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ABSTRACT

In this note, we study a chain of circles whose pairwise intersection points, taken in a certain order,
also lie on two circles. We give a short elementary proof of the following fact. There exists a conic
which touches each line connecting the centres of adjacent circles of such chain. In the case of
six circles of the chain, this means that the centres of these circles form a Brianchon hexagon. We
consider all cases of the possible radically distinct positions of the original chain of circles. In the
case when the touching conic is unique, we find out its type.
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1. Introduction

An interesting recent elementary statement on circles is Dao’s theorem on six circles [3, 5, 6, 10]. This
theorem states that if six triangles defined by the lines of three consecutive sides of a cyclic hexagon, then
the circumcenters of these triangles are the vertices of a Brianchon hexagon [1, p. 47], that is, a hexagon whose
main diagonals are concurrent (see Figure 1).

Figure 1. The configuration of Dao’s Theorem

By Brianchon’s theorem, the main diagonals of a hexagon circumscribed around a conic are concurrent.
Hence the hexagons circumscribed around a conic are always Brianchon hexagons (see, for instance, [7, p. 36]).
If we draw the six circles circumscribed the Dao’s triangles, we get a closed chain of circles. Two consecutive
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circles of this chain have at least one common point. This point is a vertex of the original hexagon. If other
common point of these circles exists, then we call it the "second point of intersection" of the two circles.

Miquel’s Six-Circles theorem [11] can be formulated in the following way: If for cyclic quadrangles P1P2P3P4

and Q1Q2Q3Q4 the quadrangles P1Q1Q2P2, P2Q2Q3P3, P3Q3Q4P4 are cyclic, then the last quadrangle of this
type P4Q4Q1P1 is also cyclic. The configuration of Miquel’s theorem is shown in Figure 2.
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Figure 2. The configuration of Miquel’s theorem

In symbols used for the configuration of Miquel’s theorem, the circumcircles of the quadruples P1Q1Q2P2,
P2Q2Q3P3, P3Q3Q4P4, and P4Q4Q1P1 form a closed chain of intersecting circles with the property that the
points of intersection belong to two other circles transversal to each circle of the chain. The following extension
of Miquel’s theorem can be proved easily by induction [8], [9, Theorem 4.2].

Theorem 1.1. Let α and β be two circles. Let n > 2 be an even number, and take the points P1, . . . , Pn on α
and Q1, . . . , Qn on β, such that each quadruple P1Q1Q2P2, . . . , Pn−1Qn−1QnPn is concyclic. Then the quadruple
PnQnQ1P1 is also concyclic.

In the case of n = 6 the obtained configuration of circles is very similar to the configuration in Dao’s theorem.
Hence it is not to surprising that L. Szilassi observed that the centers of the circles form Brianchon hexagon.
But he did not provide proof. On the other hand this problem without solution was published earlier in Crux
Mathematicorum by Dao [4]. It is interesting that, in a later volume of Crux Mathematicorum, we can find a
correction for another problem (see [2]), which contains the key statement for simply solving the problem in
question.

We note that the second points of intersection in a Dao’s configuration are not concyclic in general. This
implies that the problem we are discussing is independent of that of Dao.

Our short paper contains a simpler and shorter proof of that the hexagon in our question is a Brianchon
hexagon. This proof allows us to generalize the statement to any number of circles in the chain.

2. The main theorem

Theorem 2.1. Let ω(K) and ω(L) be two circles with respective centers K and L. Let n, n > 2, be a natural number.
Assume that the points of the sequences P1, . . . Pn and Q1, . . . , Qn belong to the circles ω(K) and ω(L), respectively,
such that each of the quadrangles P1Q1Q2P2, . . ., Pn−1Qn−1QnPn is cyclic. Denote the center of the circle ci(Oi)
circumscribed the quadrangle PiQiQi+1Pi+1, i = 1, . . . , n− 1, by Oi and assume that none of the points K and L lies on
the line OjOj+1, j = 1, . . . , n− 2. Let N be the common point of some line OjOj+1 and the line KL. Then there exists a
conic γ which touches each line OjOj+1. Under the condition n > 6, the conic γ is uniquely defined, it is:
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• an ellipse with foci K and L if K 6= L and the point N does not belong to the segment KL;
• a hyperbola with foci K and L if K 6= L and the point N lies between the points K and L;
• a circle with center L if K = L.

Proof. We prove the theorem in three steps.
I. First assume that n ≤ 6. Then i ≤ 5 and j ≤ 4, that is, there are no more than four fixed lines OjOj+1. Since

the family of all conics in the plane depends on five parameters, the family of all conics touching d fixed lines,
depends on 5− d parameters. Consequently, in the case under consideration, the family of all conics touching
the lines OjOj+1 for j = 1, 2, 3, 4, depends on at least one parameter. Thus, when n ≤ 6, the theorem holds.

II. Now assume that n > 6 and K 6= L.
For any five lines OjOj+1, there exists a unique conic, which touches each of these lines. Let us show that

such a conic is common for all lines OjOj+1.
Let the point Tj be the reflected image of the point K with respect to the line OjOj+1. We prove that

each point Tj belongs to the same circle σ(L) with centre L. To this end we consider some cyclic quadrangle
Pj+1Qj+1Qj+2Pj+2 and denote the perpendicular bisectors of the segments Qj+1Pj+1, Pj+1Pj+2, and Pj+2Qj+2

by f , g, and h, respectively. The configuration of the theorem for the quadrangle P2Q2Q3P3 in the case when
the conic γ is an ellipse, is shown in Figure 3.
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Figure 3. The configuration of the theorem in the case when the conic γ is an ellipse.

Denote the reflections in the lines f , g, and h by symbols Sf , Sg, and Sh, respectively. The lines f , g, and
h meet at the point Oj+1, in particular, they are parallel if Oj+1 lies at infinity. Therefore, the composition
of the reflections Sf , Sg, and Sh is also a reflection. Since the conditions Sf ◦ Sg ◦ Sh(Qj+2) = Sf ◦ Sg(Pj+2) =
Sf (Pj+1) = Qj+1 hold, the composition Sf ◦ Sg ◦ Sh is the reflection in the perpendicular bisector of the segment
Qj+1Qj+2. At the same time Sf ◦ Sg ◦ Sh(Tj+1) = Sf ◦ Sg(K) = Sf (K) = Tj . Hence Sf ◦ Sg ◦ Sh is the reflection
in the perpendicular bisector of the segment TjTj+1. Thus, the segments Qj+1Qj+2 and TjTj+1 have the same
perpendicular bisector, denote it by t. Since the point L lies on t, the distances of points Tj and Tj+1 from L are
equal to each other, that is, |LTj | = |LTj+1|. Consequently, for any j the point Tj lies in the circle σ(L).

Consider the triangles KLTj . Let |LTj | = 2a and |KL| = 2c, respectively. By the assumption of the theorem,
the point L does not lie in the perpendicular bisector OjOj+1 of the segment KTj . Consequently, a 6= c and by
Pasch’s axiom the line OjOj+1 passes through a point of the segment KL, or through a point of the segment
LTj . Let Nj and Mj be the common points of the line OjOj+1 with the lines KL and LTj , respectively. Then the
following assertions are equivalent.

1. The point Nj does not belong to the segment KL.

2. The point Mj belongs to the segment LTj .
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3. The inequality a > c holds.

Since the numbers a and c are constant in our task, the equivalence of the assertions (1), (3) implies that each
of the points Nj can be taken as the point N in the formulation of the theorem. Thus the type of the desired
conic γ is not depend on the choice of the number j.

Based on the equality |MjK| = |MjTj | and the equivalence of the assertions (1) – (3), we obtain the following
metric characteristics of the point Mj .

If a > c, that is, the point Nj does not belong to the segment KL, then for any j the point Mj satisfies the
equality |MjK|+ |MjL| = 2a.

If a < c, that is, the point Nj lies between the points K and L then for any j the point Mj satisfies the equality
||MjK| − |MjL|| = 2a.

According to these characteristics and the classical definitions of conics, each point Mj lies in a conic ω with
fociK, L and the orthotomic circle σ(L; 2a) (see, for instance, [7, pp. 12, 33]). This conic is an ellipse or hyperbole
if and only if a > c or a < c, respectively. The line OjOj+1 is the perpendicular bisector of the segment KTj and
passes through the point Mj of the line LTj . Therefore, it forms equal angles with the focal segments MjK and
MjL of the point Mj . Consequently, for any j the line OjOj+1 is the tangent of the conic ω in the point Mj . Thus
the conic ω is the desired conic γ. This proves the statement of the theorem in the case, when n > 6 and K 6= L.

III. Finally, assume that n > 6 and K = L.
In this case the circles ω(K) and ω(L) are concentric. Hence the perpendicular bisectors of the segments

PiPi+1 and QiQi+1 coincide and go through the point K = L (see Figure 4). Keeping the notations of the
previous step, we find that the symmetries composition Sf ◦ Sg ◦ Sh transferes the point Tj+1 to the point Tj
and leaves L invariant.
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Figure 4. The configuration of the theorem in the case when n = 6 andK = L.

Consequently, |LTj | is a constant, that is, all points Tj lie in the same circle with center L. The investigated
linesOiOi+1 are perpendicular bisectors of the radiuses of this circle. Hence, they are tangents of the circle with
center L and radius |LTj |/2. Thus under the conditions n > 6 and K = L the conic γ is a circle.

The proof of the theorem now is complete.

Remark 2.1. We excluded in the theorem that case, when at least one of the points K and L lies on some line
OjOj+1. Note that in this case the conic γ degenerates into a pair of lines and is defined ambiguously.

Remark 2.2. If the number n in Theorem 2 is even, then due to Theorem 1 the quadrangle PnQnQ1P1 is also
cyclic. Denote the center of the circle circumscribed this quadrangle by On. By Theorem 2 there exists a conic,
wich is circumscribed of a polygon O1O2 . . . On. Consequently, under the condition n = 6, this polygon is a
Brianchon hexagon as we noted in the introduction.

Remark 2.3. Observe that in the case, when K is an inner point of the circle σ(L) containing the points Ti, the
conic γ is an ellipse. If the point K is an outer point of σ(L), then the conic γ is a hyperbola. The case that
the conic is a parabola occurs when one of the given circles ω1(K) and ω2(L) degenerates into a line. Here we
present this statement without proof, showing it in Figure 5.
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Figure 5. The configuration of the theorem in the case when the circle ω(L) degenerates into a line and the conic γ is parabola.
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