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 Falkner-Skan equation is a third order non-linear boundary value problem 
which describes the laminar boundary layer flow developing on a plate. The 
strong non-linear characteristics of the problem, sensitivity of the equation to 
the initial conditions and the semi-infinite domain of the problem have 
attracted many researchers.In this paper, the method of weighted residuals is 
used to solve Falkner-Skan equations. The residuals are minimized by the least 
squares approach. The procedure is very simple and suitable for solving 
boundary layer problems. The main aim of this paper is to demonstrate the 
success of the proposed method.  We observe that even the simplest approach 
with only one unknown provide quite accurate results for the velocity profile 
in the boundary layer. Additionally, better results with any desired accuracy 
can be obtained by increasing the number of unknown coefficient. Moreover, 
this method provides analytical solutions which are valid for whole domain.  
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 Falkner-Skan denklemi, akışkan içerisindeki bir levha üzerinde gelişen sınır 
tabaka akışını ifade eden üçüncü dereceden non-lineer bir sınır değer 
problemidir. Denklemin, baskın non-lineer bir yapıya sahip olması, başlangıç 
koşullarına yüksek derecede hassas olması ve yarı sonsuz bir tanım kümesine 
sahip olması dolayısı ile birçok araştırmacının ilgisini çekmiştir.Bu çalışmada, 
ağırlıklı artık bir yöntem kullanılarak Falkner-Skan denklemi yaklaşık olarak 
çözülmüştür. Artıklar en küçük kareler tekniği kullanılarak minimize 
edilmiştir. Sunulan prosedür sınır tabaka problemlerinin çözümü için oldukça 
basit ve kullanışlıdır. Çalışmanın ana amacı uygulanan yöntemin başarısını 
ortaya koymaktır. Sadece bir bilinmeyen ile en basit yaklaşımın bile sınır 
tabakasındaki hız profili için oldukça doğru sonuçlar verdiğini gözlemlenmiş 
ve ek olarak, bilinmeyen katsayı sayısı artırılarak istenen herhangi bir 
doğrulukla daha iyi sonuçlar elde edilebilmiştir. Ayrıca, bu yöntem tüm alan 
için geçerli olan analitik çözümler sunmaktadır. 
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1. INTRODUCTION 
 

Ever since introduced by [1] boundary layer equations have been investigated by many researchers not only 
because they are able to give proper information for flows around immersed bodies [2] but also they can illustrate 
the main physical boundary layer phenomena [3]. 
Blasius introduced a similarity analysis and reduced the zero pressure gradient laminar boundary layer flow 
equations to an ordinary differential equation (ODE) which has a much simpler form [4]. Hiemenz presented a 
formulation for the stagnation point flow which yields to another ODE with a similar form [5]. Falkner and Skan 
found a more general similarity solution in which pressure gradient is also taken into account and showed that two 
dimensional incompressible boundary layer equations can be reduced to 
 
𝑓ᇱᇱᇱ ൅ 𝑓𝑓ᇱᇱ ൅ 𝛽ሾ1 െ ሺ𝑓ᇱሻଶሿ ൌ 0                                                                                                                                                ሺ1ሻ 

 
and the relative boundary conditions are 
 
𝑓ሺ0ሻ ൌ 𝑓ᇱሺ0ሻ ൌ 0                                                                                                                                                                   ሺ2𝑎ሻ 
 
lim
ఎ→ஶ

𝑓ᇱሺ𝜂ሻ ൌ 1                                                                                                                                                                          ሺ2𝑏ሻ 

 
where  𝛽 is a constant and 𝜂 is called similarity variable [6]. When 𝛽 ൌ 0, equation corresponds to the zero pressure 
gradient flow over flat plate given by [4] and when   𝛽 ൌ 1, it corresponds to the stagnation point flow of [5]. 
Equation 1 is physically meaningful where  െ0.19984 ൏ 𝛽 ൏ 2 [2]. Values of 𝛽 ൐ 0 represents the accelerating 
flow with favourable pressure gradient while 𝛽 ൏ 0 represents the decelerating flows with adverse pressure 
gradient. When 𝛽 ൌ െ0.19984, 𝑓′′ሺ0ሻ becomes zero which means sheer stress at the wall becomes zero [2].    
No exact solution has found yet for equations 1 and 2. Therefore, approximate numerical or analytical techniques 
are generally applied to solve it. Cebeci and Keller presented three numerical procedure based on shooting and 
parallel shooting techniques and Runge-Kutta method [3]. They showed that, basic shooting technique is sensitive 
to the initial guess of 𝑓′′ሺ0ሻ for accelerating flows and this sensitivity increases with increasing 𝛽. For another 
words, the initial estimate should be precise enough to get convergence. They introduced parallel shooting method 
in order to overcome this issue which requires seven initial guesses rather than one. Laine and Reinhart presented 
further solutions using shooting technique and Newton method coupled with a continuation method [7]. Fazio 
introduced a free boundary formulation and used iterative transformation method [8]. He successfully calculated 
the initial slope (𝑓′′ሺ0ሻ) accurate up to 9 decimal places when 𝛽 ൌ 0.5. Asaithambi used a finite difference method 
to solve the Falkner-Skan equation [9]. In the study, a coordinate transformation was used to map the domain into 
unit interval [0, 1] while domain is truncated after a finite value of 𝜂ஶ. It has also been noted that the computational 
effort of the finite difference method is significantly less compared to the shooting methods. Motsa and Sibanda 
applied a spectral homotopy analysis method [10]. Once again they used domain truncation and transfer the domain 
into [-1, 1]. Fazio extended the T¨opfer’s algorithm to solve Falkner-Skan equation [11]. Liu introduced an iterative 
numerical method which is based on eigenfunctions and adjoint eigenfunctions [12]. In this method first, equation 
(1) is transformed into an integral equation and solved taking the advantage of the bi-orthogonality of 
eigenfunctions and adjoint eigenfunctions. Bararnia et. al. applied the homotopy analysis method with Pade 
approximation to obtain an approximate analytical solution [13] while Yun introduced an iterative analytical 
technique [14]. Khidir applied two semi-analytical methods namely the successive linearization method and 
spectral homotopy perturbation method [15]. Kinaci and Usta used the method of moments which is a subset of 
the methods of weighted residuals in order to solve Blasius equation [16].  
 In this study, an approximate analytical solution for Falkner-Skan equation is presented. Equation is solved by 
method of weighted residuals while least squares method is applied to minimize the residuals. The main purpose 
of the study is to present an accurate and easy to implement analytical method to solve these type of strongly 
nonlinear equations which are defined in infinite or semi-infinite domain. 
 
2. METHODOLOGY 

 
2.1. Method of Weighted Residuals 

 
The method of weighted residuals (MWR) is an effective way to seek approximate solutions of differential 
equations. In general, a trial function with fallowing form is used. 
 

𝐹 ൌ 𝐹଴ ൅ ෍ 𝑐௜𝐹௜

ே

௜ୀଵ

                                                                                                                                                                      ሺ3ሻ 
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where 𝑐௜ are unknown constants to be determined. It should be noted that in MWR the trial function is required to 
satisfy all boundary conditions. Hence 𝐹଴ is a function which satisfy the all boundary condition while 𝐹௜ is required 
to satisfy homogenious version of the relative conditions. If the trial function has the same form of the exact 
solution of the problem, then it is possible to obtain exact analytical solution of a given problem. But if the trial 
function does not have the same form, there will always be a residual. The main objective of all types of MWRs 
is to find 𝑐௜ which minimize the residual by using suitable weighting functions and orthogonality feature of 
weighting and trial functions  [17].  
There are many ways to select the weighting function and each way yields to another method such as least squares, 
subdomain, moment etc. In present paper, the well-known least squares method is used for weighting functions. 
This method is one of the best known method and widely used in many problems [17].  
Consider the equation (1) with the boundary conditions (2).  By choosing a trial function which has the form (3), 
residual function becomes 
 

𝑅ሺ𝑐௜, 𝜂ሻ ൌ 𝐹଴
ᇱᇱᇱ ൅ ෍ 𝑐௜𝐹௜

ᇱᇱᇱ

ே

௜ୀଵ

൅ ൭𝐹଴ ൅ ෍ 𝑐௜𝐹௜

ே

௜ୀଵ

൱ ൭𝐹଴
ᇱᇱ ൅ ෍ 𝑐௜𝐹௜

ᇱᇱ

ே

௜ୀଵ

൱ ൅ 𝛽 ቎1 െ ൭𝐹଴
ᇱ ൅ ෍ 𝑐௜𝐹௜

ᇱ

ே

௜ୀଵ

൱

ଶ

቏ ሺ4ሻ 

 
where  𝑅ሺ𝑐௜, 𝜂ሻ is the residual function and 𝐹ᇱ denotes the derivative of 𝐹 with respect to 𝜂. The idea of the least 
squares approach is to search for 𝑐௜ which minimizes the integral of the square of the residual in the domain.  
 

𝐼 ൌ නሾ𝑅ሺ𝑐௜, 𝜂ሻሿଶ𝑑𝜂

ஶ

଴

                                                                                                                                    ሺ5ሻ 

 
In order to minimize 𝐼, we use conjugate gradients method. In this method, we start with an initial guess for 𝑐௜ 
values and calculate them iteratively by implementing the conjugate gradient algorithm. The applied algorithm is 
explained in detail by [18]. 

2.2. Numerical Integration 

It is sometimes hard to express the residual in a closed form for large N values and take the definite integral given 
at equation (5). Thus, we calculate the residual for equally spaced discrete points in space and take the integral at 
equation (5) numerically using Boole’s method. 
Let the values of a function 𝑦ሺ𝑥ሻ be calculated for equally spaced points 𝑥௜ and ∆𝑥 ൌ 𝑥௜ାଵ െ 𝑥௜. Then Boole’s 
method can be expressed as 
 

න 𝑦𝑑𝑥

௫ఱ

௫భ

ൌ
2∆𝑥
45

ሾ7𝑦ሺ𝑥ଵሻ ൅ 32𝑦ሺ𝑥ଶሻ ൅ 12𝑦ሺ𝑥ଷሻ ൅ 32𝑦ሺ𝑥ସሻ ൅ 7𝑦ሺ𝑥ହሻሿ ሺ6ሻ 

 
Detailed information can be found in [19].  Additionally, it is important to note that we calculate the integral from 
0 to a finite value of 𝜂ஶ instead of calculating it for infinite domain. The reason is not only because it would be 
more complex to calculate it for infinite domain, but also it is sufficient enough to minimize the residual in the 
boundary layer for a finite value of 𝜂ஶ.  

3. APPLICATION TO THE FALKNER-SKAN EQUATION 

We introduce following trial function to approximate the exact solution of the problem. 
 

𝐹 ൌ 𝜂 ൅ 𝑒ିఎ െ 1 ൅ ෍ 𝑐௜ൣ𝑒ିሺ௜ାଵሻఎ െ ሺ𝑖 ൅ 1ሻ𝑒ିఎ ൅ 𝑖൧

ே

௜ୀଵ

ሺ7ሻ 

 
The exponential functions are convenient to be used in problems with semi-infinite domains. By taking the 
derivatives and putting to the equation (1), the residuals can be obtained as 
 

𝑅 ൌ െ𝑒ିఎ ൅ ෍ 𝑐௜ൣെሺ𝑖 ൅ 1ሻଷ𝑒ିሺ௜ାଵሻఎ ൅ ሺ𝑖 ൅ 1ሻ𝑒ିఎ൧

ே

௜ୀଵ

 
 

          ൅ ൥𝑒ିఎ ൅ ෍ 𝑐௜ൣሺ𝑖 ൅ 1ሻଶ𝑒ିሺ௜ାଵሻఎ െ ሺ𝑖 ൅ 1ሻ𝑒ିఎ൧

ே

௜ୀଵ

൩ ൥𝜂 ൅ 𝑒ିఎ െ 1 ൅ ෍ 𝑐௜ൣ𝑒ିሺ௜ାଵሻఎ െ ሺ𝑖 ൅ 1ሻ𝑒ିఎ ൅ 𝑖൧

ே

௜ୀଵ

൩ (8)
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         ൅𝛽 ቎1 െ ൥1 െ 𝑒ିఎ ൅ ෍ 𝑐௜ൣെሺ𝑖 ൅ 1ሻ𝑒ିሺ௜ାଵሻఎ ൅ ሺ𝑖 ൅ 1ሻ𝑒ିఎ൧

ே

௜ୀଵ

൩

ଶ

቏ 

 

 

The easiest case occurs when 𝑁 ൌ 1. The trial function 𝐹 and residual R in this case can be calculated as 
 

𝐹 ൌ 𝜂 ൅ 𝑒ିఎ െ 1 ൅ 𝑐ଵሺ𝑒ିଶఎ െ 2𝑒ିఎ ൅ 1ሻ ሺ9ሻ 
 

𝑅 ൌ െ𝑒ିఎ ൅ 𝑐ଵሺെ8𝑒ିଶఎ ൅ 2𝑒ିఎሻ       
   ൅ሾ𝑒ିఎ ൅ 𝑐ଵሺ4𝑒ିଶఎ െ 2𝑒ିఎሻሿሾ𝜂 ൅ 𝑒ିఎ െ 1 ൅ 𝑐ଵሺ𝑒ିଶఎ െ 2𝑒ିఎ ൅ 1ሻሿ              (10)

                                                    ൅𝛽 ቂ1 െ ൣ1 െ 𝑒ିఎ ൅ 𝑐ଵ൫െ2𝑒ିሺ௜ାଵሻఎ ൅ 2𝑒ିఎ൯൧
ଶ

ቃ 

 
By putting equation (10) into the equation (5) and integrate with a sufficient 𝜂ஶ value, approximate solutions can 
be obtained. In practical applications, boundary layer thickness is usually defined as the thickness where local 
velocity reaches the 99% of the free stream velocity which corresponds to the 𝑓ᇱሺ𝜂ஶሻ=0.99. When 𝛽 ൌ 0 for 
example 𝜂ஶ value is around 5 [2]. In this study, we chose 𝜂ஶ ൌ 20 for the calculations which is sufficient enough 
for the calculations. As an initial guess 𝑐ଵ ൌ 0 value has implemented and 𝑅ଶ values are calculated for each 𝜂 from 
0 to 𝜂ஶ with ∆𝜂 ൌ 0.01 increments. Approximate solution of the equations (1) and (2) is calculated as 
 

𝐹 ൌ 𝜂 ൅ 𝑒ିఎ െ 1 െ 0.21995ሺ𝑒ିଶఎ െ 2𝑒ିఎ ൅ 1ሻ ሺ11ሻ 
 

𝐹ᇱ ൌ
𝑢

𝑈௘
ൌ 1 െ 𝑒ିఎ െ 0.21995ሺെ2𝑒ିଶఎ ൅ 2𝑒ିఎሻ ሺ12ሻ 

 
where, 𝑢 is the horizontal velocity component with respect to the plate and 𝑈௘ is the free stream velocity. 
Comparison of the equation 12 with the numerical solution given by [19] presented in Figure 1. It can be seen 
from the figure that even the easiest case (N=1) gives quite accurate results. The shooting angle (𝑓′′ሺ0ሻ) can be 
calculated as 0.5601 with around 19% relative error.  
 

 

Figure 1. Comparison of the 𝑓′ሺ𝜂ሻ with the numerical solution (𝛽 ൌ 0, 𝑁 ൌ 1ሻ 

 

The accuracy of the solution can be increased by increasing N. Table 1 shows the 𝑐௜, 𝑓′′ሺ0ሻ and relative error 
(RE%) values for different numbers of N. It can be seen that current method provides sufficient results for high 
numbers of N. 
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Table 1. 𝑐௜ coefficients and shooting angle (𝑓′′ሺ0ሻ) for different numbers of N (𝛽 ൌ 0).  

N 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒇′′ሺ𝟎ሻ  RE% 

1 -0.21995 - - - 0.5601 19.3 

2 -0.65299 0.127151 - - 0.45693 2.7 

3 -1.10085 0.423943 -0.07647 - 0.42431 9.6 

4 -0.72273 0.003824 0.165297 -0.05624 0.43625 7.1 

 
Solution for different 𝛽 values can be obtained by the same procedure. Table 2 shows calculated shooting angle 
values when N=4. Results are highly accurate when 𝛽 ൐ 0 when comparing with the numerical values of [21] 
while accuracy reduces when   𝛽 ൏ 0. The possible reason for this is that the selected trial function is not capable 
of representing the exact solution for decelerating flows.  

 
Table 2. Calculated shooting angle (𝑓′′ሺ0ሻ) for different values of  𝛽 (N=4). 

𝜷 Present Numerical [21] 

2.0000 1.68727 1.68722 

1.0000 1.23252 1.23259 

0.5000 0.93054 0.92768 

0.0000 0.43625 0.46960 

-0.1000 0.26501 0.31927 

-0.1500 0.1934 0.21636 

-0.1988 0.1391 0.005220 

 
 

 
 

Figure 2. Velocity Profiles calculated by the presented method for different  𝛽 ∈ ሾ0,2ሿ. 
 

Calculated velocity (𝑓ᇱሺ𝜂ሻ) profiles are shown at Fig. 2 when 𝛽 ൐ 0. The figure shows that the thickness 
of the boundary layer decreases and non-dimensional velocity values in the boundary layer increases 
with increasing 𝛽. This result is physically meaningful since pressure gradient in the flow becomes more 
favourable as 𝛽 increases [2]. It can be seen from the Table 2 that the success of the applied method 
increases with increasing 𝛽. Calculated velocity profile (𝑓ᇱሺ𝜂ሻ) and its comparison with the numerical 
results given by [21] for Hiemenz problem (when 𝛽 ൌ 1ሻ [5] is  tabulated below. The maximum relative 
error is 1.785% occurs at 𝜂 ൌ 0.2 which shows that the method is highly accurate. 
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Table 3. Calculated 𝑓ᇱሺ𝜂ሻ values for Hiemenz problem (𝛽 ൌ 1, 𝑁 ൌ 4). 

𝜼 Present Numerical [19] RE% 

0.0 0.0000 0.0000 0.000 

0.1 0.1183 0.1183 0.025 

0.2 0.2266 0.2226 1.785 

0.5 0.4946 0.4946 0.003 

1.0 0.7778 0.7778 0.000 

1.2 0.8462 0.8467 0.055 

1.6 0.9314 0.9324 0.107 

2.0 0.9728 0.9732 0.037 

2.2 0.9841 0.9841 0.003 

2.6 0.9961 0.9946 0.147 

3.0 1.0006 0.9985 0.210 

4. CONCLUSIONS 

In this study, the method of weighted residuals is applied to the Falkner-Skan boundary layer flow problem. A 
simple method based on least squares approach is developed to minimize the residual. We observe that even the 
simplest approach with only one unknown provide quite accurate results for the velocity profile in the boundary 
layer. Additionally, better results with any desired accuracy can be obtained by increasing the number of unknown 
coefficient. Moreover, this method provides analytical solutions which are valid for whole domain.  
Despite the simplicity of proposed method, when 𝛽 ൐ 0, our results are in good accordance with those reported in 
the literature. Additionally, method can be used as a tool to find the shooting angle (𝑓ᇱᇱሺ0ሻ) of the problem. Once 
this value is calculated, the Falkner-Skan problem becomes an initial value problem which is much simpler to 
solve numerically. 
It should be noted however that the accuracy of the solution might be affected significantly by selection of trial 
function. We observed that the presented trial function is not capable of presenting highly accurate results when 
𝛽 ൏ 0. We are intended to cover this point and in search of better approximations for negative values of 𝛽. 
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