z = —R, it can be seen, using (2.7) and (2.10), that the function f; defined
in (1.1) satisfies

/ 21 — 2 _ p3
Re(zfl(z)>: (1-5R+ R 2R):a.
f1(2) (2-R)(1 - R?)
This shows that the radius R is the sharp radius of starlikeness of order « of the class
F.
(ii) Let R := Rs: be the smallest positive root of the equation (2.9) so that

2(1+5R+ R? — R%) =v2(1 - R?)(2+ R). (2.11)
Since the function
6r(3 — r2 4—-2r2  2(1+5 2_p3
0 L k) B ok A e k)
(1 —=7r2)(4—1r?) 4—r (24+7r)(1—1r2)

is an increasing function of 7 in [0,1), it follows that, for 0 <7 < R, h(r) < h(R) = v/2
and hence, for 0 < r < R, we have

6r(3 —r?) 4 —2r?
2— ——. 2.12
(1—r2)(4—r2)<\[ 4 g2 (2.12)
From (2.5) and (2.12), we obtain
2f'(z)  4—2r? 4 —2r?
- 2— <r).
o) " aoe| <V (=0

For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r2) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (c¢(0.1),1] ~ (.997494, 1] C
[21/2/3,1/2). When a € [21/2/3,+/2), by [2, Lemma 2.2], the disk {w : |[w—a| < v/2—a}
is contained in the lemniscate region {w : |[w? — 1| < 1} and hence, for 0 < r < R, we

have
<Zf’(2)>2 .
f(2)
Thus, the radius of lemniscate starlikeness of the class F; is at least R. To show that

the radius R is sharp, using (2.7) and (2.11), we see that the function f; defined in (1.1)
satisfies, at z = R,

< 1.

zfi(z) 2(14+5R+R?—R®)
fi(z) 2+ R)(1-R?) = V2




418 R. Kanaga, V. Ravichandran

(iii)

and therefore

=1.

‘(Zf(f))f !

The number R := Rg; is the smallest positive root of the equation

2(1 —5R+ R* + R%) = (1/2)(2 — R)(1 — R?). (2.13)
Since the function
_ 6r(rt—-3) 4—2r2  21—5r+1%+17)
O e e e S

is decreasing function of r in [0,1), it follows that, h(r) > h(R) = 1/2 for 0 < r < R,
and hence, for 0 < r < R, we have

6r(3 —r?) 4-2r2 1

(1—7r2)(4—12) < 4—r2 2 (2.14)
From (2.5) and (2.14), we get
! 4-2r% 4-20%2 1
e R LD (219

For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r2) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (¢(0.2),1] ~ (.989899, 1] C
(1/2,3/2). When a € (1/2,3/2), by [27, Lemma 2.2], the disk {w : |w —a| < a—(1/2)}
is contained in the parabolic region {w : |w — 1| < Re(w)} and hence, for 0 < r < R,
we have

2f'(2) 2f'(2)
JRCES!
f(z) f(2)
Thus, the radius of parabolic starlikeness of the class F; is at least R. To show that the

radius R is sharp, using (2.7) and (2.13), we see that the function f; defined in (1.1)
satisfies, at z = — R,

—1‘<Re(

zfi(z)  2(1-5R+R*+R%) 1
hz) — @2-R(-R) 2

and therefore

/ !

2fi(z) 1‘ _ 1 Re (Zf1(2)> '
f1(2) 2 f1(2)

The number R := Rg: is the smallest positive root of the equation

2(1 =5R+ R? + R%) = (1/e)(2 — R)(1 — R?). (2.16)

Since the function

6r(r® — 3) 4—2r2 201 -5r+7r2413)
h(r) = 2 ot 2 = 2
(I1—=r2)(4—1r2) 4d-—r (2—r)(1—-12)
is decreasing function of r in [0,1), it follows that h(r) > h(R) = 1/e for 0 <r < R and
hence, for 0 < r < R, we have
6r(3 —1?) _ 4-2r* 1
(1—r2)4—712)  4-—12 ¢
From (2.5) and (2.17), we get

2f'(z)  4—2r?

f(2) 4—r2

(2.17)




(vi)
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For 0 < 7 < R, the center of the above disk c(r) = (4—2r%)/(4—1?) (being a decreasing
function of r on [0,1]) lies in the interval [c(R), 1] C (c(0.2),1] ~ (.989899,1] C (e~!, (e+
e 1)/2]. Whena € (e7!, (e+e71)/2], by [19, Lemma 2.2], the disk {w : |[w—a| < a—e~!'}
is contained in the region {w : |logw| < 1} and hence, for 0 <r < R,

(D)<t <

Thus, the radius of exponential starlikeness of the class & is at least R. To show that
the radius R is sharp, using (2.7) and (2.16), we see that the function f; defined in (1.1)
satisfies, at z = — R,

zfi(z)  2(1-5R+R*+R%) 1

) Q+RA-R) e
and therefore
Zf{(2)>'

log ( =1

‘ fi(2)
The number R := Rg+ is the smallest positive root of the equation

2(1 —5R+ R?+ R%) = (1 —sin1)(2 — R)(1 — R?). (2.18)
Since the function
6r(r? — 3) 4-2r2  2(1—5r+7r2 413
h(r) = = 1—sinl
SRRl e 7 pee) Sl g R s 1 gy B

is decreasing function of 7 in [0,1), it follows that, A(r) > h(R) = 1—sinlfor0 <r < R
and hence, for 0 < r < R, we have

67 (3 — r?) 4 — 22

T < o e (2.19)
From (2.5) and (2.19), we get
2f'(z)  4—2r? ) 4 —2r?
— 1-14 —— <r).
) 1,2 < sin + 1.2 (lz| <7)

For 0 < r < R, the center of the above disk c(r) = (4—2r?)/(4—1?) (being a decreasing
function of r on [0,1]) lies in the interval [¢(R), 1] C (¢(0.2),1] ~ (.989899,1] C (-1 —
sinl,1 —sinl). When a € (=1 —sinl1,1 +sinl), by [8, Lemma 3.3], the disk {w :
|w —a| <sinl —|a— 1|} is contained in the region ¢4(D), where p4(z) = 1 + sin z and
hence, for 0 <r < R, s¢(D,) C ¢4(D). Thus, the radius of sine starlikeness of the class
J1 is at least R. To show that the radius R is sharp, using (2.7) and (2.18), we see that
the function f; defined in (1.1) satisfies, at z = —R,

5 ’ 5 . 2 3

The number R := RS*(( is the smallest positive root of the equation

2(1-5R+ R*+ R*) = (V2—-1)(2— R)(1 — R?). (2.20)
Since the function
h(r) = 67“(7“273) n 4 — 22 _ 2(175r+r2+r3)

(I1—=r2)(4—1r2) 4—1r2 (2—r)(1—12)
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(vii)

is decreasing function of r in [0,1), it follows that h(r) > h(R) =v2 —1for 0<r < R
and hence, for 0 < r < R, we have

6r(3 —r?) 4 — 2r?
T2 < 4_T2+1—\/§. (2.21)
From (2.5) and (2.21), we get
2f'(z) 4 —2r?

fz)  4-r
For 0 < r < R, the center of the above disk c(r) = (4—2r%)/(4—1?) (being a decreasing
function of r on [0,1]) lies in the interval [c(R),1] C (c¢(0.2),1] ~ (.9898991,1] C (v/2-
1,2+ 1). When a € (V2 —1,v/2 + 1), by [9, Lemma 2.1, the disk {w : |w — a| <
1 —|v/2 —al} is contained in the region {w : |[w? — 1| < 2|w|} and hence, for 0 < r < R,

() <o

4 — 272
g +1-v2 (|z| <7).

<2

zl <r).
| (A=)
Thus, the radius of lune starlikeness of the class F; is at least R. To show that the
radius R is sharp, using (2.7) and (2.20), we see that the function f; defined in (1.1)
satisfies

2fi(z)  20-5R+R*+R%) o
he ~ e-ma-m V2!
)

at z = —R and therefore
2fi(2)\*
’( f1(2) ) - £1(2)

The number R := R is the smallest positive root of the equation

2(1 —5R+ R*+ R*) =2(vV2—1)(2— R)(1 — R?). (2.22)
Since the function

2 — 4—2r2  2(1-— 243
h(r) = 6r(72“ 3) i 7"2 _ ( 5r +1r +27" )
(I—=r2)(4—7r2) 4—r (2—7)(1—1r?)
is decreasing function of 7 in [0,1), it follows that h(r) > h(R) = 2(v/2—1)for0<r < R
and hence, for 0 < r < R, we have

r(3—r? — 22
(1 E S))(zl _)7,2) < 44 —2r2 -2(v2-1). (2.23)

From (2.5) and (2.23), we get
2f'(z) 4 —2r?

f(2) 4 —r?

For 0 < r < R, the center of the above disk c(r) = (4 — 2r%)/(4 — r?) (being a
decreasing function of  on [0,1]) lies in the interval [¢(R), 1] C (¢(0.1),1] ~ (.99741,1] C
(2(v/2—1),v/2]. When a € (2(v/2—1),v/2], by [15, Lemma 2.2], the disk {w : |[w —a| <
a—2(v/2—1)} is contained in the region ¢g(D), where pg(2) := 1+ (zk + 22/ (k* — kz))
and k = v/2+ 1. Hence, for 0 < r < R, s¢(D;) C ¢s(D). Thus, the radius of the class
F1 is at least R. To show that the radius R is sharp, using (2.7) and (2.22), we see that
the function f; defined in (1.1) satisfies, at z = —R,

- ’ 5 - 2 3
0 e m i~ A2 D = ) € 0pa(d),

4 — 272
4 — 2

—2(v2-1) (]z[<7).
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(viii) The number R := Rg; is the smallest positive root of the equation
2(1 -5R+ R*+ R%) = (1/3)(2— R)(1 — R?). (2.24)
Since the function
W) = 6r(r* — 3) LA 2r® _ 2(1—5r 41?4 1%)
(1—=r2)4—1r2) 4—12 2—-r)(1—12)

is decreasing function of r in [0,1), it follows that h(r) > h(R) =1/3 for 0 < r < R and

hence, for 0 < r < R, we have
67r(3 —r?) 4 — 272 1
T —r) 44— = 3

From (2.5) and (2.25), we get

2f'(z)  4—2r?

f(2) 4—r2
For 0 < r < R, the center of the above disk c(r) = (4 — 2r2)/(4 — 72) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (¢(0.2),1] ~ (.989899, 1] C
(1/3,5/3). When a € (1/3,5/3), by [28, Lemma 2.5], the disk {w : |lw —a| < a —1/3}
is lies in the cardioid region ¢3(ID). Hence, for 0 < r < R, s¢(ID;) C ¢3(ID). Thus, the
radius of cardioid starlikeness of the class ¥y is at least R. To show that the radius R
is sharp, using (2.7) and (2.24), we see that the function f; defined in (1.1) satisfies, at
z=—R,

(2.25)

zfi(z) _ 2(1—5R+ R*+ R%)
filz) — 2-R)(1-RY

3. Radius problem for F,

=1/3 = p3(—1) € 9p3(D). O

For the function f € Fy, there is a function g € A such that Re(g(z)/f(z)) > 1/2 and
Re(g(2)/(z + 2%2/2)) > 0. The functions pi,ps : D — C defined by pi(2) = g(2)/f(2),
p2(2) = g(2)/(z + 22/2) are the functions in Z(1/2) and Z(0) respectively and

f(2) = (p2(2)/p1(2)) (2 + 2°/2) (2 € D). (3.1)
From (3.1), it follows that
2f'(z) _aph(2)  zpi(z) | 2(z+1)
f(z) p(z) puz) zZ+2
Using (2.1) and (2.2) in (3.2), we see that the image of the disk I, under the mapping
2f'(2)/f(2) is contained in the disk defined by

(3.2)

f5) -2 r(ldtdr— 52 ) y
f(z) 42| (1 —72)(4—1r2) (3.3)
From (3.3), it readily follows that
2f'(2) 4—2r%  r(14d44r —5r2 —r3) _ 2—8r — 12433
Re( f(z) ) S hz A-2@E—r2  (2-nd-m (|| <7). (3.4)

Let Rg- =~ 0.248 be the zero in (0,1) of the polynomial 3r3 — 72 — 8 + 2. Then, for
every function f € JF, the inequality (3.4) shows that Re(sf(z)) > 0 in each disk D,, for
0 <r < Rg«. For the function fs defined in (1.1), we have
zf5(z)  2+8z—22-323
s, (2) = = ;
fz)  2+2)(1-2?)
and hence Re(sy,(2)) vanishes at z = —Rg«. Thus, the radius of starlikeness Rs« for the
class Fy is the smallest positive zero in (0, 1) of the polynomial P, defined in (1.3) and

(3.5)
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is the same as the radius of univalence Rg. Using the inequality (3.3), we now determine
8*(a), 8p, 8z, 8z, 85y, S and S, radii for the class Fy.

stn?

Theorem 3.1. The following sharp radii results hold for the class Fo:

(i) Forany0 < a <1, the radius Rg- () is the smallest positive root of the polynomial
B—a)d+2a—1)r?* - (8—a)r+2—2a=0. (3.6)

) The radius Rg;; (= 0.1341) is the same as Rg«(1/2)-
) The radius Rg: (= 0.16628) is the same as Rg«(1/e)-
v) The radius Rs- (=~ 0.2142) is the same as Rg«(1—gin1)-
) The radius Rgz( (= 0.1551) is the same as Rg.(3-1)-
) The radius R (= 0.0481) is the same as RS*(Q(\/ifl))'
(vii) The radius Rg; (= 0.1744) is the same as Rg«(1/3)-

Proof.(i) Let the function f € F3 and o € [0,1). Let R := Rg«(,) be the smallest positive

root of the equation (3.6) so that
2—8R— R?>+3R%=a(2— R)(1 - R?). (3.7)
The function
2 _ 2 3
hr) = 8r —re +3r
(2—r)(1—12)
is decreasing in [0, 1) and hence, for 0 < r < R, we have, using (3.4) and (3.7),
R <zf’(z)> L 2-8r—r? 437 - 2—8R—R*>+ 3R>
) )= 2=r-r? 2-R)(1-R?)

This proves that the function f is starlike of order «v in each disk D, for 0 < r < R. At
the point z = —R, it can be seen, using (3.5) and (3.7), that the function fs defined in
(1.1) satisfies

(0<r<R).

<zf5(z)) 2—-8R— R?>+3R?
Re = o = Q.

f2(2) 2-R)(1-FR?)

This shows that the radius R is the radius of starlikeness of order « of the class Fs.
The number R := RS; is the smallest positive root of the equation

2 -8R —R?+3R>=(1/2)(2 - R)(1 — R?). (3.8)
Since the function
hr) = r(r3 + 5r2 — 4r — 14) +4—27“2 _ 28—’ 437
(1—1r2)(4—1r?) 4 —1r2 (2—7r)(1—12)

is decreasing function of r in [0,1), it follows that h(r) > h(R) =1/2 for 0 <r < R and
hence, for 0 <r < R, we have

r(r3 + 5r2 — 4r — 14) +4—2r2 .
(1—7r2)(4—12) 4—r2 = 2

From (3.3) and (3.9), we get
zf'(z)  4- 272
fz) 4=
For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r?) (being a decreas-

ing function of r on [0,1]) lies in the interval [¢(R),1] C (¢(0.2),1] ~ (.9898991,1] C
(1/2,3/2). When a € (1/2,3/2), by [27, Lemma 2.2], the disk {w : [w —a| < a—(1/2)}

(3.9)

4-2r2 1
>~ 4—7'2 _5 (‘ZIST)
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is contained in the parabolic region {w : |w — 1| < Re(w)} and hence, for 0 < r < R,

we have
/ /
iGN 1‘ < Re (Zf (z)) (lz| < 7).
f(2) f(2)
Thus, the radius of parabolic starlikeness of the class Fs is at least R. To show that
the radius R is sharp, using (3.5) and (3.8), we see that the function f; defined in (1.1)
satisfies

2f5(2) 2-8R-R*+3R* 1
f(z) — 2-R)(1-R}) 2

at z = —R and therefore
/ /
2f5(2) _ 1’ — Re (zf2(z)) _
f2(?) f2(?)
The number R := Rg: is the smallest positive root of the equation
2-8R— R*+3R*=(1/e)(2— R)(1 — R?). (3.10)

Since the function
r(r*+5r% —4r —14)  4-2r?  2—-8r —r?+3r°
h(r) = 2 o 2 = 2
(1—=r2)(4—r?) 4—r (2—r)(1—12)
is decreasing function of r in [0,1), it follows that h(r) > h(R) = 1/e for 0 <r < R and
hence, for 0 < r < R, we have

r(r® 45 —4r—14) 4-2r* 1

. 3.11
(1—7r2)(4—1r2) i T (3.11)
From (3.3) and (3.11), we get
2f'(z) 4—-2r% 4-2r%2 1
~ - <r).
f(2) 4 — 2 4—1r2 e (el < 7)
For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r?) (being a decreas-

)
(e7t (e +e71)/2]. When a € (e7!, (e + e 1)/2], by [19, Lemma 2.2], the disk {w :
|w—a| < a—e~1} is contained in the region {w : |logw| < 1} and hence, for 0 < r < R,
we have

ing function of r on [0,1]) lies in the interval [¢(R),1] C (¢(0.2),1] ~ (.9898991,1] C
],
1

(5] 12

Thus, the radius of exponential starlikeness of the class F is at least R. To show that
the radius R is sharp, using (3.5) and (3.10), we see that the function fo defined in (1.1)

satisfies
zf5(z)  2—-8R—R*+3R* 1

f(z)  2-R(A-R) e
at z = —R and therefore
s (55| -

The number R := Rg: is the smallest positive root of the equation

2—-8R— R?+3R*=(1—sin1)(2— R)(1 — R?). (3.12)
Since the function
r(r3+5r274r714) 4-2r2 2-_8r—r2 433

ST e T T e
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is decreasing function of r in [0,1), it follows that A(r) > h(R) =1 —sinlfor 0 <r < R
and hence, for 0 < r < R, we have
r(r3 + 5r? — dr — 14) N 4 — 212
(I1—=r2)(4—1r?) 4—r2
From (3.3) and (3.13), we get
2f'(z)  4-—2r?
fz) 4-r?
For 0 < 7 < R, the center of the above disk c(r) = (4—2r%)/(4—1?) (being a decreasing
function of 7 on [0,1]) lies in the interval [¢(R), 1] C (¢(0.3),1] ~ (.976982,1] C (—1 —
sinl,1 —sinl). When a € (—1 —sin1,1 +sinl), by [8, Lemma 3.3], the disk {w :
|w —a| <sinl —|a— 1|} is contained in the region ¢4(D), where p4(z) = 1 + sin z and
hence, for 0 <r < R, s¢(D,) C @4(ID). Thus, the radius of sine starlikeness of the class

F is at least R. To show that the radius R is sharp, using (3.5) and (3.12), we see that
the function fy defined in (1.1) satisfies, at z = —R,

zfi(z - — R? s
A B = =R o)

The number R := RS& is the smallest positive root of the equation

>1—sinl. (3.13)

4 —2r?
472

+sinl—1 (Jz| <7).

2 -8R — R*+3R*=(vV2—-1)(2— R)(1 - R?). (3.14)
Since the function
3+ 5r2 — 4r — 14) +4—2r2 _2-8r—r?+3°
(1—7r2)(4—12) 4—72  (2—7)(1—12)
is decreasing function of r in [0,1), it follows that h(r) > h(R) =v2 - 1for 0<r < R
and hence, for 0 < r < R, we have

h(r) := r(

r(r3 4+ 5r2 —4r —14) 4 — 2r?
2-1.
T-ma—m Taoe V2
From (3.3) and (3.15), we get
2f'(z)  4-—2r?

flz)  4—1r2

For 0 < r < R, the center of the above disk ¢(r) = (4—2r2)/(4—7r?) (being a decreasing

function of r on [0,1]) lies in the interval [c(R),1] C (c¢(0.2),1] ~ (.9898991,1] C (v/2-

1,v/2+1). When a € (v2 —1,v/2 + 1), by [9, Lemma 2.1], the disk {w : |w — a| <

1 —|v/2 —al} is contained in the region {w : [w? — 1| < 2|w|} and hence, for 0 < r < R,
2f'(2)

we have
(Zf’(2)>2 .
f(2) f(2)
Thus, the radius of lune starlikeness of the class Fo is at least R. To show that the

radius R is sharp, using (3.5) and (3.14), we see that the function fy defined in (1.1)
satisfies

(3.15)

4 — 22
4 —y2

+1-vV2 (2| <7r).

<2

(2] < 7).

zf5(z)  2—8R—R*+3R®
he - e-ma-m) V2!

at 2 = —R and therefore
(zfé(z))2 s
fa(2)

2f3(2)
fa(2) |7
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The number R := Rgx is the smallest positive root of the equation
2-8R— R*+3R*=2(vV2-1)(2— R)(1 - R?). (3.16)

Since the function

h(r) == r(r® +5r° — 4r — 14) +4—2T2 _ 2 —8r —1r24+3r3
: (1 *TQ)(4*7"2) 4 — 72 (277_)(1 7742)

is decreasing function of 7 in [0,1), it follows that h(r) > h(R) = 2(v/2—1)for0<r < R
and hence, for 0 < r < R, we have

r(r3 4+ 5r% —dr —14) 4 — 272

A=) d—r2) 4= 2 >2(vV2-1) (0<r<R). (3.17)
From (3.3) and (3.17), we get
2f/(2)  A—2r%  4—2?

—2(VZ-1) (]2 <),

4 — 2

fz)  A=r?

For 0 < r < R, the center of the above disk c(r) = (4 — 2r%)/(4 — r?) (being a
decreasing function of  on [0,1]) lies in the interval [¢(R), 1] C (¢(0.1),1] ~ (.99741,1] C
(2(v/2—1),4/2]. When a € (2(v/2—1),v/2], by [15, Lemma 2.2], the disk {w : |[w —a| <
a—2(v/2—1)} is contained in the region @g(ID), where pg(2) := 1+ ((zk+22)/ (k% — kz))
and k = /2 + 1. Hence, for 0 <r < R, s¢(D,) C ¢s(D). Thus, the 8} radius of the
class Fy is at least R. To show that the radius R is sharp, using (3.5) and (3.16), we
see that the function fy defined in (1.1) satisfies, at z = —R,

- , 5 N P2 3
A om0 =A< om(D)

The number R := Rg*c is the smallest positive root of the equation

2 -8R — R*+3R*=(1/3)(2— R)(1 — R?). (3.18)
Since the function

hr) T(r3+5r2—4r—14)+4—2r2 2—8r—r?+3r3
r) = =
(1—7r2)(4—12) 4—r2 (2—7r)(1—12)
is decreasing function of r in [0,1), it follows that h(r) > h(R) =1/3 for 0 < r < R and
hence, for 0 < r < R, we have

r(r3+5r2—47‘—14)+4—2r2 1
(1—7r2)(4—12) 4—7r2 7 3

From (3.3) and (3.19), we get
2f'(z) 4 —2r?

[ A=
For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — 7?) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (¢(0.2), 1] ~ (.989899,1] C
(1/3,5/3). When a € (1/3,5/3), by [28, Lemma 2.5], the disk {w : |w —a|] < a —1/3}
is lies in the cardioid region ¢3(ID). Hence, for 0 < r < R, s¢(D,) C ¢3(D). Thus, the

& radius of the class F3 is at least R. To show that the radius R is sharp, using (3.5)
and (3.18), we see that the function fo defined in (1.1) satisfies, at z = —R,

zf4(z)  2—8R— R?+3R3
folz) — (2-R)(1-R?

(3.19)

4-2r2 1
4 —r2 3

(2] < 7).

=1/3 = p3(—1) € 9p3(D). O
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4. Radius problem for I3

If the function f € 3, then the function p : D — C defined by p(z) = f(2)/(z + 22/2)
is a function in the class #?(0) and

F(2) = p(2)(=+ 22/2) (2 € D). (4.1)
From (4.1), it follows that

2f'(z) _2p'(2) | 2(z+1)

fz)  p(z) 2+2
Using (2.1) (with a = 0) and (2.2) in (4.2), we see that the image of the disk D, under
the mapping zf’(2)/f(z) is contained in the disk defined by

zf'(z)  4- 2r? 2r(5 — 2r?)
e A= | S T-ma- 9

From (4.3), it readily follows that

zf’(z)) 4 — 272 2r(5 — 2r?) 2(1 —3r +13)

R > — = <r). 4.4
e( )2 T T Goma—m - e-na-n =7 (44)
Let Rg« ~ 0.3473 be the unique zero in (0,1) of the polynomial r® — 3r + 1. Then, for
every function f € J3, the inequality (4.4) shows that Re(ss(z)) > 0 in each disk D, for

0 < r < Rg«. For the function f3 defined in (1.2), we have

s (2) = 2f3(2) _ 2(1 43z — 2%)
" f3(2) (2+2)(1 — 22)

and hence Re(sy,(2)) vanishes at z = —Rg«. Thus, the radius of starlikeness Rg« for the

class F3 is the unique zero in (0,1) of the polynomial Ps defined in (1.4) and is the same

as the radius of univalence Rg. Using the inequality (4.3), we now determine 8*(«), 87,
Py S5, 8e, 8 ’E( and 8% radii for the class F3.

sin?

(4.2)

< (|| < 7). (4.3)

(4.5)

Theorem 4.1. The following sharp radii results hold for the class of function Fs:
(i) For any 0 < a < 1, the radius Rg+ () is the smallest positive root of the polynomial

(2 —a)r* + (2a)r* + (a — 6)r +2 — 2a = 0. (4.6)
(ii) The radius Rg: (=~ 0.1645) is the smallest positive oot of the polynomial

(V2= 2)r3 + (2V2)r? 4+ (6 — V2)r + 2 — 2v/2 = 0. (4.7)

) The radius Rgy (=~ 0.19028) is the same as Rgs(1/2)-
iv) The radius Rgx (= 0.2355) is the same as Rg«(j/c)-
(v) The radius Rgx (= 0.3017) is the same as Rg«(1_sin1)-
; The radius RS*@ (= 0.2199) is the same as Rg.(\/3-1)-

The radius Rgr (~ 0.0679) is the same as Ry (a(v2-1))-
(viii) The radius Rgx (~ 0.2469) is the same as Rg«(j/3)-

Proof.(i) Let the function f € F3 and « in [0,1). The root R := Rg«(,) be the smallest
positive root of the equation (4.6) so that

2(1 —3R+ R*) =a(2 - R)(1 - R?). (4.8)

The function

2(1—3r +13)

h(r) = —~
"= ha=m)
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is decreasing in [0,1) and hence, for 0 < r < R, we have, using (4.4) and (4.8),
Re (zf’(z)) _201-3r+ r3)  2(1-3R+ R?)

flz) ) = 2=r)(1=r?)" (2-R)(1-R?)

This proves that the function f is starlike of order « in each disk I, for 0 < r < R. At

the point z = — R, it can be seen, using (4.5) and (4.8), that the function f3 defined in
(1.2) satisfies

= .

_ _ r3
Re (+£5(:)/£4(2) = o3y — 3

This shows that the radius R is the radius of starlikeness of order « of the class 3.
Let R := Rgz be the smallest positive root of the equation (4.7) so that

2(1+3R— R*) =v2(2+ R)(1 - R?). (4.9)

= Q.

Since the function
W) 2r(5 — 2r?) 4—2r2  2(1+43r—13)
)= =
(1—=r2)4—7r2)  4—12 (Q1-=7r>)(2+7r)
is an increasing function of 7 in [0,1), it follows that h(r) < h(R) = V2 for 0 <r < R
and hence, for 0 < r < R, we have
2r(5 — 2r?) 4 —2r?
2— ——F.
=24 —r2) © V-
From (4.3) and (4.10), we get
2f'(z)  4—2r?

fz)  a=r?
For 0 < r < R, the center of the above disk ¢(r) = (4 — 2r?)/(4 — 7?) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (c¢(0.1),1] ~ (.997494, 1] C
[21/2/3,1/2). When a € [21/2/3,+/2), by [2, Lemma 2.2], the disk {w : |[w—a| < v/2—a}
is contained in the lemniscate region {w : |[w? — 1| < 1} and hence, for 0 < r < R, we

have
<Zf’(z)>2 L
f(z)
Thus, the radius of lemniscate starlikeness of the class F3 is at least R. To show that

the radius R is sharp, using (4.5) and (4.9), we see that the function f3 defined in (1.2)
satisfies

(4.10)

<V2 -

<1.

f3(z)  (1-R?)(2+R)

at z = —R and therefore ,
(HOY
f3(2)

The number R := RS; is the smallest positive root of the equation

2(1 —3R+ R%) = (1/2)(2 — R)(1 — R?). (4.11)

z2f3(2) 2(1+ 3R — R?) _ 3

=1.

Since the function
2r(2r2 — 5 4—-2r7 2(1-3 3
h(r) = T‘(2T )2 N 7“2 _ ( 2T—|—r)
(I1—r2)(4—7r2) 4—r (1—-7r2)(2-r1)
is decreasing function of r in [0,1), it follows that, h(r) > h(R) = 1/2 for 0 <r < R
and hence, for 0 < r < R, we have
2r(5 — 212 4-2r% 1
ré-27) Az 1 (4.12)
(1—=1r2)(4—1r?) 4—-72 2
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From (4.3) and (4.12), we get

2f'(z)  4-—2r?
fz) 4=r?
For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r?) (being a decreas-
ing function of r on [0,1]) lies in the interval [¢(R),1] C (c(0.2),1] ~ (.9898991, 1] C

(1/2,3/2). When a € (1/2,3/2), by [27, Lemma 2.2], the disk {w : [w —a| < a—(1/2)}
is contained in the parabolic region {w : |w — 1| < Re(w)} and hence, for 0 < r < R,

we have
/ /
2 1’ < Re (Zf (z)) (|z| < 7).
f(z) f(z)
Thus, the radius of parabolic starlikeness of the class Fj is at least R. To show that the
radius R is sharp, using (4.5) and (4.11), we see that the function f3 defined in (1.2)
satisfies

4 — 22 1
4 — 2 2

(2] < 7).

zf3(z)  2(R*-3R+1) 1

fs(z)  (1-R*)@2-R) 2

at z = —R and therefore
B L (0],
f3(2) 2 f3(2)
The number R := Rg: is the smallest positive root of the equation
2(1 - 3R+ R3) = (1/e)(2 — R)(1 — R?). (4.13)

Since the function

. 2r(2r* = 5) 4—2r2  2(1—3r+1r3)
h(r) - (1 - r2)(4 - 7"2) * 4 — 72 B (1 _ 7-2)(2 _ T’)

is decreasing function of r in [0,1), it follows that h(r) > h(R) = 1/e for 0 < r < R and
hence, for 0 < r < R, we have

2r(5 — 2r?) _ 4-2r* 1
(1—7r2)(4—7r2) ~ 4—12 ¢

From (4.3) and (4.14), we get

2f'(z)  4—2r?

fz)  A=r?
For 0 < 7 < R, the center of the above disk c(r) = (4—2r%)/(4—1?) (being a decreasing
function of r on [0,1]) lies in the interval [c(R), 1] C (c¢(0.3),1] ~ (.976982,1] C (e™!, (e+
e 1)/2]. Whena € (e7!, (e+e71)/2], by [19, Lemma 2.2], the disk {w : |[w—a| < a—e~ !}
is contained in the region {w : |logw| < 1} and hence, for 0 < r < R, we have

’10g (i{éi’?)‘ <1l (Jz] <r).

Thus, the radius of exponential starlikeness of the class F3 is at least R. To show that
the radius R is sharp, using (4.5) and (4.13), we see that the function f3 defined in (1.2)
satisfies

(4.14)

4—-2r2 1
4 —r? e

(2] < 7).

2f5(z)  2(1-3R+R%) 1

fs(z)  (1-R)@2-R) e

s ()| -

at z = —R and therefore
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The number R := Rg- is the smallest positive root of the equation
2(1 - 3R+ R = (1—sin1)(2 — R)(1 — R?). (4.15)

Since the function

2r(2r? — 4—-2r7 21— 3
h(r) = 7“(27" 5)2 N 7“2 _ ( 237“—1—7‘)
(I1—=r2)(4—7r2) 4-—r (1—=7r2)(2—-r1)
is decreasing function of r in [0,1), it follows that A(r) > h(R) =1—sinlfor0 <r < R
and hence, for 0 < r < R, we have

2r(5 — 2r?) 4 — 272

inl—1. 4.16
A r)@d ) ~ 42 o (4.16)
From (4.3) and (4.16), get
2f'(z)  4—2r? ) 4 —2r?
_ 1-1 < 7).
75 1| <sin + 1.2 (Jz| <)

For 0 < r < R, the center of the above disk c(r) = (4—2r?)/(4—1r?) (being a decreasing
function of r on [0,1]) lies in the interval [¢(R),1] C (¢(0.4),1] ~ (.995833,1] C (-1 —
sinl,1 —sinl). When a € (—1 —sin1,1 + sinl), by [8, Lemma 3.3], the disk {w :
|w —a| <sinl —|a — 1|} is contained in the region ¢4(D), where p4(z) = 1 + sin z and
hence, for 0 <r < R, s¢(D) C @4(ID). Thus, the radius of sine starlikeness of the class
Fs3 is at least R. To show that the radius R is sharp, using (4.5) and (4.15), we see that
the function f3 defined in (1.2) satisfies, at z = —R,
zfi(z)  2(1—3R+ R?)

o C IR 1—sinl = @u(—1) € dpa(D).

The number R := Rg& is the smallest positive root of the equation

201 -3R+R* =(vV2-1)(2—- R)(1 - R?). (4.17)
Since the function

. 2r(2r* = 5) 4—-2r2  2(1-3r+7r3)
h(r) := + - a-me—n
)

(1—r2)4—1r2) 4—1r2
>h(R)=vV2—-1for0<r<R

is decreasing function of r in [0,1), it follows that h(r
and hence, for 0 < r < R, we have

2r(5 — 2r?) 4 —2r?

02— < 4_T2+1—ﬁ. (4.18)
From (4.3) and (4.18), we get
' 4—2r% 4-2r?
ZJ{(S)_él—r?; 4—7‘2+1_ﬁ (el < 7).

For 0 < r < R, the center of the above disk ¢(r) = (4—2r2)/(4—7r?) (being a decreasing

function of 7 on [0,1]) lies in the interval [c¢(R),1] C (c¢(0.3),1] ~ (.976982,1] C (v/2-

1,2+ 1). When a € (v/2 —1,v/2 + 1), by [9, Lemma 2.1], the disk {w : |w — a| <

1 —|v/2 —al} is contained in the region {w : [w? — 1| < 2|w|} and hence, for 0 < r < R,
we have

‘(zf’(2)>2 . 1‘ |G

f(2) f(z)

(lz] < 7). (4.19)
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(vii)

(viii)

Thus, the radius of lune starlikeness of the class F3 is at least R. To show that the
radius R is sharp, using (4.5) and (4.17), we see that the function f3 defined in (1.2)

satisfies 1) 21— 3R R3)
zf3(2) — + B _
Be a-me-m V2!
at z = —R and therefore
fN\? | ]2fR)
‘(mz)) 12 me |

The number R := RS*R is the smallest positive root of the equation
2(1 - 3R+ R*) =2(vV2—1)(2— R)(1 - R?). (4.20)
Since the function
W) = 2r(2r2 — 5) 4= 2r? _ 2(1-3r+1?%)
(1—=r2)4—7r2)  4—12 (A-r2)(2-1)
is decreasing function of 7 in [0,1), it follows that h(r) > h(R) = 2(v/2—1)for0<r < R
and hence, for 0 < r < R, we have
2r(5 — 2r?) 4 — 212
A=A —r2) S d-1
From (4.3) and (4.21), we get

zf’(z)_4—2r2 4 —2r?

f(2) 4 — 2 1,2 —2(\6—1) (Jz| < r).

For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r2) (being a
decreasing function of  on [0,1]) lies in the interval [¢(R), 1] C (¢(0.1),1] ~ (.99741,1] C
(2(v/2—1),v/2]. When a € (2(v/2—1),v/2], by [15, Lemma 2.2], the disk {w : |w—a| <
a—2(v/2—1)} is contained in the region ¢g(ID), where g(2) := 1+ ((zk+22)/(k? —kz2))
and k = v/2 + 1. Hence, for 0 <r < R, s¢(D,) C ¢6(D). Thus, the 8} radius of the
class F3 is at least R. To show that the radius R is sharp, using (4.5) and (4.20), we
see that the function f3 defined in (1.2) satisfies, at z = —R,
2f5(z) _ 2(1—3R+ R3)

B T e-ma-m) (VTN = el €ond)

The number R := Rg*c is the smallest positive root of the equation

2(1 =3R4+ R?) = (1/3)(2 — R)(1 — R?). (4.22)

—2(vV2-1). (4.21)

Since the function
2r(2r? — 5) N 4—-2r2  2(1—3r+r3)
(1—=r2)4—7r2)  4—72 (A-r2)(2+7r)
is decreasing function of r in [0,1), it follows that h(r) > h(R) = 1/3 for 0 < r < R and
hence, for 0 < r < R, we have

2r(5 — 2r?) 4-2r% 1
- 4.23
T @ —r) ~4-2 3 (4.23)
From (4.3) and(4.23), we get
2f'(z)  4-—2r?

f(2) 4 —r?

For 0 < r < R, the center of the above disk c(r) = (4 — 2r?)/(4 — r?) (being a de-
creasing function of r on [0,1]) lies in the interval [¢(R), 1] C (¢(0.3), 1] ~ (.976982,1] C

h(r) :=
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(1/3,5/3). When a € (1/3,5/3), by [28, Lemma 2.5], the disk {w : |w —a| < a — 1/3}
is lies in the cardioid region ¢3(ID). Hence, for 0 < r < R, s¢(ID;) C ¢3(ID). Thus, the
radius of the class F3 is at least R. To show that the radius R is sharp, using (4.5) and
(4.22), we see that the function f3 defined in (1.1) satisfies, at z = —R,

2 fi(z - s
o =GR ) = 3=l € 0D -

Acknowledgment. The authors are thankful to the editor and the referees for their
useful comments. The first author is supported by an institute fellowship.

1]

[13]

[14]

[15]
[16]
[17]

[18]

References

A.S. Ahmad El-Faqgeer, M.H. Mohd, V. Ravichandran and S. Supramaniam, Starlike-
ness of certain analytic functions, arXiv:2006.11734.

R.M. Ali, N.K. Jain and V. Ravichandran, Radii of starlikeness associated with the
lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (11), 6557
6565, 2012.

R.M. Ali, N.K. Jain and V. Ravichandran, On the radius constants for classes of
analytic functions, Bull. Malays. Math. Sci. Soc. (2) 36 (1), 23-38, 2013.

P.L. Bajpai and P. Singh, The radius of convexity of certain analytic functions in the
unit disc, Indian J. Pure Appl. Math. 5 (8), 701-707, 1974.

G.P. Bhargava and S.L. Shukla, The radius of univalence of certain regular functions,
Proc. Nat. Acad. Sci. India Sect. A 54 (3), 251-254, 1984.

W.M. Causey and E.P. Merkes, Radii of starlikeness of certain classes of analytic
functions, J. Math. Anal. Appl. 31, 579-586, 1970.

M.P. Chen, The radius of starlikeness of certain analytic functions, Bull. Inst. Math.
Acad. Sinica 1 (2), 181-190, 1973.

N.E. Cho, V. Kumar, S. Kumar and V. Ravichandran, Radius problems for starlike
functions associated with the sine function, Bull. Iranian Math. Soc. 45 (1), 213-232,
2019.

S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur.
J. Math. 10 (4), 1750064, 12 pp., 2017.

R.M. Goel, On the radius of univalence and starlikeness for certain analytic functions,
J. Math. Sci. 1, 98-102, 1966.

W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169-185, 1952.
K. Khatter, S.K. Lee and V. Ravichandran, Radius of starlikeness for classes of
analytic functions, arXiv:2006.11744.

B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex
functions I, Bull. Soc. Sci. Lett. £.6dz Sér. Rech. Déform. 63 (1), 65-77, 2013.

B. Kowalczyk and A. Lecko, Radius problem in classes of polynomial close-to-convex
functions II. Partial solutions, Bull. Soc. Sci. Lett. £.6dz Sér. Rech. Déform. 63 (2),
23-34, 2013.

S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.

A. Lecko, Some subclasses of close-to-convex functions, Ann. Polon. Math. 58 (1),
53-64, 1993.

T.H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc. 14, 514-520, 1963.

T.H. MacGregor, The radius of univalence of certain analytic functions. II, Proc
Amer. Math. Soc. 14, 521-524, 1963.



432

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

R. Kanaga, V. Ravichandran

R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1),
365-386, 2015.

R.K. Raina and J. Sokot, Some properties related to a certain class of starlike func-
tions, C. R. Math. Acad. Sci. Paris, 353 (11), 973-978, 2015.

J.S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107, 241—
248, 1968.

J.S. Ratti, The radius of convexity of certain analytic functions, Indian J. Pure Appl.
Math. 1 (1), 30-36, 1970.

M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1), 59-62,
1955.

F. Rgnning, Uniformly convex functions and a corresponding class of starlike func-
tions, Proc. Amer. Math. Soc. 118 (1), 189-196, 1993.

A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic func-
tions, Math. Slovaca, to appear.

G.M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43, 239—
250, 1972.

T.N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex func-
tions, in: Computational Methods and Function Theory 1994 (Penang), 319-324, Ser.
Approx. Decompos., 5, World Sci. Publ., River Edge, NJ, 1995.

K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.

J. Sokét and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101-105, 1996.



