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Abstract
We consider position random maps T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)} on I = [0,1], where τk,k =
1,2, . . . ,K is non-singular map on [0,1] into [0,1] and {p1(x), p2(x), . . . , pK(x)} is a set of position dependent
probabilities on [0,1]. We assume that the random map T posses a density function f ∗ of the unique absolutely
continuous invariant measure (acim) µ∗. In this paper, first, we present a general numerical algorithm for the
approximation of the density function f ∗. Moreover, we show that Ulam’s method is a special case of the general
method. Finally, we describe a Monte-Carlo and a Quasi Monte Carlo implementations of Ulam’s method for the
approximation of f ∗. The main advantage of these methods is that we do not need to find the inverse images of
subsets under the transformations of the random map T .
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1. Introduction
A position dependent random map is a special type of random dynamical system involving a set of non-singular transfor-
mations on the state space and a set of position dependent probabilities on the state space. In each iteration of the process,
one map from the set of maps with one position dependent probability from the set of probabilities [1] is selected and
applied. There are applications of random maps in many areas of science and engineering [2]-[3]-[4]-[5]-[6]. In [2] the
author applied the theory of random dynamical systems in the study of fractals. In [3], Boyarsky and Góra applied the theory
of random dynamical systems in modelling interference effects in quantum mechanics. The authors in [4] applied random
maps for computing metric entropy. Random maps have application in forecasting the financial markets [5] and in economics [6].

Invariant measures describe the statistical behaviour of trajectories of position dependent random maps [1]. In particular,
invariant measures of random maps which are absolutely continuous with respect to Lebesgue measure are very useful for the
study of chaotic nature of random dynamical systems [7]. The Frobenius-Perron operator [1, 8] of a random map is one of the
important tools for the study of invariant measures. A Fixed point f ∗ of the Frobenius-Perron operator of a position dependent
random maps are the density function f ∗ of invariant measures µ∗ [1, 7]. It is difficult to solve the fixed point equation
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or the Frobenius–Perron equation [1] for a position dependent random map because it is a complicated functional equation
except for some simple cases. Therefore, finite dimensional approximation of the Frobenius-Perron operator is necessary
to approximate invariant measures for position dependent random maps. In [9], Lasota and Yorke proved the existence of
absolutely continuous invariant measures (acims) for one dimensional deterministic dynamical systems. In his pioneering
work[10], Ulam suggested finite dimensional approximation of the Frobenious Perron operator of dynamical systems for the
approximation of invariant measures. It was T-Y Li who first proved in [11] the convergence of Ulam’s approximation for
piecewise expanding transformations τ on [0,1]. In [8], Pelikan proved a Lasota–Yorke type inequality random maps with i. i.
d. probabilities using bounded variation techniques. Then, he used the Lasota-Yorke type inequality for proving the existence
of absolutely continuous invariant measures for i. i. d. random maps. Góra and Boyarsky [1] proved the existence of absolutely
continuous invariant measures (acim) for position dependent random maps. Moreover, they proved the convergence of Ulam’s
method for position dependent random maps.

Ulam’s method is a simple, easy to implement and very useful method for approximating invariant measures for de-
terministic and random maps [1]-[14]. Note that each of the map τk,k = 1,2, . . . ,K of a position dependent random map
T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), · · · , pK(x)} is a piecewise monotonic map on a finite partition P = {I1, I2, · · · , Iq}. The
entries of an Ulam’s matrix for a random map T are related to inverse images of the transformations τk,k = 1,2, . . . ,K. For
non-linear τk,k = 1,2, . . . ,K, it is difficult to find inverse images under τk,k = 1,2, . . . ,K, and hence the computation of Ulam’s
matrix becomes challenging and complicated. In this paper, we describe a Monte Carlo method and a Quasi Monte Carlo
approach to Ulam’s method for approximating the entries of Ulam’s matrix. The main advantage of Monte-Carlo method
and Quasi Monte Carlo approach to Ulam’s method is that we do not need to find the inverse images of subsets under the
transformations of the random map T . Moreover, the evaluation of an entry of the Ulam’s matrix is independent of their entries
[12].

2. Invariant Measures for Position Dependent Random Maps and Ulam’s Method
In this section, we review position dependent random maps, the Frobenius-Perron operator, density function of absolutely
continuous invariant measures and Ulam’s method. We closely follow [1, 13, 14].

2.1 Position dependent random maps and their invariant measures
Let (I = [0,1],B,λ ) be a measure space and τk : [0,1]→ [0,1],k = 1,2, · · · ,K, be piecewise one-to-one and differentiable, non-
singular maps on a common partition I = {I1, I2, · · · , Iq} of [0,1]. We denote V (.) for the standard one dimensional variation
of a function, and BV ([0,1]) for the space of functions of bounded variation on I equipped with the norm ‖ . ‖BV=V (.)+ ‖ . ‖1,
where ‖ . ‖1 denotes the L1 norm of a function. A position dependent random map T on I with position dependent probabilities
is defined as

T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), · · · , pK(x)}

where {p1(x), p2(x), · · · , pK(x)} is a set of position dependent probabilities on I. For any x ∈ I,T (x) = τk(x) with probability
pk(x) and, for any non-negative integer N,T N(x) = τkN ◦τkN−1 ◦· · ·◦τk1(x) with probability pkN (τkN−1 ◦· · ·◦τk1(x))pkN−1(τkN−2 ◦
· · · ◦ τk1(x)) . . . pk1(x). It is shown in [1] that a measure µ is invariant under the

µ(A) =
K

∑
k=1

∫
τ
−1
k (A)

pk(x)dµ(x) (2.1)

for any A ∈B.

The Frobenius–Perron operator of the position dependent random map T is given by [1]:

(PT f )(x) =
K

∑
k=1

(
Pτk(pk f )

)
(x) (2.2)

where Pτk in (2.2) is the Frobenius-Perron operator of τk [14] defined by

Pτk f (x) = ∑
z∈{τ−1

k (x)}

f (z)∣∣τ ′k(z)∣∣ (2.3)
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where, for any x, the set {τ−1
k (x)} consists of at most q points. The Frobenius-Perron operator PT has the following properties

(i) PT : L1([0,1])→ L1([0,1]) is a linear operator;
(ii) PT is non-negative, i.e., f ∈ L1([0,1]) and f ≥ 0 => PT f ≥ 0;
(iii) PT is a contractive, i.e., ‖ PT f ‖1≤‖ f ‖1, for any f ∈ L1([0,1]);
(iv) PT satisfies the composition property, i.e., if T and R are two position dependent random maps on [0,1], then PT◦R = PT ◦PR.
In particular, for any n≥ 1,Pn

T = PT n ;
(v) PT f = f if and only if µ = f ·λ is T-invariant.

The following Lemmas (Lemma 2.1 and Lemma 2.2) are key Lemmas for proving the existence of invariant measures for
position dependent random maps. These Lemmas are proved by Bahsoun and Góra in[13].

Lemma 2.1. [13] Consider the position dependent random maps T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), ..., pK(x)}, where τk :
[0,1]→ [0,1],k = 1,2, ...,K are piecewise one-to-one and differentiable, nonsingular maps on a common partition J =

{J1,J2, ......,Jq} of [0,1]. Let gk(x) =
pk(x)
|τ ′k(x)|

,k = 1,2, ...,K. Assume that the random map T satisfies the following conditions:

(i) ∑
K
k=1 gk(x)< α < 1,x ∈ [0,1]; (ii) gk ∈ BV ([0,1]),k = 1,2, ...,K. Then, for any f ∈ BV ([0,1]), PT satisfies the following

Lasota-Yorke type inequality:

V[0,1]PT f ≤ AV[0,1] f +B ‖ f ‖1 (2.4)

where A = 3α + max
1≤i≤q

K

∑
k=1

VJigk and B = 2βα +β max
1≤i≤q

K

∑
k=1

VJigk with β = max
1≤i≤q

1
λ (Ji)

.

Proof. See [13]

Note that for x ∈ [0,1] and for any N ≥ 1 we have, T N(x) = τkN ◦ τkN−1 ◦ · · · ◦ τk1(x) with probability

pkN (τkN−1 ◦ · · · ◦ τk1(x))pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) . . . pk1(x).

For ω ∈ {1,2, . . . ,K}N , define

Tω(x) = T N(x),

pω = pkN (τkN−1 ◦ · · · ◦ τk1(x))pkN−1(τkN−2 ◦ · · · ◦ τk1(x)) . . . pk1(x),

gω =
pω

|T ′ω(x)|
,WN = max

L∈J (N)
∑

ω∈{1,2,...,K}N
VLgω .

Based on Lemma 2.1, Bahsoun and Góra [13] have proved the following Lemma for the iterates of PT :

Lemma 2.2. Let T be a random map satisfying conditions of Lemma 2.1 and N be a positive integer such that
AN = 3αN +WN < 1. Then

V[0,1]P
N
T f ≤ ANV[0,1] f +BN ‖ f ‖1 (2.5)

where BN = βN
(
2α

N +WN
)
,βN = max

L∈J (N)

1
λ (L)

.

In the following Theorem (Theorem 2.3), Bahsoun and Góra proved the existence of invariant measures for position
dependent random maps. The proof of this Theorem is based on the above Lemmas (Lemma 2.1 and Lemma 2.2) which is
proved in [13].

Theorem 2.3. [13] Consider the position dependent random map T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), . . . , pK}. Assume that the
random map T satisfies conditions of Lemma 2.1. Then, T possesses an invariant measure which is absolutely continuous with
respect to Lebesgue measure. Moreover, the operator PT is quasi-compact in BV (I).



Monte Carlo and Quasi Monte Carlo Approach to Ulam’s Method for Position Dependent Random Maps — 176/185

2.2 Ulam’s Method for Position Dependent Random Maps
In [1] Góra and Boyarsky described Ulam’s method for position dependent random maps. Moreover, they proved the conver-
gence of Ulam’s method. For the convenience of readers, we review the Ulam’s method for position dependent random maps.
Let T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)} be a position dependent random map and the random map T satisfies
conditions of Theorem 2.3. Then, by the Theorem 2.3, the random map T has an absolutely continuous invariant measure. We
also assume that the random map has a unique acim µ∗ with density function f ∗. In the following we describe Ulam’s method
for T.

Consider the partition P(N) = {J1,J2, . . . ,JN} of [0,1] into N subintervals such that maxJi∈P(N) λ (Ji) goes to 0 as N→ ∞. For
each 1≤ k ≤ K, construct the matrix

M(N)
k =

(
λ
(
τ
−1
k (J j)∩ Ji

)
λ (Ji)

)
1≤i, j≤N

.

Let L(N) be the set of functions f in L1([0,1],λ ) such that f is constant on elements of the partition P(N). Any f ∈ L(n) can be
treated as a vector: vector f = [ f1, f2, . . . , fN ] corresponds to the function f = ∑

N
i=1 fiχJi . Let Q(N) be the isometric projection

of L1 onto L(N):

Q(N)( f ) =
N

∑
i=1

(
1

λ (Ji)

∫
Ji

f dλ

)
χJi =

[
1

λ (J1)

∫
J1

f dλ , . . . ,
1

λ (JN)

∫
JN

f dλ

]
.

Let p(N)
k = Q(N)pk =

[
p(n)k,1, p(N)

k,2 , . . . , p(n)k,N

]
. Let f = [ f1, f2, . . . , fN ] ∈ L(N). Let the subscript c denotes the transpose of a matrix.

We define the operator P(N)
T : L(N)→ L(N) by

P(n)
T f =

K

∑
k=1

(
M(n)

k

)c
diag

([
p(N)

k,1 f1, p(N)
k,2 f2, . . . , p(N)

k,N fN

])
(2.6)

as a finite dimensional approximation to the operator PT . Ulam’s matrix with respect to the partition P(N) is

M∗(N)

P(N) =
K

∑
k=1

(
M(N)

k

)c
diag

[
p(N)

k,1 , p(N)
k,2 , . . . , p(N)

k,N

]
. (2.7)

The following theorem is proved in[1] (see Theorem 3 in [1]).

Theorem 2.4. Let α be sufficiently large where α is in Theorem 1 in [1]. Let f ∗N be is a normalized fixed point of P(N)
T ,N =

1,2, . . . . Then the sequence { f ∗N}∞
N=1 is pre-compact in L1. Any limit point f ∗ of the sequence { f ∗N}∞

N=1 is a fixed point of PT .

3. A General Algorithm for Finite Dimensional Approximation of the Frobenius-Perron
Operator for Position Dependent Random Maps

Let T = {τ1,τ2, . . . ,τK ; p1(x), p2(x), . . . , pK(x)} be a position dependent random map which satisfies the following assumptions:

there exists A = 3α + max
1≤i≤q

K

∑
k=1

VJigk < 1 and B = 2βα +β max
1≤i≤q

K

∑
k=1

VJigk > 0 with β = max
1≤i≤q

1
λ (Ii)

such that ∀ f ∈ BV ([0,1]).

V[0,1]PT f ≤ AV[0,1] f +B ‖ f ‖1 . (3.1)

We also assume that T has a unique acim µ∗ with density f ∗.

Note that the invariant density f ∗ of the unique acim µ∗ is the fixed point of the Frobenius-Perron operator PT . In the
following we describe a general approximation algorithm for f ∗. Our general algorithm is a generalization of the algorithm in
[12] for single deterministic map to an algorithm for position dependent random maps.

For each k = 1,2, . . . ,K, let Uτk : L∞([0,1])→ L∞([0,1]) be the Koopman operator of τk defined by

(Uτk g)(x) = g(τk(x)). (3.2)

Note that each Uτk is the dual of the Frobenius-Perron operator Pτk of τk.
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Definition 3.1. A sequence {φn}∞
n=1 of functions in L∞([0,1]) is said to be a complete sequence if for any f ∈ L1(0,1) with∫ 1

0 φn(x) f (x)dλ (x) = 0, n = 1,2, · · · implies f = 0.

Proposition 3.2. Let T = {τ1,τ2, · · · ,τK ; p1(x), p2(x), . . . , pK} be a position dependent random map which has a unique acim
µ∗ with density f ∗. Let PT be the Frobenius-Perron operator of the random map T. Let {φn}∞

n=1 be a complete sequence of
functions. Then, f ∗ is a fixed point of PT if and only if

∫
I

[
φn(x)−

K

∑
k=1

pk(x)φn(τk(x))

]
f ∗(x)dλ (x) = 0, n = 1,2, · · · . (3.3)

Proof. Suppose that f ∗ the unique invariant density of the random maps T . In other words,

(PT f ∗)(x) = f ∗(x). (3.4)

Then for n = 1,2, · · · ,∫
I

f ∗(x)φn(x)dλ (x) =
∫

I
(PT f ∗)(x)φn(x)dλ (x)

=
∫

I

K

∑
k=1

(Pτk(pk f ∗))(x)φn(x)dλ (x)

=
K

∑
k=1

∫
I
(Pτk(pk f ∗))(x)φn(x)dλ (x)

=
K

∑
k=1

∫
I
(pk f ∗)(x)Uτk(φn(x))dλ (x)

=
∫

I
f ∗(x)

[
K

∑
k=1

pk(x)φn(τk(x))

]
dλ (x).

Thus,

∫
I

[
φn(x)−

K

∑
k=1

pk(x)φn(τk(x))

]
f ∗(x)dλ (x) = 0, n = 1,2, · · · .

Conversely, suppose that f ∗ satisfies (3.3), that is,

∫
I
φn(x) f ∗(x)dλ (x) =

∫
I

f ∗(x)
K

∑
k=1

pk(x)φn(τk(x))dλ (x).

Now, ∫
I

f ∗(x)φn(x)dλ (x) =
∫

I
f ∗(x)

K

∑
k=1

pk(x)φn(τk(x))dλ (x)

=
∫

I
f ∗(x)

K

∑
k=1

pk(x)Uτk(φn(x))dλ (x)

=
K

∑
k=1

∫
I

f ∗(x)pk(x)Uτk(φn(x))dλ (x)

=
K

∑
k=1

∫
I
(Pτk(pk f ∗))(x)φn(x)dλ (x)

=
∫

I

K

∑
k=1

(Pτk(pk f ∗))(x)φn(x)dλ (x)

=
∫

I
(PT f ∗)(x)φn(x)dλ (x).
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Thus, ∫
I
( f ∗(x)− (PT f ∗)(x))φn(x)dλ (x) = 0, n = 1,2, · · · .

From Definition 3.1, f ∗(x)− (PT f ∗)(x) = 0. This proves that

(PT f ∗)(x) = f ∗(x).

Thus, the fixed point problem (3.4) of the Frobenius-Perron operator PT for the position dependent random map T is
equivalent to homogeneous moment problem (3.3). We propose the following general algorithm for computing fixed point of PT .

General Algorithm: Consider two complete sequences of functions φn and ψn. Let N be a positive integer. Construct the
N×N matrix A = (ai j)1≤i, j≤N given by

ai j =
∫ 1

0

(
φi(x)−

K

∑
k=1

pk(x)φi(τk(x))

)
ψ j(x)dλ (x), i, j = 1,2, . . . ,N. (3.5)

Solve the homogeneous linear system of equation Av = 0 for nonzero v = (v1,v2, . . . ,vN) with ‖ ∑
N
i=1 viψi ‖L1= 1. Then,

fN = ∑
N
i=1 viψi is a normalized approximation of the fixed point f ∗ of PT .

Lemma 3.3. Av = 0 has a nontrivial solution v.

Proof. For a nonzero vector η = (η1,η2, . . . ,ηN), the constant function g(x) = 1 can be written as g(x) = 1 = ∑
N
i=1 ηiφi.

Moreover, for each k = 1,2, . . . ,K, Uτk 1(x) = 1(τk(x)) = 1. For each j = 1,2, . . . ,N,

N

∑
i=1

ai jηi =
N

∑
i=1

ηi

∫ 1

0

(
φi(x)−

K

∑
k=1

pk(x)φi(τk(x))

)
ψ j(x)dλ (x)

=
∫ 1

0

(
N

∑
i=1

ηiφi(x)−
K

∑
k=1

pk(x)Uτk(
N

∑
i=1

ηiφi(x))

)
ψ j(x)dλ (x)

=
∫ 1

0

(
1−

K

∑
k=1

pk(x)Uτk(1(x))

)
ψ j(x)dλ (x)

=
∫ 1

0

(
1−

K

∑
k=1

pk(x)1

)
ψ j(x)dλ (x)

=
∫ 1

0
(1−1)ψ j(x)dλ (x)

= 0.

Thus, Acη = 0, where Ac is the transpose of A. Thus, A is singular.

Remark 3.4. The main purpose of the above general algorithm is to find a normalized function f ∈ span {ψ1,ψ2, . . . ,ψN}
such that∫

I

[
φn(x)−

K

∑
k=1

pk(x)φn(τk(x))

]
f (x)dλ (x) = 0, n = 1,2, · · · .

Let N be a positive integer. Divide the interval I = [0,1] into N subintervals Ji = [ i−1
N , i

N ], i = 1,2, . . . ,N. Let λ be the
Lebesgue measure on I. For each j = 1,2, . . . ,N, let χJi be the characteristic function on Ji. As before, Let L(N) be the subspace
of L1([0,1]) consisting of functions which are piecewise constant on the subinterval Ji, i = 1,2, . . . ,N.
For each i = 1,2, . . . ,N, let

ψ := 1i = NχJi , φi = χJi .
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Then, {ψi}N
i=1 is a density basis of L(N). Thus, f = ∑

N
i=1 viψi is a density if and only if v≥ 0 and ‖ v ‖1= ∑

N
i=1 |vi|= 1. In the

following, we show that (i, j) element of the matrix A in the above general algorithm is the (i, j) element of the Ulam’s matrix
described in the previous section.

ai j =
∫ 1

0

(
φi(x)−

K

∑
k=1

pk(x)φi(τk(x))

)
ψ j(x)dλ (x)

=
∫ 1

0

(
χJi(x)−

K

∑
k=1

pk(x)χJi(τk(x))

)
1 j(x)dλ (x)

=
∫ 1

0
χJi(x)1 j(x)λ (x)−

∫ 1

0

K

∑
k=1

pk(x)χJi(τk(x))1 j(x)dλ (x)

=
∫ 1

0
χJi(x)1 j(x)λ (x)−

K

∑
k=1

∫ 1

0
pk(x)χJi(τk(x))1 j(x)dλ (x)

= N
∫

Ii∩I j

dλ (x)−
K

∑
k=1

∫ 1

0
pk(x)χτ

−1
k (Ji)

(x)1 j(x)dλ (x)

= δi j−
K

∑
k=1

λ (J j ∩ τ
−1
k (Ji))

λ (I j)
· p(N)

k, j ,

where p(N)
k, j is the restriction of Q(N)(pk(x)) on I j for the isometric projection Q(N) of L1 into L(N) defined in the previous

section. Hence Av = 0 if and only if vc = vcMN , where vc is the transpose of v and

MN = (mi j), mi j =
K

∑
k=1

λ (J j ∩ τ
−1
k (J j))

λ (Ii)
· p(N)

k,i . (3.6)

MN in Equation (3.6) is exactly the Ulam’s matrix M∗(N)

P(N) for position dependent random maps T described in Equation (2.7).

4. Monte Carlo and Quasi Monte Carlo approach to Ulam’s Method for Position
Dependent Random Maps

In this section, we present a generalization of Monte Carlo and Quasi Monte Carlo approach to Ulam’s method described in
[12] and [15] of single deterministic maps to Monte Carlo and Quasi Monte Carlo approach to Ulam’s method for position
dependent random maps.

4.1 Monte Carlo-Ulam approach to Ulam’s method for position dependent random maps
Recall from Section 2.2, Ulam’s matrix M∗(N)

P(N) for a position dependent random map

T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)}

with respect to the partition P(N) is given by

M∗(N)

P(N) =
K

∑
k=1

(
M(N)

k

)c
diag

[
p(N)

k,1 , p(N)
k,2 , . . . , p(N)

k,N

]
, (4.1)

where for each k = 1,2, . . . ,K,

M(N)
k =

(
λ
(
τ
−1
k (J j)∩ Ji

)
λ (Ji)

)
1≤i, j≤N

.

Computation of M∗(N)

P(N) involves computations of K matrices M(N)
k =

(
λ(τ

−1
k (J j)∩Ji)
λ (Ji)

)
1≤i, j≤N

where inverse images of sets

(intervals) under τk are necessary to compute. If τk,k = 1,2, . . .K has a complicated formula, then in many cases inverse images
of tauk are difficult to obtain and the computation of the Ulam’s matrix becomes complicated and challenging. The Monte
Carlo approach to Ulam’s method simplifies the above difficulties and makes the numerical method more efficient. The Monte
Carlo approach to Ulam’s method allows us to approximate the entries of the matrices M(N)

k ,k = 1,2, . . . ,K. In the following
we describe the Monte Carlo approach to Ulam’s method:
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1. Choose N (a positive integer) and and consider the partition {J1,J2, . . . ,JN} of subintervals of equal lengths, where
Ji = [xi−1,xi],h = λ (Ji) =

1
N , j = 1,2, . . . ,N.

2. for each k = 1,2,K do

(a) Choose M (M is a positive integer, same M for each k);

(b) for i = 1,2, . . . ,N do

i. Choose M points {zi,1,zi,2, . . . ,zi,M} randomly from the interval Ji with uniform distribution.
ii. for j = 1,2, . . . ,N do

A. Let qi j be the number of points {τk(zi,1),τk(zi,2), . . . ,τk(zi,M)} in J j

B. Let qi j
M be an approximation of the (i, j)-th entry of the matrix M(N)

k

(c) Compute
[

p(N)
k,1 , p(N)

k,2 , . . . , p(N)
k,N

]
3. Compute the Ulam’s matrix M∗(N)

P(N) = ∑
K
k=1

(
M(N)

k

)c
diag

[
p(N)

k,1 , p(N)
k,2 , . . . , p(N)

k,N

]
.

4. Compute a eigenvector v (a normalized eigenvecto) of M∗(N)

P(N) with eigen value 1.

5. Compute f (N) = ∑
N
i=1 vi · χJi(x) as an approximation of the actual density function f ∗ of the absolutely continuous

invariant measure µ∗ for the position dependent random map T = {τ1(x),τ2(x), . . . ,τK(x); p1(x), p2(x), . . . , pK(x)}.

Note that the computation of i-th row of each matrix M(N)
k is independent of the computation of other rows. Therefore, for each

k = 1,2, . . .N one can use p processors to calculate l rows (here, N = pl).

4.2 Quasi Monte Carlo-Ulam Parallel Algorithm for Position Dependent Random Maps
In a Monte Carlo approach to Ulam’s methods, M points in each interval Ji, i = 1,2, . . . ,N are randomly chosen with uniform
distribution. In a Quasi Monte Carlo method M points {zi,1,zi,2, . . . ,zi,M} are chosen deterministically as follows:

zi,m = xi−1 +
m
M

h,m = 1,2, . . . ,N.

All other steps are similar to Monte Carlo Method in Section 4.1. This type of deterministic selections makes the numerical
method more efficient as we will see the next section with examples.

5. Numerical Examples
In this section, we consider position dependent random maps T satisfying conditions of Theorem 2.3 with unique invariant
density f ∗ and we apply Monte Carlo method and Quasi Monte Carlo approaches to Ulam’s method described in the previous
section. Moreover, we find the L1 norms ‖ f ∗− fN ‖1, for some N ≥ 1 where fN is an approximation of f ∗. Monte Carlo and
Quasi Monte Carlo approach to Ulam’s method can be applied to any position dependent map satisfying conditions of Theorem
2.3. However, first we consider a simple position dependent random map T, where the density f ∗ of the invariant measure
µ∗ is known. In the first example, the component maps of the position dependent random map T are piecewise linear and
Markov and the probabilities are position dependent piecewise constants. The main reason for the consideration of a such a
simple position dependent random map is that the actual density is known in this case and we can compare our numerically
approximate densities with the actual density. In the second example, we consider a position dependent random map where the
component maps are non-Markov and the actual density is not known.

Example 5.1. Consider the position dependent random map T = {τ1(x),τ2(x); p1(x), p2(x)} where τ1,τ2 : [0,1]→ [0,1] are
defined by

τ1(x) =



3x+ 1
4 , 0≤ x < 1

4 ,

3x− 3
4 ,

1
4 ≤ x < 1

2 ,

4x−2, 1
2 ≤ x < 3

4 ,

4x−3, 3
4 ≤ x≤ 1
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τ2(x) =



4x, 0≤ x < 1
4 ,

4x−1, 1
4 ≤ x < 1

2 ,

3x− 3
2 ,

1
2 ≤ x < 3

4 ,

3x− 9
4 ,

3
4 ≤ x≤ 1,

and the position dependent probabilities p1, p2 : [0,1]→ [0,1] are defined by

p1(x) =



1
4 , 0≤ x < 1

4 ,

1
4 ,

1
4 ≤ x < 1

2 ,

3
4 ,

1
2 ≤ x < 3

4 ,

3
4 ,

3
4 ≤ x≤ 1

and

p2(x) =



3
4 , 0≤ x < 1

4 ,

3
4 ,

1
4 ≤ x < 1

2 ,

1
4 ,

1
2 ≤ x < 3

4 ,

1
4 ,

3
4 ≤ x≤ 1

If x ∈ [0, 1
4 ), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)
|τ ′k(x)|

=
1
4
3 +

3
4
4 = 13

48 < 1.

If x ∈ [ 1
4 ,

1
2 ), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)
|τ ′k(x)|

=
1
4
3 +

3
4
4 = 13

48 < 1.

If x ∈ [ 1
2 ,

3
4 ), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)
|τ ′k(x)|

=
3
4
4 +

1
4
3 = 13

48 < 1.

If x ∈ [ 1
2 ,

3
4 ), then ∑

2
k=1 gk(x) = ∑

2
k=1

pk(x)
|τ ′k(x)|

=
3
4
4 +

1
4
3 = 13

48 < 1.

Moreover,

A = 3α +max1≤i≤q ∑
K
k=1 VJigk = 3 · 13

48 +0 = 39
48 < 1. Here, B = 2βα +β max1≤i≤q ∑

K
k=1 VJigk > 0 with β = max1≤i≤q

1
λ (Ji)

.

Thus, the random map T satisfies condition of Theorem 2.3.

From the Lasota–Yorke result ([9]), both τ1 and τ2 has acim. Moreover, τ1 and τ2 are piecewise linear, expanding and Markov.
The Frobenius-Perron matrix Pτ1 of τ1 is the transpose of Mτ1 where

Mτ1 =



0 1
3

1
3

1
3

1
3

1
3

1
3 0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


.
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The matrix representation of the Frobenius–Perron operator Pτ2 is the transpose of Mτ2 where

Mτ2 =



1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3 0

1
3

1
3

1
3 0


.

It is easy to show that both τ1 and τ2 have unique acim. Thus, the random map T = {τ1(x),τ2(x); p1(x), p2(x)} also has a
unique acim (see Proposition 1 in [1]). The matrix representation of the Frobenius–Perron operator PT f = ∑

2
k=1 Pτk(pk f )(x) is

the transpose of the matrix MT , where

MT =



3
16

13
16

13
16

13
16

13
16

13
16

13
16

3
16

13
16

13
16

13
16

3
16

13
16

13
16

13
16

13
16


.

The normalized density f ∗ of the unique acim of the random map T is the left eigenvector of the matrix MT associated with the
eigenvalue 1 (after adding the normalizing condition). In fact, f ∗ =

[
1, 13

12 ,
13
12 ,

5
6

]
.

Monte Carlo approach to Ulam’s method: In Figure 5.1 (a) and 5.1 (b) we have plotted the actual density and approximate
density for Monte Carlo approach to Ulam’s method.

(a) (b)
Figure 5.1. Monte Carlo approach to Ulam’s method for the random map T : Figure 5.1 (a) the graph of the approximate
density function f16 (Monte Carlo -Ulam’s method with N = 16,K = 1000:red curve) and the actual density function f ∗ (black
curve); Figure 5.1 (b) the graph of the approximate density function f32 (Monte Carlo -Ulam’s method with
N = 32,K = 1000:red curve) and the actual density function f ∗ (black curve);

The L1−norm ‖ fN− f ∗ ‖1 is measured (with Maple 15) to estimate the convergence of the approximate density fN to the actual
density f ∗ for our Monte Carlo approach to Ulam’s method.
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N ‖ fN− f ∗ ‖1
16 0.01815903102
32 0.01630702912

Quasi Monte Carlo approach to Ulam’s method: In Figure 5.2 (a) and 5.2 (b) we have plotted the actual density and
approximate density for Quasi Monte Carlo-Ulam’s method.

(a) (b)
Figure 5.2. Quasi Monte Carlo approach to Ulam’s method for the random map T : Figure 2 (a)the graph of the approximate
density function f16 (Quasi Monte Carlo -Ulam’s method with N = 16,K = 1000:red curve) and the actual density function f ∗

(black curve); Figure 2 (b) Figure 1 (a)the graph of the approximate density function f32 (Quasi Monte Carlo approach to
Ulam’s method with N = 32,K = 1000: red curve) and the actual density function f ∗ (black curve);

The L1−norm ‖ fN − f ∗ ‖1 is measured (with Maple 18) to estimate the convergence of the approximate density fN to the
actual density f ∗ for our Quasi Monte Carlo- Ulam’s method.

N ‖ fN− f ∗ ‖1
16 0.002504794762
32 0.001252884246

.

Example 5.2. We consider the position dependent random map T = {τ1(x),τ2(x); p1(x), p2(x)} where τ1,τ2 : [0,1]→ [0,1]
are defined by (see Example 5.2 of [5] for this random map)

τ1(x) =


2x, 0≤ x < 1

2 ,

5
4 x+ 1

10 ,
1
2 ≤ x≤ 2

3 ,

3
4 x+ 1

4 ,
2
3 < x≤ 1,

τ2(x) =



1
2 x, 0≤ x < 1

2 ,

3
4 x− 1

8 ,
1
2 ≤ x≤ 2

3 ,

3
2 x− 1

2 ,
2
3 < x≤ 1,

and the position dependent probabilities p1, p2 : [0,1]→ [0,1] are defined by

p1(x) =


0.8, 0≤ x < 1

2 ,

0.725, 1
2 ≤ x≤ 2

3 ,

0.4, 2
3 < x≤ 1,



Monte Carlo and Quasi Monte Carlo Approach to Ulam’s Method for Position Dependent Random Maps — 184/185

and p2(x) = 1− p1(x).
It can be easily shown that the random map T satisfies condition of Theorem 2.3. Thus, T has an acim. Unfortunately, we do
not know the actual density of the acim. Góra and Boyarsky [1] presented a Markov approximation of the random map T then
they presented the density of the Markov random maps. Note that the density obtained from a Markov approximation of the
random maps is only an approximate density. In Figure 5.3 and Figure 5.4 we have presented histogram and approximate
densities via Monte Carlo approach to Ulam’s and Quasi Monte Carlo approach to Ulam’s method.

(a) (b)
Figure 5.3. Histigram and Monte Carlo approach to Ulam’s method: Figure 5.3 (a) the histogram of the density function of the
random map T with 500,000 points on the trajectory of the random map T with 1000 subintervals for [0,1].; Figure 5.3 (b)
Monte Carlo approach to Ulam’s method for the random map T : The graph of the approximate density function f20 with
K = 1000.

(a) (b)
Figure 5.4. Histigram and Quasi Monte Carlo approach to Ulam’s method: Figure 5.4 (a) the histogram of the density function
of the random map T with 500,000 points on the trajectory of the random map T with 1000 subintervals for [0,1].; Figure 5.4
(b) Quasi Monte Carlo approach to Ulam’s method for the random map T : The graph of the approximate density function f80
with K = 1000.
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6. Conclusion
In this paper, we study numerical computations of invariant measures for position dependent random maps. First, we present the
Frobenius-Perron operator and the existence of invariant measures for position dependent random maps. We present the Ulam’s
method for the computation of invariant measures for position dependent random maps. A general algorithm for approximating
fixed points of the Frobenius-Perron operator for position dependent random maps is presented. Then we present the Monte
Carlo and the Quasi Monte Carlo approach to Ulam’s method for the computation of invariant measures for position dependent
random maps. Finally, we present two examples of position dependent random maps along with the numerical computations of
invariant measures using the Monte Carlo and the Quasi Monte Carlo approach to Ulam’s method. In the first example, we
present L1 norm errors between the numerical approximation of the density of the invariant measure and analytical density of
invariant measures for the random map. The numerical examples show that the Monte Carlo approach and the Quasi Monte
Carlo approach to Ulam’s method are useful tools for the computation of invariant measures for position dependent random
maps. Our numerical schemes are generalizations of numerical schemes described in [12] and [15] of single deterministic maps
to numerical schemes for position dependent random maps. In future, we plan on studying the speed of convergence of the
Monte Carlo approach and the Quasi Monte Carlo approach to Ulam’s method.
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[5] W. Bahsoun, P. Góra, S. Mayoral, M. Morales, Random dynamics and finance: constructing implied binomial trees from a

predetermined stationary density, Appl. Stochastic Models Bus. Ind., 23 (2007), 181– 212.
[6] K.R. Schenk-Hoppe, Random Dynamical Systems in Economics, working paper series, Institute of empirical research in

economics, University of Zurich, ISSN 1424-0459 (2000).
[7] M.S. Islam, Existence, approximation and properties of absolutely continuous invariant measures for random maps, PhD

thesis, Concordia University, 2004.
[8] S. Pelikan, Invariant densities for random maps of the interval, Proc. Amer. Math. Soc., 281 (1984), 813 – 825.
[9] A. Lasota, J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer.

Math. Soc., 186 (1973) , 481– 488.
[10] S.M. Ulam, A collection of Mathematical problems Interscience Tracts in pure and Applied Math., 8, Interscience, New

York, 1960.
[11] T-Y. Li, Finite approximation for the Frobenius-Perron operator: A solution to Ulam’s conjecture, J. Approx. Theory. 17

(1976), 177 – 186.
[12] J. Ding, Z. Wang, Parallel Computation of Invariant Measures,Annals of Operations Research, 103 (2001), 283 – 290.
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[15] F.Y. Hunt, A Monte Carlo approach to the approximation of invariant measure, Random Comput. Dynam., 2(1) (1994),

111 – 133.


	Introduction 
	 Invariant Measures for Position Dependent Random Maps and Ulam's Method
	Position dependent random maps and their invariant measures
	Ulam's Method for Position Dependent Random Maps

	 A General Algorithm for Finite Dimensional Approximation of the Frobenius-Perron Operator for Position Dependent Random Maps
	Monte Carlo and Quasi Monte Carlo approach to Ulam's Method for Position Dependent Random Maps
	Monte Carlo-Ulam approach to Ulam's method for position dependent random maps
	Quasi Monte Carlo-Ulam Parallel Algorithm for Position Dependent Random Maps

	Numerical Examples
	Conclusion
	References

