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Abstract 

This paper studies the long-time stability behavior of the Navier-Stokes equations (NSE) in a rotating frame of 

reference with atime accurate and adaptive finite element method. The proposed numerical scheme consists of two 

decoupled steps. In the first step, the Navier-Stokes equations are solved with the standard linearized backward-

Euler finite element method (BE-FEM). In the second step, the approximate velocity solution obtained in the first 

step is post proceeded with a 2-step, linear time filter. It is proven that the approximate velocity solution is stable 

with respect to𝐿2-norm at all times. The novelty of the stability analysis is that the stability bound obtained for the 

approximate velocity solution does not use any Gronwall-type estimate and is polynomially dependent on the 
Reynolds number, which is not common in long-time stability notion. The paper also provides two numerical 

experiments to test the algorithm. The first numerical experiment compares the 𝐿2-norm of the velocity solution 
of  the proposed algorithmusing pressure-robust and non pressure-robustFE over longer time intervals. The results 

reveal that the scheme gives much more accurate velocity solutions with pressure-robust methods, especially for 

the smaller 𝑣. The second experiment, on the other hand, shows that the filter step increasesthe accuracy of the 

proposed numerical method over long-time intervals. 
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Dönen bir referans sisteminde verilen navier-stokes denklemlerinin sonlu 

elemanlarla çözümlerinin uzun zamanlı kararlılığı üzerine 

 
 

Öz 
Bu makale, Navier-Stokes denklemlerinin uzun zamanlı kararlılık davranışını zamana göre doğru ve uyarlanabilir 

sonlu elemanlar yöntemiile dönen bir referans sistemin içindeçalışır. Önerilen sayısal şema iki 

ayrıştırılmışbasamaktan oluşur. Birincibasamakta, Navier-Stokes denklemleri standart,doğrusallaştırılmış,geri-

Euler (GE) sonlu elemanlar yöntemi (SEY) ile çözülür. İkinci basamakta, birinci basamakta elde edilen yaklaşık 

hız çözümü iki adımlı, doğrusal bir zaman filtresiyle düzeltilir. Yaklaşık hız çözümünün𝐿2-normuna göre tüm 
zamanlarda kararlı olduğu ispatlanır. Kararlılık analizinin yeniliği, yaklaşık hız çözümü için elde edilen karalılık 

sınırının herhangi bir Gronwall tipi değerlendirmekullanmamasıve Reynolds sayısına polinomsal olarak bağımlı 

olmasıdır ki bu uzun zamanlı kararlılık konusunda çok yaygın değildir. Makale ayrıca algoritmayı test etmek için 

iki sayısal deney sunar. Birincisayısal deneynormunu daha uzun zaman aralıklarınde basınca dayanıklı ve basınca 

dayanıklı olmayan SE kullanarakönerilen algoritmanın hız çözümünün 𝐿2-normunukarşılaştırır. Sonuçlar, 

özellikle daha küçük 𝑣 değerleri için, şemanınbasınca dayanıklıyöntemlerle çok daha doğru hız çözümleri 

verdiğini gösterir. Diğer taraftan ikinci deney ise filter basamağının uzun zaman aralıkları üzerindeönerilensayısal 

yöntemin doğruluğunu artırdığını gösterir. 

 

Anahtar kelimeler: Basınca-dayanıklı SEY, uzun zamanlı kararlılık, kütlenin korunumu. 
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1. Introduction 

 

In this paper, we focus on time dependent incompressible Navier-Stokes equations (NSE) in a rotating 

frame of reference which read as: for a given force field𝐟, and velocity solution at  𝑡 = 0, 𝐮(. , 0), find 

the velocity𝐮 and the pressure𝑝 such that it holds  

 

𝐮𝑡  −  𝑣∆𝐮 +  (𝐮 ∙ ∇)𝐮 +  2Ω × 𝐮 + ∇p =  𝐟 +   Ω × (Ω × r),           in 𝔻, 
 

                                                                       ∇ ∙ 𝐮 = 0,                                        in 𝔻, 
           (1.1) 

                                                                    𝐮(∙ ,0)  =  𝐮0 ,                                      in 𝔻, 
 

                                                                                       𝐮 = 0,                                        along  𝜕𝔻, 
 

where 𝔻 is a bounded domain inℝ2 or  ℝ3 with Lipschitz continuous boundary. The first equation is the 

conservation of the momentum, and the second the conservation of the mass. Here 𝑣: = 1/𝑅𝑒 is the 

dimensionless kinematic viscosity, where 𝑅𝑒 denotes the dimensionless Reynolds number, Ω is the 

angular velocity, 2Ω × 𝐮 is the Coriolis force, Ω × (Ω × r)is the centrifugal force where r denotes the 

distance to the orijin.  

 The NSE in a rotating reference frame contains two additional forces: the Coriolis and the 

centrifugal forces. While the Coriolis force depends on the fluid velocity, the centrifugal force is 
independent of the fluid unknowns; the pressure and the velocity. On the other hand, the centrifugal 

force is a gradient of some scalar function  𝜙, i.e., Ω × (Ω × r) ≔ ∇𝜙. Hence, this force can be treated 

as a bodyforce or included in the pressure in (1.1), which is also gradient. 
 There are two main difficulties in the finite element simulations of (1.1). The first one is that the 

small values of 𝑣 leads to spurious oscillations in finite element velocity solutions. This is due to the 

fact the continuous pressure acts as a Lagrange multiplier for the incompressibility condition, i.e., for 

the conservation of mass. The second one is that the discrete velocity and the pressure spaces have to 
satisfy some compatibility condition to guarantee the uniqueness of the finite element solutions, which 

is called the discrete inf-sup or the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition [5]. While 

the LBB condition leads to well-posed methods thatcan yield non-pressure robust discretization due to 
the enforcement of the divergence constraint discretely. 

 On the other hand, most classical FEM for the incompressible flows gives solutions which are 

stable only for short times. In longer time simulations, these solutions may not reflect the correct 

physical behavior of the flows. This is due to their linear/exponential increment with time. Therefore, 
designing a numerical algorithm possessing stability and accuracy at all times is a big challenge in the 

field of finite element theory, and the long time stability analysis. 

 The topic of long-time stability of the incompressible flows has attracted great interest over the 
years, due to the importance of predicting weather and climate events. For some valuable long-time 

stability results for the NSE, we cite the works of F. Tone, X. Wang, S. Gottlieb, D. Wirosoetisno and 

coworkers [2, 6, 15, 17, 18], and for Magnetohydrodynamics (MHD) with backward Euler schemes, and 
for the Boussinesq equations, the works [4,16]. In particular, for second order type algorithms, we give 

references [3, 7]. All long-time stability results in these papers use a variant of the discrete Gronwall 

lemma, which produces a bound relying on the Reynolds number of the exponential form. Even though 

these bounds are independent of time, they are impractical for simulations of the incompressible flows 
with higher Reynolds' number, see [10]. 

 Recently, a numerical approach to increase the accuracy of the BE method was introduced for 

ordinary differential equations in [8], and extended to the incompressible Navier-Stokes equations 
(NSE) in [4]. In this paper, we study the long-time stability behavior of the incompressible NSE in a 

rotational frame by applying this idea. The proposed method combines the standard linearly implicit BE 

time-stepping scheme and a linear time filter step for (3.1). In other words, the algorithm consists of two 

decoupled steps, and can be plugging into an existence BE-FEM solver with an only one additional line 
of code.  
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 We prove that discrete velocity solutions are long-time stable in 𝐿2-norm provided𝐟 ∈

𝐿∞(ℝ+; 𝑯𝟏
(𝐷)). Our stability bound does not use any Gronwall type inequality, and the dependence 

on the Reynolds number is polynomial, not exponential. 
 In view of numerical experiments, the contribution of our paper is twofold. First, the paper 

reveals that the pressure-robust discretization plays a crucial role on the long-time behavior of the 

proposed scheme's solution. Since the velocity errors in such a discretization do not depend on the 

continuous pressure, the velocity solutions behave in a robust way when the critical parameter 𝑣 attains 
small values; see [8, 11, 12, 13]. The first numerical experimentverifies this theoretical finding for our 

method. The stability properties of the proposednumerical scheme is compared with the linearly implicit 

BE-FEM over longer time intervals in the second experiment, and the results shows that the proposed 
algorithm has better mass conservation, particularly for smaller viscosity values. 

 The rest of the paper is organized as follows. All necessary mathematical preliminaries are 

collected in Section 2. Section 3 presents an adaptive time filter FEM for approximating (1.1), and 

studies its long-time stability properties. Section 4 tests the proposed method with two numerical 
experiments. Section 5 gives the results of the study.  

 

2. Mathematical preliminaries 
 

In this section, we will present mathematical preliminaries and notation used throughout this paper. We 

consider a domain𝔻, and use the standard notations for Sobolev spaces and their norms as in [1]. The 

norm in 𝐻𝑘(𝔻)is labelled with‖. ‖𝑘, and the norms in 𝐿𝑝(𝔻), 1 ≤ 𝑝 < ∞ with ‖. ‖𝐿𝑝, and ‖. ‖∞ for 𝑝 =
∞. Vectors valued functions related to these spaces will be indicated with bold letters.  

The natural velocity and pressure spaces for (1.1) are taken by  

 

 𝐗 ≔ (𝐻0
1(𝔻))

𝑑

≔ {𝐯 ∈ (𝐿2(𝔻))
𝑑

: ∇𝐯 ∈ (𝐿2(𝔻))
𝑑×𝑑

, 𝐯 = 𝟎 on 𝜕𝔻}, 

 

𝑄 ≔  𝐿0
2 (𝔻) = {𝑞 ∈ 𝐿2(𝔻): ∫ 𝑞𝑑𝑥 = 0

𝔻
}. 

 

The skew-symmetrized trilinear form is labelled by  

 

𝛼(𝐯, 𝐬,   𝐰): =
1

2
((𝐯 ∙ ∇𝐬,   𝐰) − (𝐯 ∙ ∇𝐰,   𝐬)), ∀𝐯, 𝐰, 𝐬 ∈ 𝐗. 

 

We note that 𝛼(𝐯, 𝐬,   𝐬) = 0, and 𝛼(𝐯, 𝐬,   𝐰) enjoys the following property and the results [9]. 
 

Lemma 2.1. For all 𝐯, 𝐬,   𝐰 ∈ 𝐗, 𝛼(𝐯, 𝐬,   𝐰)satisfies  

 

𝛼(𝐯, 𝐬,   𝐰) = (𝐯 ∙ ∇𝐬,   𝐰) +
1

2
((∇𝐯)𝐬,   𝐰), 

 

                                             𝛼(𝐯, 𝐬,   𝐰) ≤ 𝐶‖∇𝐯‖𝐿2‖∇𝐬‖𝐿2‖∇𝐰‖𝐿2, 

 

  𝛼(𝐯, 𝐬,   𝐰) ≤ 𝐶‖𝐯‖
𝐿2
1/2‖∇𝐯‖

𝐿2
1/2‖∇𝐬‖𝐿2‖∇𝐰‖𝐿2, 

 

where 𝐶 is constant. 

 

Forthe finite element setting, let 𝑆ℎ   stand for a decomposition of the domain 𝔻 into triangles in 2𝑑 or 

tetrahedron in 3𝑑. To approximate velocity-pressure solutions of the NSE in a rotational frame, we study 

with conforming, inf-sup stable (LBB) finite element spaces, and label them with (𝐗ℎ , 𝑄ℎ) ⊂ (𝐗, 𝑄). 

Recall that LBBcondition is given as follows 
 

𝑖𝑛𝑓

𝑞ℎ ∈ 𝑄ℎ

𝑠𝑢𝑝

𝐯𝒉 ∈ 𝐗𝒉

(𝑞ℎ , 𝛁. 𝐯𝒉)

‖𝑞ℎ‖𝑳𝟐‖𝛁𝐯𝒉‖𝑳𝟐
≥ 𝜷 > 𝟎, 
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where 𝛽is independent onℎ. The discretely divergence- free subspace is given  

 

𝐕ℎ ≔ {𝐯𝒉 ∈ 𝐗𝒉: (𝑞
ℎ
,   𝛁 ∙ 𝐯ℎ) = 0,   ∀𝑞

ℎ
∈ 𝑄

𝒉
}. 

 

The dual space of 𝐕ℎwill be identified by 𝐕ℎ
∗, and is endowed with the following dual form:  

 

‖𝐰‖𝐕ℎ
∗ ≔

𝒔𝒖𝒑

v𝒉 ∈ 𝐕𝒉

|(𝐰, 𝐯ℎ)|

‖𝛁v𝒉‖
𝐿2

. 

 

For a chosen time step ∆𝑡, we introduce the notation 𝑡𝑛+1 ≔ (𝑛 + 1)∆𝑡, and indicate 𝐯𝑛+1 ≔
𝐯(𝑡𝑛+1). Our stability analysis frequently uses the Young's inequality, which is given below 

[9]. 

 

Lemma 2.2(Young’s Inequality) Let 𝜆, 𝛼 be non-negative real numbers. Then for any 𝜀 > 0 

𝜆𝛼 ≤
𝜀

𝑝
𝜆𝑝 +

𝜀
−

𝑞
𝑝

𝑞
𝛼𝑞,   (2.1) 

where 
1

𝑝
+

1

𝑞
= 1 with 𝑝, 𝑞 ∈ [1, ∞).  

 
3. Numerical scheme 

 

Algorithm 3.1. Let body force  𝐟, initial velocities 𝐮0, 𝐮1  be given. Set  𝐮ℎ
0 , 𝐮ℎ

1 to be the 

nodalinterpolant of  𝐮0, 𝐮1 ∈ 𝐗𝒉, and selecta time step ∆𝑡 > 0 . Then for any 𝑛 ≥ 0, find 

(𝐮ℎ
𝑛+1, 𝑝ℎ

𝑛+1) ∈ (𝐗ℎ ,   𝑄ℎ)via the following two steps: 

 

Step 1: Compute(�̂�ℎ
𝑛+1, 𝑝ℎ

𝑛+1) ∈ (𝐗ℎ ,   𝑄ℎ)such that for each(𝐯𝒉, 𝑞ℎ) ∈ (𝐗ℎ ,   𝑄ℎ)it holds 

 

(
�̂�ℎ

𝑛+1 − 𝐮ℎ
𝑛

∆𝑡
, 𝐯𝒉) + 𝑣(∇�̂�ℎ

𝑛+1,   ∇𝐯𝒉) + 𝑏(2𝐮ℎ
𝑛 − 𝐮ℎ

𝑛−1 . �̂�ℎ
𝑛+1,   𝐯𝒉) − (𝑝ℎ

𝑛+1,   ∇. 𝐯𝒉) 

              (3.1) 

+(2Ω × �̂�ℎ
𝑛+1, 𝐯𝒉) = (𝐟𝑛+1 ,   𝐯𝒉), 

 

(∇ ∙ �̂�ℎ
𝑛+1, 𝑞ℎ) = 0.                                                                                                                              (3.2) 

 

Step 2: Compute 𝐮ℎ
𝑛+1 ∈ X𝒉satisfyingfor each𝛘ℎ ∈ 𝐗ℎ, 

 

(𝐮ℎ
𝑛+1, 𝛘ℎ) = (�̂�ℎ

𝑛+1,   𝛘ℎ) −
𝟏

𝟑
(�̂�ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1, 𝛘ℎ).  

 

Assume that the time step is constant. For any 𝐯𝒉 ∈ 𝐗ℎ, insertthe following in the first step of Algorithm 
3.1 

 

(�̂�ℎ
𝑛+1,   𝐯𝒉) =

1

2
(3𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1,   𝐯𝒉). 

 

Then we have the following equivalence method.  

 

Algorithm 3.2. Let body force𝐟, initial velocities𝐮0, 𝐮1be given. Set𝐮ℎ
0 , 𝐮ℎ

1 to be the nodalinterpolant 

of   𝐮0 , 𝐮1 ∈ (𝐗ℎ ,   𝑄ℎ) and select a time step ∆𝑡 > 0. Then for any 𝑛 ≥ 0, find (𝐮ℎ
𝑛+1, 𝑝ℎ

𝑛+1) ∈
(𝐗ℎ ,   𝑄ℎ) such that for al l(𝐯𝒉, 𝑞𝒉) ∈ (𝐗ℎ , 𝑄ℎ) it holds 
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(
𝛿[𝐮ℎ

𝑛+1]

∆𝑡
, 𝐯ℎ) + 𝜈(∇𝐸[𝐮ℎ

𝑛+1],   𝐯ℎ) + 𝑏(2𝐮ℎ
𝑛 − 𝐮ℎ

𝑛−1,   𝐸[𝐮ℎ
𝑛+1], 𝐯ℎ) − (𝑝ℎ

𝑛+1,   𝛁 ∙ 𝐯ℎ) 

+(2Ω × 𝐸[𝐮ℎ
𝑛+1], 𝐯ℎ) = (𝐟𝑛+1, 𝐯ℎ),                                                                                                (3.3) 

 

(∇ ∙ 𝐸[𝐮ℎ
𝑛+1],  𝑞ℎ) = 0.                                                                                                                       (3.4) 

 

where   
 

𝛿[𝐮ℎ
𝑛+1] ≔

3

2
𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 +

1

2
𝐮ℎ

𝑛−1,     𝐸[𝐮ℎ
𝑛+1]: =

3

2
𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛 +

1

2
𝐮ℎ

𝑛−1. 

 

Remark 3.1. Notice that Algorithm 3.2 is not the standard linearizedtwo-step backward difference 

formula  (BDF2)since it onlyusesBDF2 for the time derivative term, and does not use that for the 
remaining terms. 

 

We now prove that velocity solution of Algorithm 3.2 is long-time stable. 
 

Lemma 3.1. Let𝐟 ∈ 𝐋∞(ℝ+;   𝐕𝐡
∗), 𝐮0, 𝐮1 ∈ 𝑯𝟏(𝔻), and ∆𝑡 > 0 be any time step satisfying ∆𝑡 ≤

5ℎ2

𝑣𝐶1
2. 

Then for any non-negative integer 𝑛, the velocity solution of Algorithm 3.2 satisfies the bound  

 

‖𝐮ℎ
𝑛+1‖

𝐿2

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+

𝑣∆𝑡

4
‖𝐮ℎ

𝑛+1‖
2

+
𝑣∆𝑡

2
∑ (

1

1 + 𝛾
)

𝑛−𝑘𝑛

𝑘=0

‖𝛁𝐮ℎ
𝑘+1‖

2

≤ (1 + 𝛾)−(𝑛+1) (‖𝐮ℎ
1 ‖

2
+ ‖2𝐮ℎ

1 − 𝐮ℎ
0 ‖

2
+ ‖𝐮ℎ

1 − 𝐮ℎ
0 ‖

2
+

𝑣∆𝑡

4
‖𝐮ℎ

1 ‖
2

)

+ max {2∆𝑡,   
88𝐶𝑃

2

𝑣
} 𝑣−1‖𝐟‖

𝐋∞(ℝ+;  𝐕𝐡
∗)

2 , 

where𝛾 = min {
1

2
,   

𝑣∆𝑡

44𝐶𝑃
2}. 

 

Proof. To prove the bound on the velocity, first set (𝐯𝒉, 𝑞ℎ) = (𝐸[𝐮ℎ
𝑛+1],   𝑝ℎ

𝑛+1) in (3.3)-(3.4) which 

vanishes the non linear term, the Coriolis force, and the pressure term 

 

𝑏(2𝐮ℎ
𝑛 − 𝐮ℎ

𝑛−1,   𝐸[𝐮ℎ
𝑛+1],   𝐸[𝐮ℎ

𝑛+1]),  (2Ω × 𝐸[𝐮ℎ
𝑛+1], 𝐸[𝐮ℎ

𝑛+1],    (𝑝ℎ
𝑛+1,   ∇. 𝐸[𝐮ℎ

𝑛+1])). 

 
Then use the algebraic identity 

 

(
3𝑎 − 4𝑏 + 𝑐

2
) (

3𝑎 − 2𝑏 + 𝑐

2
)

=
1

4
[𝑎2 + (2𝑎 − 𝑏)2 + (𝑎 − 𝑏)2] −

1

4
[𝑏2 + (2𝑏 − 𝑐)2 + (𝑏 − 𝑐)2]           

+
3

4
(𝑎 − 2𝑏 + 𝑐)2, 

 

to get  

 
1

4∆𝑡
(‖𝐮ℎ

𝑛+1‖
2

− ‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
− ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
) 

 

                        +
3

4∆𝑡
‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖
2

+ 𝑣‖𝛁𝐸[𝐮ℎ
𝑛+1]‖

2
≤ |(𝐟𝑛+1,   𝐸[𝐮ℎ

𝑛+1])|.              (3.5) 

 

Applying the Cauchy-Schwarz and Young's Inequality (2.1) with  𝜀 = 𝑣 on the forcing term yields 
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|(𝐟𝑛+1,   𝐸[𝐮ℎ
𝑛+1])| ≤ ‖𝐟𝑛+1‖𝐕ℎ

∗‖𝛁𝐸[𝐮ℎ
𝑛+1]‖

𝐿2 ≤
𝑣−1

2
‖𝐟‖

𝐋∞(ℝ+;  𝐕𝐡
∗)

2 +
𝑣

2
‖𝛁𝐸[𝐮ℎ

𝑛+1]‖
2

. 

 

Inserting this estimate into (3.5), reducing and multiplying by 4∆𝑡 produces  
 

 

‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ 3‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖
2

+ 2𝑣∆𝑡‖∇𝐸[𝐮ℎ
𝑛+1]‖

2
 

 

≤ ‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ 2𝑣−1∆𝑡‖𝐟‖

𝐋∞(ℝ+;  𝐕𝐡
∗)

2 .                      (3.6) 

 
Now rewrite the last left hand side term as follows 

2𝑣∆𝑡‖∇𝐸[𝐮ℎ
𝑛+1]‖

2
= 2𝑣∆𝑡 (𝛁 (

3𝐮ℎ
𝑛+1 − 2𝐮ℎ

𝑛 + 𝐮ℎ
𝑛−1

2
) ,   𝛁 (

3𝐮ℎ
𝑛+1 − 2𝐮ℎ

𝑛 + 𝐮ℎ
𝑛−1

2
)) 

= 2𝑣∆𝑡 (𝛁𝐮ℎ
𝑛+1 + 𝛁 (

𝐮ℎ
𝑛+1 − 2𝐮ℎ

𝑛 + 𝐮ℎ
𝑛−1

2
) ,   𝛁𝐮ℎ

𝑛+1 + 𝛁 (
𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1

2
)) 

= 2𝑣∆𝑡‖𝛁𝐮ℎ
𝑛+1‖

2
+

𝑣∆𝑡

2
‖𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1)‖
2

+ 𝑣∆𝑡 (𝛁𝐮ℎ
𝑛+1,   𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1)). 

 

Now use this estimate in (3.6) to get  

 

‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ 3‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖
2

+ 2𝑣∆𝑡‖∇𝐮ℎ
𝑛+1‖

2

+
𝑣∆𝑡

2
‖𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1)‖
2
 

                            ≤ ‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ 2𝑣−1∆𝑡‖𝐟‖

𝐋∞(ℝ+;  𝐕𝐡
∗)

2 (3.7) 

                 +𝑣∆𝑡 |(𝛁𝐮ℎ
𝑛+1,   𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1))|,  

 
Now apply the Cauchy-Schwarz and Young's inequalities on the last term to obtain  

 

𝑣∆𝑡 |(𝛁𝐮ℎ
𝑛+1,   𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1))|  ≤  𝑣∆𝑡‖𝛁𝐮ℎ
𝑛+1‖𝐶𝐼ℎ−1‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖ 

≤  
𝑣∆𝑡

2
‖𝛁𝐮ℎ

𝑛+1‖
2

+
𝑣∆𝑡𝐶𝐼

2ℎ−2

2
‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖
2

. 

 

Plug this estimate into (3.7) to get 
 

‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ (3 −

𝑣∆𝑡𝐶𝐼
2ℎ−2

2
) ‖𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1‖
2

+
3𝑣∆𝑡

2
‖𝛁𝐮ℎ

𝑛+1‖
2

+
𝑣∆𝑡

2
‖𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1)‖
2

≤ ‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ 2𝑣−1∆𝑡‖𝐟‖

𝐋∞(ℝ+;  𝐕𝐡
∗)

2  

                                 +𝑣∆𝑡 |(𝛁𝐮ℎ
𝑛+1,   𝛁(𝐮ℎ

𝑛+1 − 2𝐮ℎ
𝑛 + 𝐮ℎ

𝑛−1))|.      (3.8) 

 
Now using the assumption on the time step, dropping the non-negative fourth and sixth left hand side 

terms, and adding 
𝑣∆𝑡

4
‖∇𝐮ℎ

𝑛‖2 to the both side yields  
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‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+

𝑣∆𝑡

4
‖𝛁𝐮ℎ

𝑛+1‖
2

+
𝑣∆𝑡

2
‖𝛁𝐮ℎ

𝑛+1‖
2

+ [
𝑣∆𝑡

4
(‖𝛁𝐮ℎ

𝑛+1‖
2

+ ‖𝛁𝐮ℎ
𝑛‖2) +

𝑣∆𝑡

2
‖𝛁𝐮ℎ

𝑛+1‖
2

]

≤ ‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+

𝑣∆𝑡

4
‖𝛁𝐮ℎ

𝑛‖2 

                                 +2𝑣−1∆𝑡‖𝐟‖
𝐋∞(ℝ+;  𝐕𝐡

∗)
2 .                                                                                         (3.9) 

 

Now use the algebraic inequality ‖𝑎 + 𝑏‖2 ≤ 2(‖𝑎‖2 + ‖𝑏‖2) to get 
 

‖2𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

≤ 2 (‖2𝐮ℎ
𝑛+1‖

2
+ ‖𝐮ℎ

𝑛‖2) = 8‖𝐮ℎ
𝑛+1‖

2
+ 2‖𝐮ℎ

𝑛‖2, 

 

‖𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

≤ 2 (‖𝐮ℎ
𝑛+1‖

2
+ ‖𝐮ℎ

𝑛‖2) = 2‖𝐮ℎ
𝑛+1‖

2
+ 2‖𝐮ℎ

𝑛‖2, 

 

and sum these two inequalities by adding ‖𝐮ℎ
𝑛+1‖

2
 to the both sides. This produces  

 

‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
≤ 11‖𝐮ℎ

𝑛+1‖
2

+ 4‖𝐮ℎ
𝑛‖2 ≤ 11 (‖𝐮ℎ

𝑛+1‖
2

+ ‖𝐮ℎ
𝑛‖2). 

 

Using the Poincare-Friedrich inequality for the last term on the left hand side of (3.9) together 
with this estimate gives  

 
𝑣∆𝑡

4
(‖∇𝐮ℎ

𝑛+1‖
2

+ ‖∇𝐮ℎ
𝑛‖2) +

𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
2
 

≥
𝑣∆𝑡

4𝐶𝑃
2 (‖𝐮ℎ

𝑛+1‖
2

+ ‖𝐮ℎ
𝑛‖2) +

𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
2
 

                 ≥
𝑣∆𝑡

44𝐶𝑃
2 (‖𝐮ℎ

𝑛+1‖
2

+ ‖2𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

+ ‖𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

) +
𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
2
 

    ≥ min {
1

2
,   

𝑣∆𝑡

44𝐶𝑃
2} (‖𝐮ℎ

𝑛+1‖
2

+ ‖2𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

+ ‖𝐮ℎ
𝑛+1 − 𝐮ℎ

𝑛‖
2

+
𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
2

). 

 

Now insert this estimate into (3.9), denote 𝛾: = min {
1

2
,   

𝑣∆𝑡

44𝐶𝑃
2}. This yields  

 

(1 + 𝛾) (‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+

𝑣∆𝑡

4
‖∇𝐮ℎ

𝑛+1‖
2

) +
𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
2

≤ (‖𝐮ℎ
𝑛‖2 + ‖2𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+ ‖𝐮ℎ

𝑛 − 𝐮ℎ
𝑛−1‖

2
+

𝑣∆𝑡

4
‖∇𝐮ℎ

𝑛‖2) 

                                  +2𝑣−1∆𝑡‖𝐟‖
𝐋∞(ℝ+;  𝐕𝐡

∗)
2 . 

 

Fix an integer 𝑀 > 0, and divide the above inequality by (1 + 𝛾)𝑀−𝑛  to obtain  
 

(1 + 𝛾)1−𝑀+𝑛 (‖𝐮ℎ
𝑛+1‖

2
+ ‖2𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+ ‖𝐮ℎ

𝑛+1 − 𝐮ℎ
𝑛‖

2
+

𝑣∆𝑡

4
‖∇𝐮ℎ

𝑛+1‖
𝐿2

2
) 

+(1 + 𝛾)−𝑀+𝑛
𝑣∆𝑡

2
‖∇𝐮ℎ

𝑛+1‖
𝐿2

2
 

≤ (1 + 𝛾)−𝑀+𝑛 (‖2𝐮ℎ
𝑛 − 𝐮ℎ

𝑛−1‖
2

+ ‖𝐮ℎ
𝑛 − 𝐮ℎ

𝑛−1‖
2

+
𝑣∆𝑡

4
‖∇𝐮ℎ

𝑛‖
𝐿2
2 ) 

 

+2(1 + 𝛾)−𝑀+𝑛𝑣−1∆𝑡‖𝐟‖
𝐋∞(ℝ+;  𝐕𝐡

∗)
2 . 

 

Summing up for 𝑛 = 0, 1, … , 𝑀 − 1 and reducing yields  
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‖𝐮ℎ
𝑀‖

2
+ ‖2𝐮ℎ

𝑀 − 𝐮ℎ
𝑀−1‖

2
+ ‖𝐮ℎ

𝑀 − 𝐮ℎ
𝑀−1‖

2
+

𝑣∆𝑡

4
‖∇𝐮ℎ

𝑀‖
𝐿2

2
+

𝑣∆𝑡

2
∑ (

1

1 + 𝛾
)

𝑀−𝑛

‖∇𝐮ℎ
𝑛+1‖

𝐿2

2
𝑀−1

𝑛=0

 

≤ (1 + 𝛾)−𝑀 (‖𝐮ℎ
1 ‖

2
+ ‖2𝐮ℎ

1 − 𝐮ℎ
0 ‖

2
+ ‖𝐮ℎ

1 − 𝐮ℎ
0 ‖

2
+

𝑣∆𝑡

4
‖∇𝐮ℎ

1 ‖
𝐿2

2
) 

+2𝑣−1∆𝑡‖𝐟‖
𝐋∞(ℝ+;  𝐕𝐡

∗)
2 ∑ (1 + 𝛾)−𝑀+𝑛

𝑀−1

𝑛=0

. 

 
Using the fact that  

 

2∆𝑡((1 + 𝛾)−1 + (1 + 𝛾)−2 + ⋯ + (1 + 𝛾)−(𝑛+1)) = 2∆𝑡(1 + 𝛾)−1 (
1 − (1 + 𝛾)−(𝑛+1)

1 − (1 + 𝛾)−1
) 

≤ 2∆𝑡(1 + 𝛾)−1 (
1

1 − (1 + 𝛾)−1
) 

     ≤ max {∆𝑡,   
44𝐶𝑃

2

𝑣
}, 

 

finishes the proof. 

 

4. Numerical experiments 

 

In this section, we present two numerical experiments. Each of them uses the same test problem.The 

system is studied on a unit square domain 𝔻 ≔ (𝟎, 𝟏)𝟐 with a constant inflow  𝐮 ≔ (𝟎, 𝟏), and angular 

velocity 𝛀.=(0,0, 𝑦). The pressure is chosen as a quadratic polynomial 𝑝(𝑥, 𝑦) = −𝑦2+1/3 such that 

∫ 𝑝 𝒅𝒙𝒅𝒚 
𝔻

=0. In this case,  right hand side forcing term 𝐟  would be zero. 

 

4.1. Mass conservation 

 
In this numerical experiment, we will show that divergence-free FEM behaves in a robust way, and has 

better mass conservation when the criticial parameter 𝒗 →0. To show that, we compute solutions of 

Algorithm 3.1 with divergence-free, the Scott-Vogelius (SV), and non-divergence free elements, the 

Taylor-Hood (TH), Mini and Crouzeix-Raviart (CR), on the same 16x16 barycenter refined uniform 

mesh of domain 𝔻. We fix end time to T=100, and take time step dt=0.05. (We also run dt = 0.01, dt = 

0.1, and got the similar results.) For each element choice, we compute ‖𝐮𝒉
𝒏+𝟏‖

𝑳𝟐  for varying 𝒗. As can 

be seen from Table 1, all elements give the exact velocity solution for 𝒗 =1.0, 𝟏𝟎−𝟑However, only the 

SV-FE solutions behaves in a robust way for smaller values of  𝒗. (see also Figure 1 and Figure 2.)  

 We also compute the divergence of approximate velocity solutions for these element choice at 

end time T=100taking the same flow parameters. The results in Table 2 reveal that Taylor-Hood and 
Mini elements lead to very poor mass conservation, but CR and SV strong mass conservation, which is 

due to the fact that CR and SV enforce the divergence constraint strongly, not discretely. 
 

Table 1. Discrete velocities in 𝑳𝟐-norm at T=100 for varying 𝒗. 

 TH (𝑷𝟐, 𝑃1) Mini(𝑷1
bub, 𝑃𝟏) CR(𝑷𝟏

𝒏𝒄, 𝑃𝟎) SV (𝑷𝟐, 𝑃1
𝑑𝑐) 

𝒗 ‖𝐮ℎ(𝑇)‖
𝑳𝟐  ‖𝐮ℎ(𝑇)‖

𝑳𝟐 ‖𝐮ℎ(𝑇)‖
𝑳𝟐 ‖𝐮ℎ(𝑇)‖

𝑳𝟐  

100          1.0             1.0         1.0 1.0 

10−2          1.0             1.0        1.0 1.0 

10−3          1.2597             1.0 1.0795 1.0 

10−4          1.7372             1.0980 1.1432 1.0 

10−5          2.0841             1.3297 1.1562 1.0 

10−6          2.1467             1.4129 1.1524 1.0 
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Table 2.Divergence of velocity solutions in 𝑳𝟐-norm at T=100 for varying 𝑣. 
 TH (𝑃2, 𝑃𝟏) Mini(𝑷1

𝑏𝑢𝑏 , 𝑃𝟏) CR(𝑷𝟏
𝒏𝒄, 𝑃𝟎) SV (𝑷2, 𝑃1

𝑑𝑐) 

𝒗 ‖(∇ ∙ 𝐮ℎ)(𝑇)‖
𝑳𝟐  ‖(∇ ∙ 𝐮ℎ)(𝑇)‖ ‖(∇ ∙ 𝐮ℎ)(𝑇)‖ ‖(∇ ∙ 𝐮ℎ)(𝑇)‖ 

100 2.4387-14 3.8077-14 1.2046-14 6.3479-14 

10−2 2.8404-14 2.9734-14 1.2284-14 5.9303-14 

10−3 111.6 4.2587-14 1.4865-7 5.8514-14 

10−4 236.5 84.8 2.0844-7 6.1256-14 

10−5 318.2 159.6 2.1986-7 6.0862-14 

10−6 330.9 188.9 2.0990-7 1.3439-10 

 

 

 

 
 

 
Figure 1. Shown above plots of 𝐿2-norm of the computed solutions ‖uℎ

𝑛+1‖𝐿2 versus time for 𝑣 = 10−3. 
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Figure 2. Shown above plots of 𝑳𝟐-norm of the computed solutions ‖𝐮𝒉

𝒏+𝟏‖
𝑳𝟐 versus time for 𝒗 = 𝟏𝟎−𝟔. 

 

4.2. Stability behaviour 

 
In the second numerical experiment, we show the effect of the filter step. Therefore, we compare the 
stability of velocity solution of Algorithm 3.1 with the those of standard linearized BE-FEM, 

i.e.,algorithm without the second step. We use the same flow parameters as in the previous experiment, 

and run algorithms taking TH-FEM, which is not divergence free, with time step dt = 0.05. (We also 

run dt = 0.01, dt = 0.25 and dt = 0.1, and got the similar results.)  The plots of the computed approximate 

solutions in the 𝐿2- norm are presented in Figure 3 and Figure 4. For 𝑣 = 1.0, both algorithms give the 

exact velocity solution. As 𝑣  is smaller and smaller, BE-FEM deviates from the exact solution, but TH-

FEM gives the exact velocity solutions. This is due to the fact that filter step increases the accuracy of 

BE-FEM.  

 

 

Figure 3. Shown above plots of 𝐿2-norm of Algorithm 3.1’s and BE-FEM’s solutions versus time for 

𝑣 =
1

100
,

1

250
 . 
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Figure 4. Shown above plots of 𝑳𝟐-norm of Algorithm 3.1’s and BE-FEM’s solutions versus time for 

𝑣 =  
1

500
,

1

1000
. 

 
Yazarların Katkısı 

 
Çalışmada tüm yazarlar eşit oranda katkı sunmuştur. 

 

Çıkar Çatışması Beyanı 

 

Yazarlar arasında herhangi bir çıkar çatışması bulunmamaktadır. 
 

Araştırma ve Yayın Etiği Beyanı 

 

Yapılan çalışmada araştırma ve yayın etiğine uyulmuştur. 
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