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Abstract 

 

In recent years, point cloud data generated with RGB-D cameras, 3D lasers, and 3D LiDARs have been employed 

frequently in robotic applications. In indoor environments, RGB-D cameras, which have short-range and can only 

describe the vicinity of the robots, generally are opted due to their low cost. On the other hand, 3D lasers and LiDARs 

can capture long-range measurements and generally are used in outdoor applications. In this study, we deal with the 

segmentation of indoor planar surfaces such as wall, floor, and ceiling via point cloud data. The segmentation methods, 

which are situated in Point Cloud Library (PCL) were executed with 3D laser point cloud data. The experiments were 

conducted to evaluate the performance of these methods with the publicly available Fukuoka indoor laser dataset, 

which has point clouds with different noise levels. The test results were compared in terms of segmentation accuracy 

and the time elapsed for segmentation. Besides, the general characteristics of each method were discussed. In this way, 

we revealed the positive and negative aspects of these methods for researchers that plan to apply them to 3D laser point 

cloud data. 
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1. Introduction 
In past years, the researchers generally exploited range 

data acquired from ultrasonic sensors and 2D laser 

scanners and/or visual data captured with cameras to 

provide information to robots for tasks they are expected 

to perform. Although the range data is generally accurate, 
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it can only present planar information at the height where 

the sensor is located. On the other hand, the visual data 

yields the color information about the scene. However, its 

reliability heavily relies on the lighting conditions of the 

environment. Besides, the range and/or visual data may 

not describe the vicinity of the robot sufficiently due to 

their natural characteristics. For this reason, in recent 

years, point cloud data has been employed frequently in 

robotic applications because of its powerful ability to 

describe the shape, size, position, and orientation of 

objects (Grilli et al., 2017). 3D point cloud data can be 

acquired with various sensors such as RGB-D cameras, 3D 

lasers, and 3D LiDARs. The most significant advantage of 

the RGB-D cameras is their low cost compared with the 

3D lasers and 3D LiDARs. The point cloud data generated 

with RGB-D cameras has the same structure with RGB 

images since it is constructed by regarding camera's 

position and depth information in each pixel. RGB-D 

cameras are frequently preferred in robotic applications 

due to these advantages. However, the foremost 

disadvantage of these cameras is their short-range. On the 

other hand, 3D lasers and LiDARs generally can capture 

long-range measurements when they are compared with 

RGB-D cameras. For this reason, these sensors are often 

used in outdoor applications such as autonomous vehicles 

and urban mapping (Xie et al., 2019). 

The segmentation of point clouds can be defined as the 

process of separating the points that have the same 

characteristics into homogeneous parts (Nguyen and Le, 

2013; Grilli et al., 2017). Point cloud segmentation is an 

essential preprocessing or post-processing step for 

activities such as semantic information extraction, object 

recognition, place classification, and human tracking. 

Thus, it is a very active research area in a wide range of 

applications from outdoor to indoor. The point cloud 

segmentation was used in different outdoor applications 

such as building roof plane segmentation with the 

Airborne Laser Scanning (ALS) point cloud data (Tarsha-

Kurdi et al., 2007; Xu et al., 2016), building facade 

segmentation with the Terrestrial Laser Scanning (TLS) 

point cloud data (Ning et al., 2009; Vo et al., 2015), forest 

monitoring (Morsdorf et al., 2004; Ferraz et al., 2010), 

autonomous vehicles (Himmelsbach et al., 2010; Zermas 

et al., 2017), and 3D silhouette extraction of a street 

(Mutlu et al., 2014). The point cloud segmentation was 

also applied in indoor applications such as Building 

Information Modeling (BIM) (Anil et al., 2013; Qu et al., 

2014), robotic applications (Rusu et al., 2008; Koppula et 

al., 2011), and object detection (Mattausch et al., 2014; 

Cadena and Košecka, 2015). In the reviews, Nguyen and 

Le (2013) and Grilli et al. (2017) classified the point cloud 

segmentation methods into five categories: edge-based, 

region-based, model-based, clustering-based, and graph-

based. Edge-based methods first aim to detect the edges 

where point characteristics are changed. Then, they group 

the points between the edges. The edge-based methods 

are generally weak against noise and they may produce 

low segmentation accuracy although they provide fast 

segmentation. Region-based methods exploit the 

neighbor relation to segment the point clouds. Despite 

their long segmentation time, the region-based methods 

present high segmentation accuracy. Model-based 

methods try to fit a model for each segment. They are fast 

and robust against noise. The disadvantage of these 

methods is to produce wrong models when the point 

cloud has nearly coplanar surfaces and the points in the 

cloud have uneven density. Clustering-based methods are 

appropriate for irregular object segmentation since they 

do not depend on a specific model. Also, they can combine 

different criteria for segmentation. The main 

disadvantage of these methods is that they have high 

computational complexity. The graph-based methods can 

be considered as the subcategory of the clustering-based 

methods. 

In this study, we cope with the segmentation of indoor 

planar surfaces such as wall, floor, and ceiling. Although 

each segmentation category has advantages and 

disadvantages, most of the existing studies that address 

the segmentation of planar surfaces in indoor 

environments applied the well-known model-based 

RANSAC and region growing methods. Besides, these 

studies generally used the point cloud data captured with 

RGB-D cameras. On the other hand, 3D lasers and LiDARs 

can offer better performance in indoor robotic 

applications, especially for BIM, mapping, and semantic 

information extraction, due to their long-range 

measurements. In this study, we aim to examine the 

performance of the segmentation methods that are 

situated in PCL (Rusu and Cousins, 2011) with 3D laser 

point cloud data for planar surfaces in the indoor 

environment. In this way, we investigate the potential of 

edge-based, clustering-based, and graph-based 

(supervoxels) methods for planar surfaces with 3D laser 

point cloud data. To achieve this, the experiments were 

conducted with Fukuoka indoor laser dataset containing 

point cloud data, which has different noise levels 

(Martinez Mozos et al., 2019). After some preprocessing 

operations were applied to the dataset, point-wise 

labeling was performed with the RViz cloud annotation 

tool (Monica et al., 2017). The test results were compared 

in terms of segmentation accuracy and the time elapsed 

for segmentation. Besides, the general characteristics of 

each method were discussed. 

The rest of the paper is organized as follows: In section 2, 

a detailed explanation of the segmentation methods is 

given. We present the experimental setup and results in 

section 3 and we conclude with section 4. 

 

2. Material and Methods 
The segmentation methods in the PCL are listed as 

follows: plane model segmentation, cylinder model 

segmentation, Euclidean cluster extraction, region 

growing segmentation, color-based region growing 

segmentation, min-cut based segmentation, conditional 

Euclidean clustering, the difference of normals based 
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segmentation, supervoxel clustering and progressive 

morphological filtering (PCL-S, 2020). 

In this study, we focus on the segmentation of structural 

planar surfaces such as wall, floor, and ceiling and we 

intend to use only range data for this purpose. Therefore, 

the cylinder model segmentation method (Rabbani et al., 

2006) that detects cylinders and spheres is out of the 

scope of this paper. The Euclidean cluster extraction 

approach (PCL-ECE, 2020) successfully segments the 

objects since it separates the point cloud into smaller 

parts. However, this approach is not appropriate for 

structural planar surfaces. The color-based region 

growing segmentation approach (PCL-CBRG, 2020) uses 

color instead of curvature and normal features while 

segmenting the point clouds. Hence, this method is also 

out of the scope of this paper. Since the min-cut based 

segmentation approach (PCL-MCBS, 2020) merely is 

designed for object segmentation, we did not examine the 

method. Lastly, progressive morphological filter 

segmentation (PCL-PMFS, 2020) is also out of the scope of 

this paper because it aims to segment the roof of the 

buildings with LiDAR sensors mounted in aircraft. 

As a result, in this study, we mainly concentrate on the 

following methods: plane segmentation (PCL-PS, 2020), 

region growing (PCL-RG, 2020), conditional Euclidean 

clustering (PCL-CEC, 2020), the difference of normals 

based segmentation (PCL-DONBS, 2020), and supervoxel 

clustering (PCL-SC, 2020). For this reason, in this section, 

we briefly discuss the previous studies that employ these 

methods while considering the positive and negative 

aspects. Then, the details of the methods are explained. 

2.1. RANSAC 

The main idea behind the model-based segmentation 

methods is to group the points that fit the same 

mathematical model for primitive shapes such as plane, 

sphere, cone, cylinder, cubes, and torus. Fischler and 

Bolles (1981) introduced the well-known model-based 

RANSAC algorithm used in segmenting planar surfaces in 

point cloud data. Since the RANSAC does not need to 

know the relation between neighbor points, it could be 

applied to both organized point clouds acquired by RGB-D 

camera (Lu and Song, 2015) and unorganized point cloud 

data captured with 3D LiDAR or laser sensors (Xu et al., 

2016) without any preprocessing step. Moreover, 

Schnabel et al. (2007) presented a RANSAC-based method 

for automatically segmenting fundamental shapes such as 

plane, cylinder, and cones in both mesh and point cloud 

data. They optimized the method for time complexity and 

they showed the robustness of the proposed method 

against outliers. There is an enormous number of studies 

that apply the RANSAC method for segmentation both in 

indoor and outdoor applications. In the reviews, Nguyen 

and Le (2013) and Grilli et al. (2017) explained most of 

these studies. Besides, several reviews for RANSAC-based 

methods were published (Kim and Yu, 2009; Raguram et 

al., 2012). RANSAC is an iterative and fast method and 

also robust against the noise and the outliers in the point 

cloud. However, RANSAC-based methods can lead to 

inaccurate results when the point cloud includes 

complex-shaped objects and the points in the scene do 

not evenly distribute. Also, the RANSAC-based method 

may not recognize coplanar surfaces since they only 

utilized the mathematical model of the planes. 

The RANSAC is mainly a prediction approach that is 

executed iteratively to segment point cloud data. The 

algorithm starts with the selection of the mathematical 

model. Then, a small set of feasible points is selected 

randomly instead of searching the large set of points that 

fit the model. The small set is enlarged regarding the 

DISTANCE_THRESHOLD parameter. The distance 

between a point (p=(xp,yp,zp)) and the model is calculated 

as given in Equation 1. In the equation, we assume that 

the model is plane and the a, b, c and d describe plane 

parameters. The distance value can be considered as the 

error. If the error is less than the threshold, the point is 

added to that model and the model is updated. After a 

model is entirely segmented, the points that belong to the 

model are extracted from the point cloud and the process 

is repeated until the number of remaining points reaches 

the predefined number. 

 

         
             

√        
                                                        (1) 

 

2.2. Region Growing 

The region-based methods utilize the local information to 

cluster the points into regions. To determine the points to 

be added to a region, the features such as surface 

orientation, curvature, normal, etc. are investigated for 

points in a predetermined radius or a certain number of 

neighbors (Rabbani et al., 2006; Jagannathan and Miller, 

2007). Therefore, a preprocessing step is required to 

define neighborhood relationships before using these 

methods with unorganized point cloud data (Vo et al., 

2015). In the reviews, Nguyen and Le (2013) and Grilli et 

al. (2017) divide the region-based methods into two 

categories: Top-down methods (unseeded) and bottom-

up (seeded) methods. The top-down methods start with 

one region that includes all points in the point cloud data. 

Then, they separate the region into subregions according 

to a criterion. The success of these methods highly 

depends on the selected criterion. On the contrary, the 

bottom-up methods first, select some seed points, and 

then points that satisfy a predefined condition, are joined 

to seeds to construct the regions (Besl and Jain, 1988). 

The region-based methods are generally robust against 

the noise. The success of these methods relies on selecting 

seed points and the merging criterion (Xie et al., 2019). 

Besides, these methods are sensitive to inaccurate normal 

and curvature values and this situation can cause 

incorrect results at points in the boundary of the regions 

where normal and curvature values change very quickly. 

To avoid these incorrect results, the search radius or 

number of neighbors around a point can be increased. In 

that case, the elapsed segmentation time increases. 

Therefore, there is a trade-off between the success of 
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segmentation and the segmenting time in region-based 

approaches (Nguyen and Le, 2013). 

Although the region-based methods are separated into 

two categories, the researchers generally prefer to use 

bottom-up (seeded) methods. Besl and Jain (1988) 

introduced the first seeded region growing algorithm. The 

algorithm consists of two steps: 1) Determining the seed 

points, 2) growing the seed to form regions. The selection 

of seed points is an essential step for the success of the 

region-based methods. Besl and Jain (1988) determined 

the seed points according to the curvature value of the 

points. However, seed selection may vary for other 

methods. For example, Rabbani et al. (2006) and Ning et 

al. (2009), first, determined an appropriate model for a 

point and its neighbors to select a seed point. Then, the 

point that has the smallest distance with the plane 

created with the neighbor points is chosen as a seed 

point. Once the seed point is specified, a search list is 

created as pushing the seed point and its neighbors. At 

that point, the search begins to examine the similarities 

between the seed point and other list items in terms of 

local features such as curvature, surface orientation, 

smoothness, normal, etc. Besl et al. (1988) preferred 

normal of the points as the local feature and the angle 

between normal vectors (n_i  and n_j) was calculated. If 

the angle is less than a predefined threshold value, the 

neighbor point is added to the region corresponding to 

the seed point (Equation 2). After that, the seed point is 

removed from the search list, and the recently added 

point becomes the new seed. The process is repeated for 

new seed points until no seed point for that region is left. 

The method continues with a new seed point for a new 

region. 

 

                                                                             (2) 

 

2.3. Conditional Euclidean Clustering 

Conditional Euclidean clustering is a variant of the region 

growing approach, in which local features that are 

employed to cluster the neighbor points can be 

customized according to the application. In this way, 

different features such as color, normal, smoothness, and 

distance can be aggregated for segmentation (PCL-CEC, 

2020). For example, Wu et al. (2019) combined color and 

distance features in conditional Euclidean clustering to 

segment the juicy peaches on trees. Zhou et al. (2018) 

generated topological maps by means of signed surface 

variation and distance-based conditions. Besides, 

conditional Euclidean clustering allows determining the 

number of points in a cluster and applying different local 

features for different regions of the point cloud or same 

clustering criterion with varying parameters to segment 

different-sized objects in a point cloud data. For these 

reasons, conditional Euclidean clustering method is 

appropriate for object segmentation and planar surface 

segmentation. The main disadvantage of the method is 

that its success depends on the merging condition of 

region growing. 

In this study, apart from the region growing method that 

uses similarities between normal vectors of neighbors as 

a clustering constraint, we opted to consider the x, y, or z 

components of the point’s normal to merge the neighbor 

points into the same segment in conditional Euclidean 

clustering method. To do that, for each point, we first 

determined the largest component of its normal vector 

according to the Equation 3. We called that component as 

the dominant axis of the normal and employed it for 

planar surface segmentation. If neighbor points have the 

same dominant axis, these points are added to the same 

segment. The idea behind this is that the normal vectors 

of the planar surfaces generally parallel to one of the x, y, 

or z-axis. In this way, we aimed to reduce the 

segmentation errors that occur at the boundary regions of 

planar surfaces when the similar normal vectors criterion 

is applied for segmentation like in the region growing 

method. 

 

                                                                (3) 

 

2.4. The Difference of Normal Based Segmentation 

In computer vision applications, the operators such as the 

difference of Gaussians (DoG) and Laplacian of the 

Gaussian (LoG) have been widely used to detect edges, to 

find salience points, and to pre-segment images, before 

complex algorithms are executed. In a similar fashion, the 

difference of normals (DON) operator, which calculates 

normal vectors for large-scale and small-scale support 

radiuses, is mainly designed to identify essential and 

distinguishing points needed for object identification 

within large unorganized the point cloud data for outdoor 

applications (Ioannou et al., 2012). For example, Su et al. 

(2018) applied the difference of normals method to 

extract corn leaves. The main advantage of the method is 

that the support radiuses can be adjusted depending on 

the object to be segmented. However, the size of the 

support radius should be selected carefully since the 

calculation time of the normal vectors highly depends on 

this selection. Besides, apart from the region-based 

methods, the difference of normals does not need the 

local information to determine the segments. 

The main idea behind the difference of normals method is 

to observe the surface normal vectors that describe the 

surface geometry. The researchers generally prefer to use 

the support radius or a fixed number of neighbors to 

determine the surface normal in spite of the existence of 

many different methods. The radius or the number of 

neighbors describes the size of the surface that the 

normal represents. The difference of normals method 

calculates surface normal vectors for the small support 

radius (rs), which reflects small changes on the surface 

geometry, and the large support radius (rl) that depicts 

the general character of the surface. If the small support 

radius normal and large support radius normal for a point 

are similar to each other, it indicates that the normal 

vectors reflect the character of the surface. However, the 

difference between small support radius normal and large 
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support radius normal increases when a point lies at the 

edge of a planar surface due to the rapid changes in small 

support radius normal. The difference of normals based 

segmentation method utilizes from that idea. First, the 

method executes the difference of normals operator to 

calculate the arithmetic average of the small and large 

support radius normal vectors for each point (Equation 

4). Then, conditional removal filtering (PCL-CRF, 2020) is 

applied to remove the points that the difference between 

two normal vectors is greater than a predefined threshold 

value (FILTER_THRESHOLD). In other words, the filtering 

step eliminates the points located at the edge of the 

planar surfaces. Finally, the Euclidean cluster extraction 

method is employed to cluster the remaining points 

(Ioannou et al., 2012). 

 

             
               

 
                                                      (4) 

 

2.5. The Supervoxel Clustering 

In recent years, graph-based methods have gained 

popularity in 2D image segmentation due to their pixel-

based strategy that significantly increases the 

segmentation success (Egger et al., 2012). These methods 

construct graphs, in which each pixel is represented with 

a node. Then, the nodes are processed to enhance pixel-

based low-level data to object-scale high-level 

information. On the other hand, the graph-based methods 

suffer from high time complexity since they handle all 

pixels in the image. To reduce the computational time of 

the graph-based methods, the superpixel concept, which 

considers a group of pixels instead of each pixel as a node, 

is revealed. After the successful implementation of the 

superpixel concept for 2D image segmentation, the 

supervoxel concept has been begun to be used for 

segmentation of point cloud data. For example, Lin et al. 

(2018) proposed an improved supervoxel 

implementation to diminish the segmentation errors at 

the supervoxel boundaries. They showed the 

effectiveness of their work on three different datasets, 

including different types of point cloud data. 

The supervoxel clustering method first creates the voxel 

octree structure regardless of whether the point cloud 

data is organized or unorganized. Moreover, an adjacency 

graph with a resolution of Rvoxel is constructed, this is 

essential for segmentation of the point cloud data. 

Although these steps seem to be time-consuming and can 

be considered a negative aspect of the method, they allow 

utilizing neighbors relation and speeding up the 

segmentation process. Then, the seed points must be 

selected because the supervoxel clustering method is a 

variant of the region-based methods. It is clear that the 

selection of the seed points profoundly affects the 

segmentation accuracy. For that reason, Rseed parameter, 

which should be chosen greater than Rvoxel value, is used 

to determine the evenly distributed seed points in the 

voxelized grid. The seed voxels and its neighbors form the 

supervoxels that substantially are the cluster of features 

such as color, spatial distance, and normal. After 

supervoxels are determined, the growing process is 

executed with the k-means clustering algorithm and 

breadth-first search. First, the nearest voxel to the 

supervoxel and its neighbors are handled. Then, the 

similarity between these voxels and the supervoxel in the 

feature domain is investigated. Since the supervoxels 

consist of color, distance, and normal features, the 

distance between supervoxel and the voxels is calculated 

with a weighted distance function as given in Equation 5: 

 

  √    
  

    
 

      
      

                                                     (5) 

 

where Dc, Ds, and Dn represent the color, spatial, and 

normal distance, respectively. Also, weights of these 

distances are described with wc, ws, and wn, respectively. 

The voxel that has the smallest distance value is joined to 

the supervoxel and its neighbors in the adjacency graph 

are added to the search queue. The same process is 

performed for all supervoxels and the depth of the 

examined voxels remains the same. The search is 

terminated when the boundaries of supervoxel are 

reached or no neighbors are available for search. Lastly, 

the k-means clustering algorithm is applied to update the 

cluster centers. The process continues until either the 

supervoxels stabilize or a predefined number of iterations 

is performed (Papon et al., 2013). 

 

3. Results 
3.1. Experimental Setup 

The publicly available Fukuoka indoor dataset was used 

to analyze the performance of the segmentation methods 

that are situated in PCL. The dataset consists of 

panoramic point cloud data captured with the SICK LMS-

151 laser sensor. The point clouds are separated into five 

categories: Corridor, kitchen, laboratory, study room, and 

office. In the laboratory, kitchen, and study room 

categories, samples generally include objects such as 

tables, computer screens, and chairs. However, in this 

study, we intend to segment structural planar surfaces 

such as wall, floor, and ceiling. For this reason, we 

selected 30 samples from the corridor and office 

categories that mainly include points representing these 

planar surfaces. Besides, we elaborated on the selected 

samples containing different levels of noise. Each of the 

selected point clouds has approximately 474200 points. 

Some preprocessing steps were performed to prepare the 

point cloud data for segmentation. First, the points that 

belong to non-planar surfaces such as flowerpot, air 

conditioning parts, and fire alarms were removed because 

these points may adversely affect the performance of the 

methods. For this reason, the natural characteristic of 

these methods can be misunderstood.  Then, the normal 

vector of each point in the point cloud data was calculated 

since all methods use normal information as a local 

feature for segmentation, excluding the RANSAC. For each 
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point, to determine the normal vector, firstly, a surface is 

fitted with the neighbors around the point. Then, the 

surface normal is considered the normal vector of the 

point. Thus, this process allowed us to compare the 

methods fairly because all methods employed the same 

normal vectors (PCL-SS, 2020). The experiments were 

conducted on a PC with the Intel i7-7700HQ processor, 

16GB RAM, and Ubuntu 16.04 operating system. 

The test results were compared in terms of segmentation 

accuracy and the time elapsed for segmentation. In order 

to calculate the segmentation accuracy, point-wise 

labeling was performed for each point cloud data through 

the RViz cloud annotation tool (Monica et al., 2017). Then, 

we determined paired segments between the 

segmentation result of a method and the labeled data. The 

segmentation accuracy of a sample is calculated by 

dividing the number of correctly segmented points to the 

total number of points. The average of all samples is 

considered the average segmentation accuracy.   

In the RANSAC method, the DISTANCE_THRESHOLD 

parameter that determines whether a point is in the 

plane. The parameter should be selected as high as 

possible to cope with the noise. However, all points could 

be clustered into a segment when the parameter is too 

high. The parameter was selected empirically as 0.03 

meters to consider these circumstances. In the region 

growing method, we used the default values at the PCL. 

The number of neighbors that examined in segmentation 

was 30. Also, the curvature and smoothness threshold 

were set to 1 and 3 degrees, respectively. In the 

conditional Euclidean clustering method, the 

neighborhood relationship is established with the search 

radius. We tried to set the radius of the conditional 

Euclidean clustering method, in which the number of 

neighbors to be approximately 30. In the experiments, the 

radius was selected as 0.015 meters. Also, the minimum 

and the maximum number of points that a segment can 

possess were 3000 and 1000000, respectively. In the 

difference of normal based segmentation method, small 

support radius (rs) and large support radius (rl) were 

0.015 and 0.075 meters, respectively. Notice that, we 

selected the small support radius the same as the radius 

in the conditional Euclidean clustering method to 

compare the methods fairly. Besides, Ioannou et al. 

(2012) recommended selecting the large support radius 

five times the small support radius. There are five main 

parameters used in supervoxel clustering. Voxel size 

value (Rvoxel), which determines octree leaf resolution, 

was selected empirically as 0.01 meters. The seed size 

value (Rseed) that describes the maximum size of the 

supervoxel was chosen 5.0 meters to contain all points in 

the point cloud data. In this study, we used only normal 

values in the supervoxel clustering method. Therefore, 

weights for color (wc), spatial distance (ws), and normal 

(wn) were 0.0, 0.0, and 1.0, respectively. 

 

 

 

3.2. Results 

3.2.1. Segmentation time 

The segmentation time is one of the essential metrics to 

evaluate the segmentation methods. The segmentation 

methods mentioned in Section 2 were applied to the 

selected 30 scenes for examining the performance of 

these methods in terms of segmentation time. Table 1 

shows the average elapsed time to segment a scene for 

each method.  

 

Table 1. Average segmentation time of a scene 

Methods Average Time (Seconds) 

RANSAC 0.4285 

Region Growing 6.2855 

Conditional Euclidean 

Clustering 

5.6124 

Difference of Normal 

Based Segmentation 
3.2140 

Supervoxel Clustering 5.2726 

 

The conditional Euclidean clustering and the supervoxel 

clustering methods are variants of the region-based 

methods. These methods utilize the local information to 

form a region; therefore, segmentation time for these 

methods was longer when they are compared with the 

RANSAC and the difference of normals based 

segmentation. This is an expected result because 

searching for neighbors is a time-consuming operation 

and the RANSAC and the difference of normals based 

segmentation do not perform the operation for 

segmentation. The segmentation time of region-based 

methods was also different from each other. The slight 

difference between the region growing and the 

conditional Euclidean clustering could be explained with 

different search approaches that these methods use. 

Generally, region growing based methods search their 

vicinity with a radius or the number of neighbors. As 

applying the region growing, the number of neighbors 

was selected 30. On the other hand, the conditional 

Euclidean clustering method uses the radius, which was 

chosen as 0.015 meters. Although we tried to set the 

radius of the conditional Euclidean clustering method, in 

which the number of neighbors to be approximately 30, 

the number of neighbors may vary according to the 

density of the points. Apart from the region growing and 

the conditional Euclidean clustering, which are utilized 

point-wise neighborhoods, the supervoxel clustering 

method uses voxel-wise neighborhoods. Therefore, in the 

worst-case scenario, each voxel includes only one point 

and the performance of the region growing and the 

supervoxel method could be the same in terms of the 

segmentation time. As a result, the number of points in a 

supervoxel that is adjusted with the Rvoxel parameter 

determines the segmentation time. The difference of 

normals based segmentation method could be considered 

as the edge-based methods since the method essentially is 

designed for the detection of the edges. In theory, the 

main advantage of the edge-based methods is their low 
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computational complexity. Once the segmentation time 

performance of the difference of normals based 

segmentation method is analyzed, we separated elapsed 

time into three stages. In the first stage, the difference of 

normal vectors was calculated in 0.1265 seconds. Then, 

conditional removal filtering took 0.016 seconds. In the 

last stage, Euclidean clustering was applied and it 

required 3.0715 seconds. Thus, the time-consuming part 

of the method is clustering and if an appropriate 

clustering method is chosen, the segmentation time could 

be decreased. Finally, RANSAC was the fastest one among 

the methods. It is an expected result because the RANSAC 

tries to fit a mathematical model and it does not utilize 

the local information to segment the planes. 

3.2.2. Segmentation accuracy 

In order to examine the success of methods that are 

situated in PCL, the segmentation accuracy was calculated 

for each method. Table 2 shows the average segmentation 

accuracy for a scene. Although RANSAC, region growing, 

and the conditional Euclidean clustering methods yielded 

approximately the same segmentation accuracy, they 

behaved differently in different scenes. Also, the reasons 

why the difference of normals based method and the 

supervoxel clustering method produce low segmentation 

accuracy when they are compared to the other methods 

were discussed. 

 

Table 2. Average segmentation accuracy of a scene 

Methods Average Accuracy 

RANSAC 94.33% 

Region Growing 94.19% 

Conditional Euclidean 

Clustering 

93.54% 

Difference of Normal Based 

Segmentation 
89.50% 

Supervoxel Clustering 64.49% 

 

To analyze the characteristics of each method, we 

selected four scenes among the 30 scenes, which are 

shown in columns of Figure 1. Another criterion of the 

selection of these scenes was the noise level of the data. 

We selected scenes that include different noise levels. 

Scene 1 and scene 2 include low-level noise when they are 

compared with scene 3 and scene 4. The first row in the 

figure shows the ground truth of the scenes. The 

remaining rows depict the results for each segmentation 

method. Also, the segmentation accuracy and time for 

each scene is given at the right of the scenes. In figures, 

the incorrect or unsegmented regions are represented 

with white ellipses. The RANSAC method suffers from 

combining the coplanar surfaces that are located in 

different locations on the same surface. For example, in 

scene 1, there are two vertical planes, which lie on two 

sides of the door plane. These planes approximately fit 

the same mathematical model and the RANSAC does not 

utilize the local information. Thus, the RANSAC added 

these planes into one segment, which is shown with 

yellow color. A similar problem also occurred in scene 4 

and the points in the ellipses were incorrectly joined into 

the wall plane that is depicted in yellow color. In order to 

deal with the high noise, the DISTANCE_THRESHOLD 

parameter was selected as high as possible. Therefore, the 

high value provides accurate segmentation at intersection 

points as the noise level increases and scene 3 and scene 

4 show examples of this situation. On the other hand, the 

incorrect results were produced at the intersection points 

of two planar surfaces in scene 2 due to the high value in 

the selection DISTANCE_THRESHOLD parameter. The 

well-known negative aspect of the region growing 

methods is that they may lead to incorrect results at 

points in the boundary of the regions where normal and 

curvature values change very quickly. The ellipses in the 

figures show the unsegmented regions. As the noise level 

increases just like scene 3 and scene 4, the normal and the 

curvature values are more corrupted than the values in 

scene 1 and scene 2. Thus, the segmentation accuracy for 

scene 3 and scene 4 are low since the number of 

unsegmented points directly proportional to the noise 

level. Besides, the required time for segmentation 

increases as the noise level rises. In this study, the 

dominant axis concept was suggested for the merging 

constraint of the conditional Euclidean clustering method. 

Therefore, the success of the method heavily depends on 

the accuracy of the normal. The method offered promising 

results for scene 1 and scene 2. Moreover, for these 

scenes, the method outperformed the RANSAC and region 

growing methods in terms of segmentation accuracy. 

However, as the noise level increases, the success of the 

method dramatically decreases. Nevertheless, the 

potential of the method should not be underestimated. 

The difference of normals based segmentation method 

employs the filtering process after small and large 

support radius normal vectors are calculated. Thus, the 

success of the method heavily depends on the filtering 

process. The filtering algorithm uses a threshold to 

determine whether a point is filtered. If the threshold is 

low, all points that the normal values are changed larger 

than the threshold are eliminated. All points could be 

combined into one segment when the threshold is high. 

As a result, we observed that the best accuracy success is 

obtained when the threshold was set to 0.1. However, the 

threshold could be adaptively adjusted according to the 

noise level to increase the segmentation accuracy. The 

method can always be considered for the applications 

that need fast segmentation and when the data contains 

coplanar surfaces that the RANSAC prone to error. The 

supervoxel clustering method was not appropriate for the 

segmentation of planar surfaces since it only allows 

adjusting the Rvoxel parameter. The parameter determines 

the number of supervoxel and their boundaries. Then, the 

method clusters the points in each supervoxel according 

to the normal vectors. The points that have similar 

normal vectors are added to the same region and this 

causes incorrect segmentation results. 
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Figure 1. The segmentation results. 

4. Conclusion 
In this study, the segmentation of indoor structural planar 

surfaces such as wall, floor, and ceiling via point cloud 

data that is captured with the 3D laser range scanner was 

considered. In previous studies, the researchers generally 

used RANSAC and region-growing methods.  However, 

other segmentation methods such as conditional 

Euclidean clustering, the difference of normals based 

segmentation, and the supervoxel clustering may produce 

satisfactory results for indoor applications.  For this 

reason, we examined the performance of these methods 

in terms of segmentation accuracy and segmentation time 

to reveal the positive and negative aspects of these 

methods for researchers that plan to apply them to 3D 
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laser point cloud data. To do that, the publicly available 

Fukuoka indoor laser dataset, which has point clouds 

with different noise levels, was used. The test results 

were evaluated regarding the noise level of point clouds 

and the behaviors of each method against the noise were 

discussed. 
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