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Abstract

This paper addresses optimal control problems governed by semilinear parabolic partial
differential equations, subject to control constraints and state constraints of integral type.
Since such problems may not have classical solutions, a relaxed optimal control problem is
considered. The relaxed control problem is discretized by using a finite element method
and the behavior in the limit of discrete optimality, admissibility and extremality properties
is studied. A conditional descent method with penalties applied to the discrete problems is
proposed. It is shown that the accumulation points of sequences produced by this method
are admissible and extremal for the discrete problem. Finally, numerical examples are
given.

1. Introduction

In the absence of any convexity assumptions, optimal control problems, in general, have no classical solutions. To study them,
they usually need to be reformulated to their corresponding relaxed form. Warga [1], Roubı́ček [2] and Fattorini [3] have
extensively studied the concept of relaxation on optimal control problems. Relaxation had been introduced initially to prove the
existence of optimal controls and then to derive necessary optimality conditions. Additionally, relaxed controls are used as a
tool to develop optimization methods (Warga [4], Chryssoverghi et al. [5]) and discrete approximation schemes (Chryssoverghi
et al. [6], Roubı́ček [7], Azhmyakov et al. [8]). Relaxed controls have been applied to optimal control problems for systems
defined by PDEs in [3], [2] as well as in many papers, among them [6], [9]-[13]. In particular, Arada and Raymond in [9] prove
existence and a Pontryagin’s minimum principle for relaxed solutions of state-constrained relaxed optimal control problems
governed by semilinear elliptic equations under a stability condition. The approximation of similar problems was studied by
the same authors in [10] and by Casas in [11]. Chryssoverghi and Bacopoulos in [6] present approximation results for relaxed
semilinear parabolic optimal control problems. In [12] relaxed controls have been used to develop iterative optimization
methods applied directly on a relaxed problem. Finally, Luan in [13], using relaxed controls obtains some results on the
nonexistence and existence of multisolution semilinear elliptic optimal control problems.

In this paper, an optimal control problem with distributed control is considered for systems defined by a semilinear parabolic
PDE, in the presence of constraints on the control and the state. The parabolic equation has two separate semilinear terms
in order to allow more general assumptions, monotonicity for the term on the left-hand side and Lipschitz continuity for the
term on the right-hand side. The state constraints depend both on the state and its gradient and are of integral type. The cost
functional depends also on the state gradient. Convexity assumptions are not imposed, so this problem may have no classical
solutions. To deal with this, the problem is reformulated in its relaxed form using relaxed controls. The state equation in relaxed
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form is then discretized in space using a Galerkin finite element method (semi-discretization). The spatial discretization is done
with continuous piecewise linear functions. The controls are approximated by piecewise constant relaxed ones. Necessary
conditions for optimality are stated for the discrete relaxed problem. Then it is shown that sequences of optimal (resp. extremal)
relaxed controls for the discrete problem have subsequences which converge to optimal (resp. extremal) controls for the
continuous relaxed problem. Next, an algorithm based on a penalized conditional descent method is proposed, applied to the
discrete problems, which generates Gamkrelidze controls. It is shown that accumulation points of sequences constructed by
the algorithm satisfy the necessary conditions for optimality for the discrete problem and such accumulation points always
exist. For implementation reasons relaxed controls have to be approximated by classical ones. So, using standard techniques,
the Gamkrelidze controls computed by the above method can be approximated by piecewise constant classical ones, see [5].
Thus the above method using relaxed controls has all the theoretical advantages of them and gives us at last, through the
above-mentioned approximation, classical controls. Finally, two numerical examples are presented.

The novelty points of this paper are: (i) the study of such nonconvex optimal control problems with relaxation, (ii) the
discretization of such problems, and (iii) the construction of methods applied to the discrete problem with relaxed controls. In
order to solve these problems numerically one must necessarily disretize them and then apply some optimization method to
the resulting discrete problem. Since the structures of the continuous and the discrete problems are basically different it is
necessary to know if discrete optimality (or extremality) carries over in the limit to continuous optimality (resp. extremality).
This paper actually extends the results of [14] by semi-discretizing the problem and studying the behavior in the limit and then
by applying an optimization method to this discretized problem.

The paper is organized as follows. In section 2 the relaxed controls are introduced, and the classical and the relaxed optimal
control problems are formulated. The existence of optimal relaxed controls is also proved. In section 3 the relaxed problem is
discretized and in section 4 the behavior in the limit of discrete relaxed optimality and extremality is studied. A penalized
conditional descent method is presented in section 5. Two numerical examples are given in section 6.

2. The continuous optimal control problems

Let Ω be a bounded domain in Rd , with boundary Γ, and set Q := Ω× (0,T ), Σ := Γ× (0,T ) with given final time T > 0.
Consider the following semilinear parabolic initial boundary value problem

yt +A(t)y+
d
∑

i=1
a0i(x,t)∂y/∂xi +b(x,t,y(x, t),u(x, t))= f (x,t,y(x, t),u(x, t)) in Q, (2.1)

y(x, t) = 0 on Σ (2.2)
y(x,0) = y0(x) in Ω. (2.3)

Here A(t) is the elliptic differential operator

A(t)y :=−
d

∑
j,i=1

(∂/∂xi)[ai j(x, t)∂y/∂x j].

Throughout the paper, we shall use the notation (·, ·), (·, ·)1, (·, ·)Q for the inner product and ‖·‖ , ‖·‖1 , ‖·‖Q for the norm of
the spaces L2(Ω),V := H1

0 (Ω), L2(Q) respectively. We define on V ×V the bilinear form associated with A(t)

a(t,y,v) :=
d

∑
j,i=1

∫
Ω

ai j(x, t)
∂y
∂xi

∂v
∂x j

dx. (2.4)

Also, q1 and q2 are given nonnegative integers.

The set of classical controls is defined by

U := {u : Q→U |u measurable} ⊂ L∞(Q),

U ⊂ R is compact, not necessarily convex and the functionals by

Jm(u) :=
∫

Q
gm(x, t,y,∇y,u)dxdt, m = 0, ...,q2.

The continuous classical optimal control problem is

minimizeJ0(u)

subject to the state equation (2.1 - 2.3), the control constraints u ∈ U and the state constraints

Jm(u) = 0, m = 1, ...,q1,

Jm(u) ≤ 0, m = q1 +1, ...,q2.
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The above problem in order to have a solution has to be endowed with undesirable convexity assumptions (for example, Cesari
property), which are usually not realistic for nonlinear systems. But when we formulate the problem in its relaxed form using
relaxed controls then the new problem has a solution in a larger space under weaker assumptions.

Let C(U) be the set of continuous functions on U and M(U) (resp. M1(U)) the set of Radon (resp. probability) measures on U .
We endow M(U) =C(U)∗ with the weak* topology. We define the set of relaxed controls ([1], [2])

R := {r : Q̄→M1(U) |r weakly measurable} ⊂ L∞
w(Q;M(U))≡ L1(Q;C(U))∗.

The topology of R is the weak* topology induced by L1(Q;C(U))∗. R is convex, and with the above topology metrizable
and compact. We identify each element u ∈ U with the relaxed control r(·) = δu(·), where δu(·) denotes the Dirac measure
concentrated at u(·) and thus we can regard U as a subset of R. Furthermore U is dense in R. For simplicity reasons, for
h ∈ L1(Q;C(U)) and r ∈ R ,we write

h(x, t,r(x, t)) :=
∫

U
h(x, t,u)r(x, t)(du). (2.5)

It follows (see [1]) that h(x, t,r(x, t)) is linear in r. Let (rk) be a sequence of relaxed controls and r ∈ R. Then, (rk) is said to
converge to r if and only if

lim
k→∞

∫
Q

h(x, t,rk(x, t))dxdt =
∫

Q
h(x, t,r(x, t))dxdt,

for all h ∈ L1(Q;C(U)).

For the case of noncompact U , Fattorini in [3], gives a new definition of relaxed controls based on finitely additive measures
on U .

The weak relaxed form of the state equation (2.1), using the notation (2.5), is given by

< yt ,v >+a(t,y,v)+
d

∑
i=1

(a0i(t)∂y/∂xi,v)+(b(t,y,r),v) = ( f (t,y,r),v), (2.6)

for every v ∈V , a.e. in (0,T ), y(t) ∈V, a.e. in (0,T )

y(0) = y0, (2.7)

where < ·, ·> denotes the dual pairing between V and its dual space V ∗ = H−1(Ω) and a(t,y,v) is the bilinear form given in
(2.4) .

The continuous relaxed optimal control problem (ROCP) is

minimize J0(r)

subject to the relaxed state equation (2.6), (2.7), the control constraints r ∈ R and the state constraints

Jm(r) = 0, m = 1, ...,q1,

Jm(r) ≤ 0, m = q1 +1, ...,q2,

where

Jm(r) :=
∫

Q

∫
U

gm(x, t,y,∇y,u)r(du)dxdt, m = 0, ...,q2.

We introduce the following assumptions.

(H1) Ω⊂ Rd ,d ≤ 3, is a bounded domain with C1-boundary Γ.

(H2) The coefficient functions ai j of A(t) belong to L∞(Q) and

d

∑
j=1

d

∑
i=1

ai j(x, t)ξiξ j ≥ γ0

d

∑
i=1

ξ
2
i , ∀ξi,ξ j ∈ R, (x, t) ∈ Q,with γ0 > 0,

from which easily follow the inequalities

|a(t,y,v)| ≤ α1 ‖y‖1 ‖v‖1 , a(t,v,v)≥ α2 ‖v‖2
1 , ∀y,v ∈V, t ∈ (0,T ),

for some α1 ≥ 0, α2 > 0.
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(H3) a0 = (a01, ...,a0d)
T ∈ L∞(Q)d . The functions b and f : Q×R×U → R are measurable w.r.t. (x, t) ∈ Q for any fixed y,u,

continuous for fixed (x, t) ∈ Q and satisfy the conditions

|b(x, t,y,u)| ≤ ϕ(x, t)+β |y|2 , (x, t,y,u) ∈ Q×R×U,

| f (x, t,y,u)| ≤ ψ(x, t)+ γ |y| , (x, t,y,u) ∈ Q×R×U,

| f (x, t,y1,u)− f (x, t,y2,u)| ≤ L |y1− y2| , (x, t,y1,y2,u) ∈ Q×R2×U,

where ϕ,ψ ∈ L2(Q), β ,γ, L≥ 0.

The function b is monotone increasing with respect to y for almost every (x, t) ∈ Q. Assuming that b(·, ·,y, ·) = 0, (if not, we
subtract this term from both sides of (2.1)) it follows that b(x, t,y,u)y≥ 0.

(H4) The functions gm : Q×Rd+1×U →R are measurable for fixed (y, ȳ,u) ∈Rd+1×U , continuous for fixed (x, t) ∈Q and
satisfy

|gm(x, t,y, ȳ,u)| ≤ ζm(x, t)+δmy2 + δ̄m |ȳ|2 , (x, t,y, ȳ,u) ∈ Q×Rd+1×U,

with ζm ∈ L1(Q), δm ≥ 0, δ̄m ≥ 0.

(H5) The functions by, fy : Q×R×U → R are measurable on Q for fixed (y,u) ∈ R×U and continuous on R×U for fixed
(x, t) ∈ Q and satisfy ∣∣by(x, t,y,u)

∣∣≤ ξ (x, t)+η |y| , (x, t,y,u) ∈ Q×R×U,∣∣ fy(x, t,y,u)
∣∣≤ L1, (x, t,y,u) ∈ Q×R×U,

with ξ ∈ L2(Q), η ≥ 0, L1 ≥ 0.

(H6) The functions gmy,gmȳ : Q×Rd+1×U → R are measurable on Q for fixed (y, ȳ,u) ∈ Rd+1×U and continuous on
Rd+1×U for fixed (x, t) ∈ Q and satisfy∣∣gmy(x, t,y, ȳ,u)

∣∣≤ ζm1(x, t)+δm1 |y|+ δ̄m1 |ȳ|2 , (x, t,y, ȳ,u) ∈ Q×Rd+1×U,∣∣gmȳ(x, t,y, ȳ,u)
∣∣≤ ζm2(x, t)+δm2y2 + δ̄m2 |ȳ| , (x, t,y, ȳ,u) ∈ Q×Rd+1×U,

with ζm1,ζm2 ∈ L2(Q), δm1, δ̄m1,δm2, δ̄m2 ≥ 0.

Using assumptions (H1-H3) and the fact that V is compactly embedded in L4 (Ω), we can see that equation (2.6) is well
defined.

Theorem 2.1. Under Assumptions (H1-H3), for every r ∈ R and y0 ∈ L2(Ω) (or y0 ∈V ), there exist a unique y := yr such that
y ∈ L2((0,T ),V ), yt ∈ L2((0,T ),V ∗) satisfying (2.6), (2.7). In addition, y is essentially equal to a function in C([0,T ],L2(Ω)),
and thus the initial condition (2.7) is well defined.

Proof. The proof is based on compactness arguments (see [15]).

Next lemma describes the continuity of the state and the functionals w.r.t. the corresponding relaxed control. This result is the
basic tool to prove the existence of optimal relaxed controls.

Lemma 2.2. Under Assumptions (H1-H3), the mapping r 7→ yr, from R to L2 (Q) and L2 ((0,T ),V ), is continuous. Under
Assumptions (H1-H4), the functionals r 7→ Jm(r), m = 0, ...,q2, from R to R, are continuous.

Proof. Let rk → r in R and set yk := yrk . Taking y = v = yk in (2.6), using Assumptions (H2-H3) and the basic inequality
2ab≤ 1

ε
a2 + εb2, ε > 0, we have

1
2

d
dt
‖yk‖2 +a2 ‖yk‖2

1 ≤
1
2
‖ψ (t)‖

2
+

(
1
2
+ γ +

c
2ε

)
‖yk‖2 + c

ε

2
‖yk‖2

1 , where c := ‖a0‖L∞ .

Integrating w.r.t. t on [0, t] for t ≤ T and selecting appropriate ε > 0 to hide the term
∫ t

0 ‖yk (s)‖2
1 ds to the left-hand side we

obtain

1
2
‖yk‖2 +

(
a2− c

ε

2

)∫ t

0
‖yk (s)‖2

1 ds≤ 1
2

∥∥y0∥∥2
+

1
2
‖ψ‖2

L2(Q)+

(
1
2
+ γ +

c
2ε

)∫ t

0
‖yk (s)‖2 ds. (2.8)
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Using Gronwall’s inequality we deduce from (2.8) that yk is bounded in L2 (Q). Then again from (2.8) we obtain that yk is
bounded in L2 ((0,T ),V ). One can also check using (2.6) that y′k is bounded in L2 ((0,T ),V ∗). Thus, there exist a subsequence
still denoted by (yk) such that yk −→ y in L2 ((0,T ),V ) weakly and y′k −→ y′ in L2 ((0,T ),V ∗) weakly. Since V is compactly
embedded in L2 (Ω) by Theorem 2.1 chap. III in [16] follows that yk −→ y in L2 (Q) strongly. It follows easily that y = yr and
that the convergence holds for the original sequence. The strong convergence yk −→ y in L2 ((0,T ),V ) can be proved as in
Lemma 4.2 here. Finally, from Proposition 2.1 in [6] we derive that the functionals r 7→ Jm(r), m = 0, ...,q2 are continuous.

Theorem 2.3. Under Assumptions (H1-H4) and supposing the existence of a feasible control the ROCP has a solution.

Proof. It follows from Lemma 2.2 and the compactness of R.

Necessary conditions for optimality for the ROCP are given in Chryssoverghi et al. [14].

3. The semi-discrete optimal control problems

(H7) a, a0 are independent of t (for simplicity), b,by, f , fy are continuous on Q̄×R×U , gm,gmy,gmȳ are continuous on
Q̄×Rd+1×U and y0 ∈V .

For each integer n≥ 0, let Ωn be a subdomain of Ω with polyhedral boundary Γn such that dist(Γn,Γ) = o(hn), {En
i }Mn

i=1 be an
admissible regular quasi-uniform triangulation of Ω̄n into closed d-simplices (finite elements), with hn = maxi[diam(En

i )]→ 0
as n→ ∞. Associated with the above triangulation we define

V n :=
{

yn ∈V |yn ∈C(Ω̄),affine on each En
i , yn = 0 in Ω−Ω

n}
with dimV n = Nn and vn

i , i = 1, ...,Nn be a basis of V n,

Rn := {rn ∈ R |rn = {rn
i , i = 1, ...Mn} ,rn

i is equal to a constant measure w.r.t. x in M1(U)on the interior of (En
i × (0,T )), i = 1, ...Mn}

the set of (semi)discrete relaxed controls and Un := Rn ∩U the set of (semi)discrete classical controls. Clearly, we have
Un ⊂ Rn.

For a given rn ∈ Rn, the corresponding (semi)discrete state yn is given by the (semi)discrete state equation (system of ODE’s
w.r.t. cn)

(yn′ ,vn
i )+a(yn,vn

i )+(aT
0 (t)∇yn,vn

i )+(b(t,yn,rn),vn
i ) = ( f (t,yn,rn),vn

i ), i = 1, ...,Nn, ∀t ∈ (0,T ), (3.1)
(yn(0)− y0,vn

i )1 = 0, i = 1, ...,Nn, (3.2)

where yn (t) =
Nn

∑
i=1

cn
i (t)vn

i . Note that yn (0) is the orthogonal projection of y0 onto V .

Theorem 3.1. Under Assumptions (H2-H3) and (H7), for every n and rn ∈ Rn the equation (3.1), (3.2) admits a unique
solution yn. In addition, the solutions are uniformly (w.r.t. rn) bounded and equicontinuous.

The discrete functionals are defined by

Jn
m(r

n) :=
∫

Q
gm(x, t,yn,∇yn,rn)dxdt, m = 0, ...,q2.

We consider the following two discrete problems:

minimize Jn
0 (r

n)

subject to (3.1), (3.2), the control constraints rn ∈ Rn and the state constraints

Case (a)
|Jn

m(r
n)| ≤ εn

m, m = 1, ...,q1
Jn

m(r
n)≤ εn

m, εn
m ≥ 0, m = q1 +1, ...,q2,

(3.3)

and

Case (b)
Jn

m(r
n) = εn

m, m = 1, ...,q1,
Jn

m(r
n)≤ εn

m, εn
m ≥ 0, m = q1 +1, ...,q2,

(3.4)

where εn
m are non-negative given numbers, introduced for feasibility reasons.

The first of the above discrete problems with state constraints (3.3) is denoted by DROCPa and the second one with state
constraints (3.4) by DROCPb.
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Theorem 3.2. Under Assumptions (H2-H4) and (H7), the mappings rn 7→ yn and rn 7→ Jn
m(r

n), defined on Rn, are continuous.
If any of the discrete problems is feasible, then it has a solution.

Proof. The continuity of the operator rn 7→ yn is proved by Theorem 3.1 and using Ascoli’s theorem to pass in the limit in
(3.1), (3.2). The continuity of rn→ Jn

m(r
n) follows from the continuity of gm. Since the set Rn is compact with the relative

weak* topology of M(U)Mn
it follows that the discrete problems DROCPa, DROCPb defined above have a solution.

To compute the directional derivative of the functional Jn, where for simplicity reasons the index m is omitted, we introduce
the linear adjoint state equation

−(zn′ ,v)+a(v,zn)+(aT
0 ∇v,zn)+(znby(t,yn,rn),v) =(zn fy(t,yn,rn)+gy(t,yn,∇yn,rn),v)+(gȳ(t,yn,∇yn,rn),∇v),∀v∈V n, (3.5)

zn(T ) = 0, (3.6)

which has a unique solution zn = zrn with yn = yrn .

We define, for each function g, the Hamiltonian H

H(x, t,y, ȳ,z,u) := z[ f (x, t,y,u)−b(x, t,y,u)]+g(x, t,y, ȳ,u).

The following lemma and theorem can be proved by using the techniques of [1], [6]. See also [17], where necessary optimality
conditions on signomial constrained optimal control problems are proved.

Lemma 3.3. Under Assumptions (H2-H7), the directional derivative of the functional Jn is given by

DJn(rn,r′n− rn) =
∫

Q
H(x, t,yn,∇yn,zn,r′n− rn)dxdt, rn,r′n ∈ Rn,

where zn is given by (3.5), (3.6). Moreover, the mappings rn 7→ zn and (rn,r′n) 7→ DJn(rn,r′n− rn) are continuous.

Proof. For simplicity of notation we drop the index n. For r,r′ ∈ R, 0 < ε ≤ 1, set rε = r + ε(r′− r),y := yr,yε := yrε
,

δε y := yε − y. Now, by our assumptions, for fixed r ∈ R, the functional

Φ(y, ȳ,r) :=
∫

Q
g(x, t,y, ȳ,r)dxdt,

is Fréchet differentiable uniformly in r, i.e.

Φ(y+δy, ȳ+δ ȳ,r)−Φ(y, ȳ,r) =
∫

Q
[gy(x, t,y, ȳ,r)δy+gȳ(x, t,y, ȳ,r)δ ȳ]dxdt +θ(δy,δ ȳ)(‖δy‖

∞
+‖δ ȳ‖),

where θ(δy,δ ȳ)→ 0 as ‖δy‖
∞
+‖δ ȳ‖→ 0, with θ independent of the control r ∈ R. This can be shown under our assumptions

by using the Mean Value Theorem, Hölder’s inequality and Proposition 2.1 in [6] for a fixed control. By Lemma 2.2 in [6], we
have

J (rε)− J (r) =
∫

Q [g(yε ,∇yε ,rε)−g(y,∇y,rε)+g(y,∇y,rε)−g(y,∇y,r)]dxdt

=
∫

Q gy(y,∇y,r)δε ydxdt +
∫

Q gȳ (y,∇y,r)∇δε ydxdt + ε
∫

Q g(y,∇y,r′− r)dxdt +o(ε).
(3.7)

Since δε y(0) = z(T ) = 0, by similar arguments, the state equation (3.1) yields

−
∫ T

0
(z′,δε y)dt+

∫ T

0
a(δε y,z)dt+

∫ T

0
(aT

0 ∇δε y,z)dt =
∫

Q

(
fy(y,r)−by(y,r)

)
δε yzdxdt+ε

∫
Q

(
f (y,r′−r)−b(y,r′−r)

)
zdxdt+o(ε). (3.8)

On the other hand, the adjoint equation (3.5) yields

−
∫ T

0 (z′,δε y)dt +
∫ T

0 a(δε y,z)dt +
∫ T

0 (aT
0 ∇δε y,z)dt

=
∫

Q ( fy(y,r)−by(y,r))δε yzdxdt +
∫

Q gy(y,∇y,r)δε ydxdt +
∫

Q gȳ(y,∇y,r)∇δε ydxdt.
(3.9)

Gathering (3.7), (3.8) and (3.9), we obtain

DJ(r,r′− r) =
∫

Q

[
z
(

f (x, t,y,r′− r)−b(x, t,y,r′− r)
)
+g(x, t,y,∇y,r′− r)

]
dxdt.
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Theorem 3.4. (i) Under Assumptions (H2-H7), if rn ∈ Rn is a solution of the DROCPb, then it is extremal, i.e. there exist

multipliers λ n
m ∈ R, m = 0, ...,q2, with λ n

0 ≥ 0, λ n
m ≥ 0, m = q1 +1, ...,q2,

q2
∑

m=0
|λ n

m|= 1, such that

q2

∑
m=0

λ
n
mDJn

m(r
n,r′n−rn)=

∫
Q
H(x, t,yn,∇yn,zn,r′n−rn)dxdt≥0,∀r′n∈Rn, (3.10)

λ
n
m[J

n
m(r

n)− ε
n
m] = 0, m = q1 +1, ...,q2, (3.11)

where H and zn are defined with g :=
q2
∑

m=0
λ n

mgm. Condition (3.10) is equivalent to the strong discrete block pointwise minimum

principle ∫
En

i

H(x, t,yn,∇yn,zn,rn)dx = min
u∈U

∫
En

i

H(x, t,yn,∇yn,zn,u)dx, i = 1, ...,Mn, a.e. in(0,T ). (3.12)

(ii) With Assumptions (H2-H7) and assuming that Jn
0 ,J

n
q1+1, ...,J

n
q2

are convex and Jn
1 , ...,J

n
q1

are affine, if rn ∈ Rn is admissible
and extremal for the DROCPb, with λ n

0 > 0, then rn is optimal for this problem.

Proof. (i) The global condition (3.10) and the conditions (3.11) follow from the general multiplier theorem V.2.3 in [1]. The
equivalence of the conditions (3.10) and (3.12) is standard (see [1]), since the closed set U has a dense denumerable subset.

(ii) The assumptions imply that the functional Jn(rn) :=
q
∑

m=0
λ n

mJn
m(r

n) is convex. The condition (3.10) is then satisfied if and

only if rn minimizes Jn on Rn. Supposing now that rn does not minimize Jn
0 and using the constraints and the conditions (3.11),

easily follows that rn does not minimize Jn, which is a contradiction.

4. Behavior in the limit

Here we study the limiting behavior of the discrete problems as n→ ∞. Next proposition gives us a control approximation
result. It is proved in [6] for totally (i.e. in space and time) discrete controls, from which it follows for semidiscrete ones.

Proposition 4.1. For every r ∈ R, there exist (un) ∈ Un such that un→ r in R.

Lemma 4.2 (Consistency of states and functionals). Under Assumptions (H2-H3) and (H7), if rn→ r in R, then the corre-
sponding discrete states yn converge to yr in L2((0,T ),V ) strongly and

lim
n→∞

Jn
m(r

n) = Jm(r), m = 0, ...,q2. (4.1)

Proof. Multiplying (3.1) by cn
i and summing over i we obtain for every t∈(0,T )

〈yn′,yn〉+a(yn,yn)+(aT
0 (t)∇yn,yn)+(b(t,yn,rn),yn)=( f (t,yn,rn),yn). (4.2)

Integrating (4.2) on [0, t], t ≤ T and working similarly to the proof of Lemma 2.2, we deduce that

1
2
‖yn(t)‖2 + c1

t∫
0

‖yn(s)‖2
1 ds≤ 1

2
‖yn(0)‖2 +

1
2

t∫
0

‖ψ (s)‖2 ds+ c2

t∫
0

‖yn(s)‖2 ds, ∀t ∈ (0,T ), (4.3)

for some appropriate constants c1,c2.

Using Gronwall’s inequality and the fact that yn(0) is bounded (since clearly yn(0)→ yn in V strongly, due to the projection)
we deduce from (4.3) that yn is bounded in L2(Q). Then from (4.3) we obtain that yn is bounded in L2((0,T ),V ). One can
also prove using (3.1) that yn′ is bounded in L2((0,T ),V ∗). Since the injection of V in L2(Ω) is compact, by the compactness
Theorem 2.2 chap. III in [16], there exists a subsequence still denoted by yn : yn→ y in L2(Q) strongly.

Let v ∈C1
0(Ω̄) an arbitrary given function and (vn) ∈V n a sequence of functions interpolating the function v at the vertices

inside Ωn and vanishing on Γn. The sequence converges to v in V strongly. Then, the integral form of the discrete equation
(3.1) is written

(yn(T ), vn)− (yn
0,v

n)+

T∫
0

a(yn,vn)dt +
T∫

0

(aT
0 ∇yn,vn)dt =

T∫
0

( f (t,yn,rn)−b(t,yn,rn),vn)dt. (4.4)
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We obtain from (4.4) using the above convergences and Proposition 2.1 in [6] that, ∀v ∈C1
0(Ω̄)

(yn(T ),v) = (yn(T ), v− vn)+(yn(T ), vn) = (yn(T ), v− vn)+(yn
0,v

n)

+
T∫
0
( f (t,yn,rn)−b(t,yn,rn),vn)dt −

T∫
0

a(yn,vn)dt−
T∫
0
(aT

0 ∇yn,vn)dt

−→ (y0,v)+
T∫
0
( f (y,r)−b(y,r),v)dt−

T∫
0

a(y,v)dt−
T∫
0
(aT

0 ∇y,v)dt = (y(T ),v).

Since C1
0(Ω̄) is dense in L2(Ω) it follows that (yn(T ),v)→ (y(T ),v)∀v ∈ L2(Ω), i.e. yn(T )→ y(T ) in L2(Ω) weakly. By the

above convergences, we get from (4.4)

(y(T ),v) − (y0,v)+
∫ T

0
a(y,v)dt +

∫ T

0
(aT

0 ∇y,v)dt =
∫ T

0
( f (y,r)−b(y,r),v)dt,

hence y = yr.

Next, we prove that yn→ y in L2((0,T ),V ) strongly. We have

α2 ‖yn− y‖2
L2((0,T ),V ) ≤

∫ T
0 a(yn− y,yn− y)dt + 1

2 ‖y
n(T )− y(T )‖2 = 1

2

∥∥yn
0

∥∥2− 1
2 (y

n(T ),y(T ))− 1
2 (y(T ),y

n(T )− y(T ))

+
∫ T

0 ( f (yn,rn)−b(yn,rn),yn)dt−
∫ T

0 (aT
0 ∇yn,yn)dt−

∫ T
0 a(yn,y)dt−

∫ T
0 a(y,yn− y)dt,

and as n→ ∞ the right-hand side of the above inequality convergence to zero.

Finally, the convergences (4.1) follow from Proposition 2.1 in [6].

In what follows the feasibility of the ROCP is assumed. Next theorem addresses the limit behavior of optimal discrete relaxed
controls for the DROCPa.

Theorem 4.3. Under Assumptions (H2-H4) and (H7) and the additional assumption that the sequences (εn
m) converge to zero

as n→ ∞ and satisfy

|Jn
m(r̃

n)| ≤ ε
n
m, m = 1, ...,q1, Jn

m(r̃
n)≤ ε

n
m, ε

n
m ≥ 0, m = q1 +1, ...,q2,

for every n, where (r̃n) ∈ Rn is a sequence which converges in R to some r̃ ∈ R optimal for the ROCP. Then, for each n, we
consider (rn) which is optimal for the DROCPa. The above sequence (rn) has accumulation points in R that are optimal for
the ROCP.

Proof. From theorem’s assumptions the feasibility of the DROCPa, for every n, follows. Let a subsequence of (rn), still
denoted by (rn), such that rn→ r, r ∈ R. Since rn is admissible as optimal and r̃n is admissible for the DROCPa, it follows

Jn
0 (r

n)≤ Jn
0 (r̃

n), |Jn
m(r

n)| ≤ ε
n
m, m = 1, ...,q1, Jn

m(r
n)≤ ε

n
m, m = q1 +1, ...,q2.

Taking limits as n→ ∞, with the help of Lemma 4.2, we conclude that r is optimal for the ROCP.

Lemma 4.4. Under Assumptions (H2-H7), if rn→ r in R, then zn→ zr in L2((0,T ),V ) strongly, where zn the corresponding
discrete adjoint states. If rn→ r and r′n→ r′, then

lim
n→∞

DJn
m(r

n,r′n− rn) = DJm(r,r′− r), m = 0, ...,q2.

Proof. It follows easily from Lemma 4.2 and the same arguments as those in the proof of that Lemma.

Next, we consider the DROCPb. We can choose (εn
m), m = 1, ...,q2, such that εn

m→ 0, n→ ∞ and the DROCPb is feasible for
every n (see [6]).

Theorem 4.5. Under Assumptions (H2-H7), for each n, let rn be admissible and extremal for the DROCPb. Then the sequence
(rn) has accumulation points that are admissible and extremal for the ROCP.

Proof. Since R is compact, consider a subsequence (rn) such that rn→ r in R. From Theorem 3.4, there exist multipliers

λ n
m ∈ R, m = 0, ...,q2 with

q2
∑

m=0
|λ n

m|= 1, thus there exist subsequences (λ n
m), m = 0, ...,q2, such that λ n

m→ λm, m = 0, ...,q2.

Let any r′ ∈ R and (r′n) be a sequence such that r′n→ r′ (Proposition 4.1). Using the above convergences, Lemmas 4.2, 4.4
and Proposition 2.1 in [6] and passing to the limit in (3.10), (3.11) we have∫

Q
H(x, t,y,∇y,z,r′(x, t)− r(x, t))dxdt ≥ 0, ∀r′ ∈ R,
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λmJm(r) = lim
n→∞

λ
n
m[J

n
m(r

n)− ε
n
m] = 0, m = q1 +1, ...,q2.

Also,

Jm(r) = lim
n→∞

[Jn
m(r

n)− εn
m] = 0, m = 1, ...,q1,

Jm(r) = lim
n→∞

[Jn
m(r

n)− εn
m]≤ 0, m = q1 +1, ...,q2.

Therefore, r is admissible and extremal for the ROCP (see [14]).

5. Discrete penalized conditional descent method

We choose a fixed discretization and for notational simplicity we shall drop the index n in the data. Let (Ml
m), m = 1, ...,q2, be

increasing sequences with (Ml
m)> 0 and Ml

m→ ∞ as l→ ∞. Define the discrete functionals with penalties

Jl(r) := J0(r)+0.5{
q1

∑
m=1

Ml
m[Jm(r)]2 +

q2

∑
m=q1+1

Ml
m[max(0,Jm(r))]2}.

Let ρ,σ ∈ (0,1), and let (β l), (ζk) be positive sequences, with (β l) decreasing and converging to zero, and ζk ≤ 1. A penalized
conditional descent method with Armijo line step search applied on the DROCPb is presented in the following algorithm.

Algorithm

Step 1. k = 0, l = 1. Choose an initial discrete control r1
0 ∈ R.

Step 2. Compute the state and the adjoint associated with rl
k. Find r̄l

k ∈ R such that

r̄l
k = argmin

{
DJl(rl

k,r
′− rl

k), r′ ∈ R
}

and set dk := DJl(rl
k, r̄

l
k− rl

k).

Step 3. If |dk|> β l , then go to Step 4, else rl = rl
k, r̄l = r̄l

k, dl = dk, rl+1
k = rl

k, l = l +1 and return to Step 2.

Step 4. Find the smallest nonnegative integer s, denoted s̄:

Jl(rl
k +σ

s
ζk(r̄l

k− rl
k))− Jl(rl

k)≤ σ
s
ζkρdk.

Set αk = σ s̄ζk.

Step 5. Choose an equivalent rl
k+1 ∈ R such that

Jl(rl
k+1) = Jl(rl

k +αk(r̄l
k− rl

k)),

set k = k+1, and return to Step 2.

We now define the sequences of multipliers

λ
l
m :=Ml

mJm(rl), m = 1, ...,q1, λ
l
m :=Ml

m max(0,Jm(rl)), m = q1 +1, ...,q2, (5.1)

where rl are defined in Step 3 of the Algorithm.

In the following theorem we study the convergence properties of the above algorithm.

Theorem 5.1. Consider the sequence (rl) constructed in Step 3 of the Algorithm. If the sequences (λ l
m),m = 1, ...,q2 remain

bounded, then any accumulation point of (rl) satisfies the optimality conditions (3.10), (3.11) for the discrete problem.

Proof. We can prove that l→ ∞ in the Algorithm as in Theorem 5.1 in [12].

If r ∈ R is an accumulation point of the sequence (rl), there exist a subsequence of it, still denoted by (rl), converging to r ∈ R
as l→ ∞. If the sequences (λ l

m), m = 1, ...,q2 defined in (5.1) are bounded, then they have subsequences, again denoted by
(λ l

m), such that λ l
m→ λm. Using Lemma 4.2, we obtain

0 = lim
l→∞

λ l
m

Ml
m
= lim

l→∞
Jm(rl) = Jm(r), m = 1, ...,q1,
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0 = lim
l→∞

λ l
m

Ml
m
= lim

l→∞
[max(0,Jm(rl))] = max(0,Jm(r)), m = q1 +1, ...,q2,

thus r is admissible. Next, for every r′ ∈ R, Steps 2, 3 of the Algorithm give

DJl(rl ,r′− rl) = λ
l
0DJ0(rl ,r′− rl)+

q1

∑
m=1

λ
l
mDJm(rl ,r′− rl)+

q2

∑
m=q1+1

λ
l
mDJm(rl ,r′− rl)≥ dl , (5.2)

with λ l
0 := 1. From Step 3 of the Algorithm we have

∣∣dl
∣∣≤ β l → 0. We use the above convergences and Lemma 3.3 to pass to

the limit in (5.2), as l→ ∞ and obtain

λ0DJ0(r,r′− r)+
q1

∑
m=1

λmDJm(r,r′− r)+
q2

∑
m=q1+1

λmDJm(r,r′− r)≥ 0. (5.3)

Obviously, λ0 = 1 and the construction of λ l
m implies that in the limit λm ≥ 0, m = q1+1, ...,q2. Dividing (5.3) by

q2
∑

m=0
|λm| ≥ 1

we can suppose that
q2
∑

m=0
|λm|= 1. Also, if Jm(r)< 0, for some m ∈ [q1+1, q2], then for l sufficiently large, we have Jl

m(r
l)< 0

and λ l
m = 0, hence λm = 0, i.e. the conditions (3.11) hold. Therefore, r is also extremal.

Under the additional assumptions of Theorem 3.4 the Algorithm computes optimal controls.

Finally, we can show, see [5], that the constructed control rl
k in Step 5 of the Algorithm can be chosen to be of Gamkrelidze

type and these controls can be approximated by classical controls. So, the relaxed controls can be implemented.

6. Numerical examples

In this section, two examples are presented. The first one without state constraints and the second one with an equality state
constraint. The Algorithm applied on both problems (in the first one without penalties) with ρ = σ = 0.5 and initial control
r := (r0 + r1)/2, where r0(x, t) := δ0, r1(x, t) := δ1 (Dirac measures).

Example 6.1. Let Q := (0,1)× (0,1) and U := {0,1}. Consider the following optimal control problem

minimize J0(u) :=
∫

Q
{0.5 [(y− ȳ)2 + |∇y−∇ȳ|2]−u2 +u}dxdt

subject to

yt − yxx +0.5y |y|+(1+u− ū)y = 0.5 ȳ |ȳ|+ ȳ+ x(1− x)(−1+ t)+2−2t + t2 + siny− sin ȳ+3(u− ū) in Q,

y(0, t) = y(1, t) = 0,
y(x,0) = x(1− x) in (0,1),

and the control constraints u ∈U, where

ū(x, t) :=
{

1, if 0≤ t ≤ 0.5,
1−2(t−0.5)(−0.4x+0.7), if 0.5 < t ≤ 1,

ȳ(x, t) := x(1− x)
(
1− t +0.5t2) .

It is easy to verify that

r(x, t){1}= ū(x, t), r(x, t){0}= 1− r(x, t){1}, (x, t) ∈ Q,

is the unique optimal relaxed control distributed between the points 0 and 1 with optimal state ȳ and optimal cost 0.

These are the results when the Algorithm was applied for 90 iterations.

Jn
0 (r

n
k) = 3.5376 ·10−5, dk =−1.2321 ·10−4,

where dk was defined in Step 2 of the Algorithm. Figure 6.1 shows the last control probability function p1(x, t) := rn
k(x, t){1}.

The state y for the final iteration is shown in Figure 6.2.

Example 6.2. Consider the above problem under the equality state constraint

J1(u) :=
∫

Q
ydxdt = 0.

These are the results when the Algorithm was applied for 210 iterations.

Jn
0 (r

nl
k ) = 8.3807 ·10−2, Jn

1 (r
nl
k ) = 3.8048 ·10−5, dk =−3.8013 ·10−3.

Here, p1(x, t) := rnl
k (x, t){1} is shown in Figure 6.3 and the state y for the final iteration in Figure 6.4.
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Figure 6.1: Example 6.1: Last relaxed control probability p1

Figure 6.2: Example 6.1: State y for the final iteration

Figure 6.3: Example 6.2: Last relaxed control probability p1

Figure 6.4: Example 6.2: State y for the final iteration
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7. Conclusion

In the absence of any convexity assumptions, relaxed controls are an important tool to prove existence of optimal controls.
Thus, the corresponding relaxed optimal control problem is introduced, which is then discretized and the behavior in the limit
of sequences of optimal and admissible extremal controls was studied. Finally, a penalized conditional descent method using
relaxed controls, applied to the discrete relaxed problem, is proposed. This method constructs discrete Gamkrelidze controls
which, for implementation reasons, can be approximated by piecewise classical ones.
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Margenov and J. Waśniewski (editors), Large-scale scientific computing, Springer-Verlag, Berlin, 2010, pp. 247-255.
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