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Highlights

« This paper focuses on velocity-vorticity-temperature (VVT) model of the Boussinesq equations.
« A second order time accurate finite element method is proposed for solving these equations.
« Unconditional stability with respect to time step is proven.

Articlelnfo Abstract

This paper studies a velocity-vorticity-temperature (VVT) model of the Boussinesq
Received: 29/01/2020 equations and introduces a numerical method for solving that. The proposed numerical
Accepted: 10/03/2020 method adds separate three minimally intrusive steps, one for each fluid variable, except

pressure, to the standard semi-implicit backward-Euler (BE) approximation of VVT-
model. The key idea in these intrusive steps is to post-process the BE approximate

Keywords solutions with 2-step, second order, linear time filters. The paper provides full
Finite element method mathematical analysis of the proposed numerical method, and two numerical
The Boussinesq equations experiments for that. The first numerical experiment verifies the predicted convergence
Time filter rates while the second one shows the effectiveness of the method on a benchmark

problem.

1. INTRODUCTION

The fully implicit/backward Euler method is frequently used to compute an approximation for the time
dependent viscous flow problems [1,2]. This is because the method is A-stable, converges to actual
solution very fast, and is implemented easily. However, it may not reflect the true physical behavior of
the analytical solution in many situations [3]. In a recent paper [4], a numerical approach for ordinary
differential equations which uses the time filter was introduced to increase the accuracy of the BE
method, and the idea was applied to the incompressible Navier-Stokes equations (NSE) in [5]. The key
idea in [5] is to combine the standard BE time-stepping scheme for the NSE with a linear time filter.
Hence, the resulting algorithm requires two uncoupled steps at each time level. The first step calculates
an intermediate BE velocity approximation for the NSE, and the second step post proceeds this
intermediate velocity by using a second order, linear time filter. By this way, the accuracy of the method
is increased from the first order to the second order. Assuming that the time step is constant, the method
becomes more attractive because it needs only one line additional code into BE-solver at each time level.
In addition to this, eliminating the intermediate step leads to an equivalent method, which is 2-step, A-
stable but is still of second-order accuracy, ands implifies the stability/the convergence analysis.

The aim of this report is to apply this novel idea to the velocity-vorticity-temperature (VVT) model of
time-dependent incompressible, non-isothermal fluid flows [6,7]. VVT model for the incompressible,
non-isothermal fluid flowsis given as follows: for a given force field £: (0, ¢*] x Q — R%, find velocity,
pressure, temperature and vorticity fields, i.e., u: (0,t*] x Q - R% and p, 6, w: (0,t"] X Q- R,
such that (u, P, 8, w) satisfies the equations in (0,t*] X Q
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S —vAu+wxu+VP = RiTk+f,

V-u = 0,

I — KAT + (u - V)T = v, (1)
ow . 0T

E—vAw+(u-V)w = Rla-l-VXf.

where w: = V X u represents the vorticity of the fluid, P: = %|u|2 + p is the Bernoulli pressure.

Moreover, k is the unit vector in the direction of gravity, v:= 1/Re is the dimensionless kinematic
viscosity, where Re denotes the Reynolds number, Ri: = Gr/Re? is the Richardson number, and x: =
1/(PrRe) is thermal diffusivity coefficient.

Velocity-vorticity (VV) formulations have been studied frequently [8-13]. This is due to the fact that
the vorticity has an essential role in determining the fluid dynamics. In addition, (w X u, u) = 0, which
ensures the energy inequality of the model, and thus the stability of any numerical method for VV is
guaranteed.

Due to the success of VV-model in simulations of the incompressible flows, especially for vortex
dominated or strongly rotating flows, this report proposes a numerical method to approximate VVT-
model in 2D. We make a note here that analyzing the vortex stretching term in 3D-setting is very
complex. Therefore, VVT-modelis analyzed in 2D.

The proposed numerical method to approximate the solutions of VVVTconsists of two decoupled steps
as in [5]. The first step calculates velocity/vorticity/temperature approximations of the VVT-scheme
with the usual BE-FE discretization. The second step introduces three decoupled time filter steps for
each of these approximations. Eliminating the intermediate velocity/temperature/vorticity step together
with assuming the time step is constant, the proposed method can be reduced to an equivalent algorithm
that alike linearly extrapolated, two-step BDF-method (BDF2LE). This makes simpler the stability and
error analysis of the numerical method. The time discretization in the proposed algorithm is done such
that the convective terms of evolution equations are linear with respect to the first variable.Hence, the
whole algorithm becomes linear at each time level. We make a note here that the application of the
second order scheme for multiphysics flow problems can be seen in [14,15].

We organize the paper as follows. All necessary mathematical preliminaries are collected in Section 2.
Section 3 presents a numerical algorithm for VVT scheme, and studies its stability and convergence to
VVT model. We prove that approximate solutions are unconditionally stable according to time step, and
converges to analytical solutions of VVT optimally. Section 4 provides two numerical experimentsfor
the method. The first one verifies the theoretical convergence rates, and shows that the error between
the vorticity and velocity goes to zero. The second numerical experiment tests the method on a
benchmark problem, named Marsigli’s flow problem. The conclusions of the study are summarized in
Section 5.

2. MATHEMATICAL PRELIMINARIES

This section is devoted to presenting mathematical preliminaries and notation used throughout this
paper. The norms in H*(Q) will be denoted by |I|l, and the norms in Lebesgue spaces by L?(Q), 1 <
p < oo by |I-ll,p, and by |-l for p = oo, [16]. Vector valued functions spaces will be indicated with
bold letters.

The velocity, pressure and temperature spaces in the periodic setting for Boussinesq system are given
by
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X = Hy(@®) =

v € H},.(R): vis2m periodic in each direction, j vdx = 0},

Q:=1%(Q) = {q € L?,.(R): q is 2m periodic in each direction,

O t—

gdx = 0},

V= HE @) =

v € HL.(R): v is 2w periodic in each direction, I vdx = 0},
D

where Q is a polygonal or polyhedral domain in R¢(d = 2,3). We make a note here that we will denote
vorticity space as Y = Hj(Q) since vorticity is a scalar quantity in two dimensions. The divergence free-
subspace of X is represented by V, i.e.,

V:i={veX:V-v=0}
The skew symmetrized trilinear form is defined by
b*(u,@,s):= %((u -Vop,s) —(u-Vs,@)), VueX Ve,sey.

Notice that b*(u, ¢, s) = 0. This operator satisfies the following [17].

Lemma 1. Letu € X and ¢, s € Y. Then there exists a constant C: = C(£2) such that it holds
b*(w,0,S) < C [IValll ve Il vs 1,
b*(w,0,5) < C Il ulY2]| va II*/2]| Vo Il VS I,
b*(w,68,5) < C llalll 6,1l VS II.

S, stands for a decomposition of a domain  into triangles in 2d or tetrahedron in 3d with maximum
diameter h, and associated velocity, pressure and temperature/vorticity finite element (FE) spaces are
denoted by X, c X, Q, € Q, and Y, c Y which satisfy approximation properties of piecewise
polynomials of local degree k + 1, k — 1 and k, respectively :

inf lu—vy, I +hI1Vu—vy) I} < CA** 21 lljys,
VREXR
inf lp—r 1< Ch* I p lly,
Th€Qh

inf {Ilw—wp Il +h I V(w—wp) I} < CR** T I w llgq1,
WREY R

for all ue XnH*1(Q), p € Q N H*(Q) and w € Y n H**1(Q). Furthermore, assume (X, Q)
satisfies the discrete inf-sup stability (LBB) condition, see [14]

,V-v
inf sup M23>O,
an€Qnv,exy, Il qn Il Vv I

where f is a constant independent of h. It is well known that the LBB condition assures that the
approximation properties of the spaces X;, and V,, are equivalent in those of space V:

: _ < _
V:Lrel‘f/h IVu—wvy) I Cv;gh [Viu—=vy) ll, Vuey,

where Vy, is discretely divergence-free subspace

Vii={v, €Xp:(qn,V-vy) =0, Vqu € Qp}
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Let ¢(t,x) be defined on (0, t*]. Then we introduce the following norms

Il @ log:=ess sup Il @(t,) g, and Il @ llpx:= (fot Il o(t,) I O™ 1 <m < .
o<t<t*

Introducing the notationt™*1:= (n + 1)At, where At is a chosen time-step, we indicate @"*1:=
@(t™*1), and use the following discrete time norms:

1
@l = max I @(e™) e and 1 plllme:= (At THZ3 1 () W),

The difference and interpolation operators are defined as
5[¢)n+1]. — Eq)n+1 — 20" + len—l E[(Dn+1]. — ECI)n+1 — P + lcpn—l
=5 > , : .

_ 2 2
Notice that

6[C1)n+1] 1 2 1 1 2
—— = +0(ar?), and E[@™] = o™+ 0(Ar?).

Using Taylor expansion with integral reminder term, one can have the following.

Lemma 2. Assume @ sufficiently smooth. Then, the following holds [5]

8[cbn+1] 2 6 tntl
— < —At3f | Dy 12 dt,
At 5°° ),

n-1

n+1
th -

A 3 tn+1
||q)n+1 _ E[q)n+1]”2 < _f ” q)tt ”2 dt,
6 tn—l
A 3 tn+1
|d™*1 — 20" + ™12 < 5 | ;¢ 112 dt.
tn—l

In the stability and convergence analysis, we often call the Poincaré-Friedrichs’ and Young’s
inequalities.

Lemma 3. (The Poincaré-Friedrichs’ Inequality) For any¢g € X, there exists a constant Cp dependent
only on the domain 2 such that

I ll2< Cp Il Vep Il 2.

Lemma 4. (The Young's Inequality) Let A, a be non-negative real numbers. Then for any € > 0
g~a/p

£
AaSElp+ al,

where % + % = 1 withp,q € [1, ).

In the last step of the convergence analysis, a different version of the usual discrete Gronwall’s Lemma
will be used, see e.g.,[12].

Lemma 5. (Discrete Gronwall's Lemma) Let At, B and a,,, b,,, ¢, d,, be finite non negative numbers
such that

ay +AtYN_o b, < AtYNZd dpa, +AtYN_oc,+ B for N=>1.
Then for all At > 0,

ay + At YN_o b, < exp(At YNz d)(AtYN_ ¢, + B) for N> 1.

3. NUMERICAL ALGORITHMS AND STABILITY

In this section, we present a time accurate, adaptive discretization for (1).
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Algorithm 1. Let body forces f,y, initial velocities and temperatures be given. Select an end time t*
and a time step At > 0 such that t* = N A¢t. Then for any n > 1 find (uj*®, pp*t, T, witt) €
(Xn, Qn, Yn, Y) via the following two steps:

Step L1:Find (Qp**, PP+ TR, with) € (Xp, Qn, Ya, Yn) such that it holds, V(vy,qn, xn Sn) €
(Xh' Qh' Yh: Yh)

- up
(T vh>+v(Vu”+1 T+ (2w — wi) x 8, v) — (PR, 7 wy)

= (fv) + R(QRT -T Hkvy) (2

» (V-8p™, qn) =0, ®)
-t
( . :Xh) + (VI V) + b (2uf —uf LT ) = ™ ), 4)
WTL+1 —-w
<hA—th,sh> +v(Vt Usy) + b*(2u} —up L Wit s, ) = (Vx £, 5)
n_mnn-1
+Ri ("’(ZTha—xTh) sh) . (5)

Step 2: Compute ur*! € X, T/, witl € Yh satisfying for each vy, € Xy, xn, Sp €Yy
(up*t,vy) = (u"“, Vp) — (An+1 2ufy +upmhwy),
(T ) = TR+ xn) —‘( TR = 2T + T~ xn),
wWitt,sp) = With,sp) — (W — 2wl + Wi sp).

Assuming the time step is constant, using the notatlons of difference and interpolation operators in place,
and inserting

n+1

@t vy,) = —(Su"+1 —2u} +uptvy),
(TRt xn) = —(3 TR = 2T + TN ),
(Witt,sp) =5 (I\’:W"+1 — 2wl + w,?‘l,sh),

in the first step of Algorithm 3.1, the following equivalence method is obtained

5[“24’1] n+1 n n—1 n+1 n+1
Vi )+ V(VE[uR 1] 9w + ((2wh —wi™) x E[uh ] v, ) = (B V- w)
= Ri (21" = Tk, vy) + (4, v),  (6)
(V E Tl+1 qh) = 0, (7)
(B ) + e(VELTE], Vaw) + b° (2uf — wp~ B[, 20) = G 1), ®)

(—5[‘”’?“] ,sh) +v(VE[wptt], Vsy) + b*(2u) —up Y E[witt],sp) = (V x £ vy)
+ Ri (M’Sh)_ (9)

ox

Remark 6. Notice that time derivative terms are dicretizatized by using BDF2-time stepping method,
but the remaining terms are not. Therefore, the method is not the standard BDF2LE-method.

We now prove that the approximate solutions to Algorithm 1 are stable without any time step restriction.

Lemma 7. Assume f € L®(0,t*; L>(2)), and y € L®(0,t*; H~1(2)). Then for any At > 0, solutions
to Algorithm 1 satisfy the bound
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TR 12 0 2T — TR 212+ TN = TN L 124 3023 I T+t — 21 + Tt |12

N-1
208t ) I VE[TEF IPSITE 17 4+ 27 = T2 12 41 T = T2 12
n=0
N-1
+2K_1Atz Il y™*t12=:C%,
n=0

and

N—-1
-1 -1 1 -1
a2 0 2 — a1 12 4wl — o ||2+3Z L+ — 2ul 4wl |2
n=0

N-1
+2vAt Z I VE[u* ] 12 <l u}, 12 +1l 2u}, — u 12 +1 uf, — u), 112
n=0
N-1
+4v~1Ri2CECEt* +4v‘1Atz I F 12,
n=0
and
N-1
w12 +1 2wl — w112+l wl — TN ! ||2+3Z I witt — 2wl 4+ wit |2
n=0
N-1
+2vAtZ I VETW ] 12<I wi 12 +1 2wl — wi 12+l wi — wg 112
n=0

+4vTIRIZCEET + 4vTTAE YN I f 2

Proof. Setting v, = E[u}?*], q,, = PP, xp = E[T/*] and 55, = E[wf*1] in (6)-(9) vanishes non-
linear and the pressure terms. Then using the algebraic identity

(3a—4b+c><3a—2b+C)
2 2

=-[a% + (2a = b)? + (a— b)?] = [b? + (2b — ©)* + (b — ©)*] += (a — 2b + ©)? (10)
yields
4At —— [l w012 0 2uftt —uf 12+l uptt = ul 12
3
4At[u ul 112+l 2uf —uf 12+l u) —up 2]+ — Zag TuR™ — 2w it
+v Il VE[ui ] 12< Ri (27 — T E[up*2])| + (£, E[up*]), (11)
and

— [ TP 02 41 2T — TR 12+ T — T 1

4At
4At[" Ti 12+ 273 = T 02+ T =T II2]+ TR - 2T 4 TR P
+x | VE[TR] 12< | (v 12)
and
g WS 2 1 2w — w2+ wi = w1

3
2w - w1 = Wit = 2wl w12

— g Wi 12 1 2w — w .
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v LR ] 17 < Ri (SR, pwpn])| + (7 07, Efwp )] (13)

Applying the Cauchy-Schwarz, Lemma 3, Lemma 4 to the right hand isde of (11)-(12) yields

Ri|(QTH — TR Dk E[uf D < Rill 2T — TR 1 Cp | VE[ut ] |l
%
<v7IRI?C3 | 2T} — TP 1 112+ 2 | VE[ul*1] 112,
v
|(fn+1’E[u;ll+1])| < v—l ” fn+1 "zl_l_Z ” VE[u;ll+1] ”2’

-1
|(]/n+1,E[T}?+1])| < KT " yn+1 "31+g " VE[T}:H-I] ”2

To bound the terms on the right hand side of (13), use integration by parts and the standard inequalities

to get
QT — T 1
Ri ’(M E[w;;“]) < Rill 2T — T I VE[w I

ox

v
< v IRIZ || 2TR — TP 1 1%+ 7! VE[w1] 112,

|(V % fn+1'E[W;ll+1])| < p-1 I fn+1 "2_|_£ I VE[W;;H—]'] ”2

Inserting all these estimates, multiplying by 4At and summing over time steps produces

N-1
Il 17 20— a2 e - a3 ) R - 2uf
n=0
N-1

+2vae > I VE[up] 12

n=0
N-1
<l ub 12 1 2} — ud 1%+ ub — ud 12 + 4 Ri>CEAL Z I 278 — TP |12
n=0
+ 4y AL YN 2, (14)
and
N-1
TR 1%+ 2T = T~ 12 +1 Ty — T~ 1%+ 3 z I TR = 2T + TR 1P
n=0
N-1
28t ) I VE[TR] 2
n=0
<IN TR N2+ 2TE = T2 12 +1 T = TR 1%+ 26 1At INZE 1 y™HL |12 =: C? (15)
and
N-1
w12+ 2 = w7l = w23 W = 2wl R
n=0
N-1
+2v8e > I VE[wpt] 12
n=0
N-1
<l wi 112 +1l 2wt —wp 12 +1l wi —wp 12+ 4v~1Ri2C3At z | 2T — =1 )12
n=0
+2vTIAL TN I A (16)

The left hand side of (15) is bounded by data. Therefore, the approximate temperature solution is stable.
Using temperature stability bound in (14) and (16) yields the desired velocity and vorticity bounds.
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4. ERROR ANALYSIS

In this section, we study the convergence of Algorithm 1, and give an error estimate for that. At any
time step t™*1, true solutions of VVT-model satisfy the following :

5[un+1]
&

'Vh> + v(VE[u”+1],Vvh) + ((an _ Wn—l) % E[u"“],vh) _ (Pn+1,V . Vh)
= Ri (@ =T" kv, ) + (v ~ M@ T,wv),  (17)

S n+1 . _
( [TM ]'Xh) + K (VE[T™1],Vy,) + b*Qu™ —u™ L E[T™1], x,) = ™%, xn) — A, (w, T, x4)(18)

5[Wn+1
<A—t'sh> + v(VE[w™*1],Vs,) + b*(2u™ — u™ 1, E[w™*1],sp,)

n_pn-1
— (V X fn+1lsh) + Ri (a(ZTa—xT)'Sh) — A3(u, T, W,Xh), (19)

where A;(u, T,w,vy), A,(u,T,x,) and As(u, T, w,sy) are consistency errors and given by

n+1]

At
—(@w™ —w™ 1) x E[u™],v,) — Ri((T™?! = 2T™ + T Dk, vy,),

A, T,w,vp):= (u?“ - ,vh> + (V@™ — E[u™*1]),Vv,) + W™ x u™t,vy)

and

+1
Ay (W T, xp): = (Tt”+1 - ‘S[TA—nt],xh) + k(V(T™ — E[T™1]), V) + b* (0™, T xp)
—b*(2u"™ —u™ L E[T™1], xp),
and

n+1
,Sp | Fv(VW™? — E[w™1]),Vsy) + b*(u™, w™t, sp)

a(Tn+1 —2T™ + Tn—l)
0x +Sn )

As(u,T,w,sp): = [ wit! —

—b*(2u™ —u™ 1, E[w™*1],s,) — Ri (

We assume that true solutions to VVVT-model satisfy the following regularity conditions

ueL” (o, £ H3(Q) N H};”(ﬂ)), u,, € L2 (O,t*; H;(Q)), ., € L2 (o, t*; Li(ﬂ)),

T €L (o, t* H3(2) n H,{;“(Q)),

u € 12 (0,6 HEQ)), g € 17 (0,65 13(0), (20)
(Vxu), T € L°(0,t*; H}(Q)), (VX W), Tee € L?(0,t*; HE(Q))

(VX Weee, Tree € L%(0,8%5L3(Q)),

and now give consistency error estimates, which are necessary for the convergence theorem.

Lemma 8. [Estimations of the consistency errors] Assume that true solutions u, P, T, w satisfy (20).
Then, it holds
N-1

At z A(u, T, w,vy)
n=0
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<C (At)4(V_1 Il g ”%,O+V I Vag, "%,0"‘ vl Tt "%,0"“’_1 I Vag, ||%,o |||W|||§o,o

v I wee 150 1IVUlllZ0) + (ef + &5 + &5 + e)v At Yng | Vv 112,

and
N—-1
At Z A, (0, T, xn)
n=0
<C (At)4(’<_1 Il Teer ”%,0"‘ K|l VT "%,0"‘ K~ VTt ||%,0 |||Vu|||§o,0
N—-1
U Vuge 130 VTG 0) + (2 + & +s;)mtz I Vn I2,
n=0
and
N—-1
At Z As(u, T,w,sy)
n=0
<C (At)4(V_1 | Wt "%,0+V I Vw,, "%,0"‘ v Vwe ||%,0 |||Vu|||§o,o
N—-1
V7 Ve W IwIIZ,0 = v 2RE% Il Teg 130) + (55 + 25 + £i0) vAE ) 11 Vs 1P,
n=0

Proof. For brevity, we only present the estimation of A, (u, T, w, v;,) since the estimation of A, (u, T, xp)
and A;(u, T,w, yp)proceed in a similar way. For the first two and the last terms of A;(u, T, w, v;), we
apply the Cauchy-Schwarz Inequality, Lemma 3, Lemma 4 together with Lemma 2 to obtain

6[un+1] 6[un+1]
<u?+1— O E ulttl — v Cp Il Vv, |l
5un+1 2
<CCivt u?“—% + &v |l Vv, 112

- 2
<Cv I(At)B | wege "LZ(tn—l t"+1'L2)+ Eik v |l Vv ”2;

v(V("*! — E[u™1]),Vvy) < v | V@™ — E[u™1]) Il Vv, |
<C V(At)3 I Vutt ||iz(tn—1’tn+1’.L2)+ S;V I VVh “2'

Ri((T™! = 2T + T Dk, vy) S Ri I T = 2T + T 1 || Cp || Vv, |
< CvTHAD? I T Iz gpnes pnas, 2y + €3 v 1| VW, 112,

To bound non-linear terms, first rewrite that as follows

(Wn+1 X un+1,vh) _ ((an _ Wn—l) X E[un“],vh)
— (Wn+1 X (un+1 _ E[un+1]),vh) + ((Wn+1 _ an + Wn—l) X E[un+1]’vh).

Using the factthat (o xu,v) < C ll @ [l Vu llll Vv I, ¢ €Y, u, v € X, along with Lemma 1, and the
Young’s inequality yields

(Wn+1 X (un+1 _ E[un+1]),vh) + ((Wn+1 _ an + Wn—l) X E[un+1],vh)

< CQI W™ I V™ — E[u™]) |+ w™ = 2w™ + w1 [l VE[u™1] ) || Vv, |

< CvAE (Il W I Vi Do nos g2y 1 Wee 122gnes pns, g2y | VE[U™1] 17)
+&;v Il Vv, 112,

Inserting all these estimates to the right hand side of A, (u, T, w, v;,) produces
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A1 (W, T, w,vp)|
< CAPW™H gy W22 gnaagzy+ v I Vg W2 nen g2y V70 I T W2 gnen a2
+V_1|||W|||go,0 I Vug, ||1242(tn—1’ gt L2)+ v Wit "zz(t"'l,t”“;Lz) |||Vu|||§oo)

+(ef + &5 +es+ep) v I Vv 2
Summing over time steps and multiplying by At finishes the proof.

We now present the convergence result.

Theorem 9. Assume that true solutions of Algorithm 1 satisfy the regularity conditions (20), and
ultl, pitl Tt Wit he solutions to (6)-(9). Then the errors satisfy the bounds: for any 4t > 0,

I el 12+l el 12 +1 el 17 +1 2ell — el " I +1 2ef) — ely " 17 +1| 2 — el 2
N N-1 )12 N N—-1 2 N N—-1 12
+lel — el U2+l el — el I+l el — el

+3 Z (Il e+l —2el + el 1 |12 +]| ettt — 2ell + el1 |12 +]| eft — 2el +eR71 |12)

+At z (v | VE[u™ ] 12+ v I| VE[w™ ] 112+ k || VE[T™] 112) < C(R%* + At?),

n=0
where C is a generic constant independent of h and At, and
eu+1 — un+1 u;ll+1' eTr}+1: — Tn+1 _ Tfrl1+1'

are the velocity, temperature and vorticity errors.

ew+1_ — WTL+1 W};H_l

Proof. Subtract (6)-(9) from (17)-(19) to get, for any r, € Qp,

5 en+1
<[+t] Vh) +v(VE[e n+1] V) = (P =1, Vewp) + ((2efy — ey X E[unﬂ]lvh)
+((2wft — wi) x Elel*'] vy, ) = Ri ((2ef — ef D)k, vy ) — Ay (w, T, w,vi), (1)
6[677}4-1] n+1 b*(2em n-1 n+1
A—tJXh +K(VE[ ] V)(h)-l_ ( €y — €y 'E[T ]ﬁXh)
+b*(2u} —u} L E[e}™ ] xn) = —A(u, T, xp), (22)
6[6‘?7-‘-1] n+1 * n n—1 n+1
EYERAL +v(VE[eltt!],Vsy) + b*(2ell — el 1 E[w™ ], sp)
n_,n-1
+b*(2u}f —u}t E[eli*t],sp) = Ri (%,sh) —As;(u, T, w, sp). (23)
Decompose the errors
eG+1 — (un+1 _ sz+1) _ (ll;lH-l ~n+1) n{lz+1 3,4}-11:
e¥+1 — (Tn+1 _ T}:L+1) _ (Tn+1 Tn+1) — nn+1 ;lel’
evr&+1 — (Wn+1 _ Wfrlwl) (Wn+1 ~n+1) — 77n+1 ;L/:I-hll

where att1, T/*1 and Wt are the L2-orthogonal projections of u™*1, T%*1 and w™*1, respectively.
Choose v, = E[Y71'] in (21) xn = E[YFRM]in (22), and s, = E[4] in (23). Using the algebraic
identity (10) produces: for any 1, € Qp

(|| Ptz - ¢“h||2)+4At(” 2@t — ”hu2 —I 292, — PRt 11%)

4At(" WL = Wl 17 1 W — IR 12) + o I W — 2+ W I
+v || VE[@2E] 112
= v(VEMEILVERR]) — (P — 1, V- E[W2HY]) — Ri((2e} — e Dk E[PTH1])

4At

4At

+((2efy — el x B[], E[wi]) + ((2wft — wi™t) x Emi+*] E[Wit!])
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+A; (w, T, w, E[YHY]), (24)

and
4At(" ll)"“ % —Ii 2% IIZ) + 4At(” 21,0”“ Yrn 1% —Ii VATZLES —w?;ﬁ IIZ)

b (VRS — Wi 12— — R 1) + o R — 200 + U5 I

+ic | VE[pR52] 12
= (VB VE[WRR) + b (26 — e, BT, B[y
+b*(2uf — wp L E[pp ], E[pRit]) + Ao (u T E[pRY), (25)

and

(II Yt 12 =l gl 1) + —— (II 20t — i 12 =1 29, — it 112)

4At 4At

+4—At(uw”+1 W I T — YL U)o AL — 2, gL |2

4At
+v VE[I/JTH-l] "2
_V(VE n+1 VE[¢n+1])+b (Zeu—eﬁ 1 E[ n+1 E[l/)n+1])

(6(26T

+b*(2uh _ u;’ll 1 n+1 E[l/)n+1]) Ri P E[l/)n+1 >

+As(w, T, w, E[YI4]) . (26)

We now bound the right hand side terms of (24). Apply the Cauchy-Schwarz inequality, Lemma 3,
Lemma 4 to the first fourth right hand side terms which yields

[v(VEMEH] VE[WEH )| <—|| VE[m+1] |12 +_|| VE[WIE 12,
-1
|(Pn+1 — 1 ,V . E n+1 )l 125 I Pn+1 -1, ”2 + — VE[[IJn+1] ”2’
Th

|Ri((2ef — ef Ok, E[Wii'])| <Rz(u 20 —nF I+ 297, — iR u)cp I VE[WER 1L,
RlZC vle
s+(ll 2n% — R L I2 +1 297, — Y7 1||2)+—|| VE[YIE 112,

To estimate the first non-linear term below, use the error decomposition, the Holder and the Young’s
inequalities to get
|((2ef; = ely™) x E[u™ '], E[W 1D

= |((277\7v —nw 1) x E[u™*1], E[q;ﬁ )| |((2¢‘7vh — p1=1) x E[u], B[ )|
< C(" 27’]‘7}‘/ —1"7}[}—1 I+l 21/)‘7}”1 1/)‘7/1”11 ”) I VE n+1] i VE[ n+1] I
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C£4

IA

v
(|| 200 =M N 20— YlA 1) I VEQ™ T 24— 1 VE[WR' I
4

The second nonlinear term is estimated as follows:

|(@wE —wi™) x Emy* L E[Wah'D| < C Il 2wji —wp I VEME I VE[RRT
cv™

sTu 2wl — wim 120 VEE] 124 = I VE[QIR] 11
5

Insert all these estimates to (24), and choose appropriate ¢;, i = 1,2,...,5. Multiplying the resulting
inequality by 4At yields

(Nt 12 =1, 12) + (1 200h — Wi, 1% =1 297, — Wiyt 12)
F(WERT = Win 12 =l WG, — Wi 12) + 3 1R — 205, + " 12
+2 VAt || VE[YT ] 12

< CAt(v I| VEF1] 1124+ v1 inf | P — 124+ v RIZCE N 2nF — Pt 112
Th h

+Vv7IRIZCE N 29T, — TR 124+ v 200 — i 121 VE[u™*] )17
v 290y — W 1P VE[™ ] 124y ) 2wl — w12 VE[mET] %)
+ 40tA, (0, T, w, E[P2HM).

Now take v;, = E[Yi1,'] in Lemma 8, and choose &5 + & + €5 + &; = 1/4. Summing over time steps,
and applying (20) for true solutions yields

s 12 0200, = Wint 12 41y, — Wzt 1743 Z IRt — 2, + Wiyt 112

+vAtz | VE[IE] 112

< CO R ul B +v R34 P, + RIZCE v-1h2k+2|||T|||2k+1
N-1

F VTR ]I o IVUIZ,0) + CvTiAe D I 2wl — w120 VE ] 12

n=0
+C At YNZG (vTERIZCE N 2%, — R 12+ v 290, — Wi 121 VE[u™ ] 112) + CAt*. (27)
Similar estimates produce the following bounds for the temperature/vorticity errors:

4At(n YRR IZ =1 T 12) + (I 2975 — il ||2 —I 29% ), — 75" 1%)
(|| iRt =Y 12 =l sz,,— 1||2)+ IDTR = 297 + YFR" 1P

4At 4At
_ ” VE[ n+1] ”2
< C(x | VEFT 1P+ K_l(" 2"lu T I 29, — Wt 1P 1L E[T 3

kLI VuE —ul Y 121 VE [ 12+ (Ao (w, T, E[PR R,

and
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4At(uzp"“ 12 =N 17) + 57 (|| 21—t 112 =1 2907, — I 112)

e VU = Wl 12— = W 12) + e W — 20 + W I

_ " VE[ n+1] "2

< C(VIVEREN P+ v 2ng =3~ 12 +1 205, — Wizt 12) 11 Ew™ ] 113)
+v LI vERul —ul Y 121 VE[pF 124 v IRi2(N 2n% — B |12
i 297, — PR 12 + A3, T, w, E[y i DI

Now, set x, = E[y7}4'] and s, = E[y54!] in Lemma 8, multiply by 4Atand sum fromn = 0 to N —
1, and apply (20) to get

¥, 12 +1 298, — YRR 12+ zp¥,, YR IZ 1Y, — 29Nt + 2012
+KAtZ | VE[yRt1] 112

< Cc R NTINZ keaa +K_1h2k+4”|u|“2k+2”|T|” 2)
N-1

+ CAtZ k(I V(2u) — uf™t) 120 VE[nFT 02 +0 E[T™ ] 131 202, — Wiyt 1) + CAt,

n=0

and
Iy n 12 41 295, — Pzt 12+l l/)vl\\lfh Yon 12 Yy, — 290750 + Y2 117

+vAtz | VE[ypIh1] 112

< C R | [ulllZ ps2 + v‘1h2k+4|||u|||2 ke2lllwlliZ 2 + v RZRZHATINS j10)
N-1

+ C At Z v v(2u} —uf ) 121 VE [kt 12
n=0
N-1
+C At Z v 297, — W 1PN E[w™ M 13 +1 20% , — iR 1I12) + C At*
n=0
Summing the last two inequalities together with (27), and applying the Gronwall Lemma together with
the velocity/temperature/vorticity stability results finishes the proof.

2.1. Numerical experiment 1: convergence rate verification
The first numerical experiment confirms the spatial and temporal convergence rates of Algorithm 1.

Choosing P, for the velocity, P, for the pressure, and P, for the vorticity/temperature, Theorem 9
concludes that spatial and temporal errors are both of second-order,i.e.,

|u(t) —ui || + llu=uplllpq + |[TE) = T + T = Talllzq + [wE) = wil || + 1w — wrlll24
= 0(h? + At?), (28)

where
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N—1 1/2
Iz, 0= At(Z ||v<-)||%,1)
n=0

To verify these rates, the analytical solutions are chosen as

u(x,t) :=(e‘ cos(m(y — 1)), e’ sin(m(x + 1)), p(x,t) :=sin(x + y)(1 + t?)
T(x,t) := sin(mx) + yet

in Q:=(0,1) x (0,1) with dimensionless flow parameters v =1, Ri = 1,k=1. From which initial
conditions and forcing terms are defined. To observe second order temporal accuracy, we first fix h =

1/128, and then calculate approximations for At = %, %1—16312 6—14. The results are presented in Table
1. In asimilar manner, after setting t* = 0.001, At = 0.0001, we run Algorithm 1 for h = %, %116312

614, see Table 2. Both two results coincide with (28).

Table 1. Temporal errors and rates for a fixed mesh size h = 1/128

At llu — uplll,; |Rate IIT — Twlllo,, | Rate IT — Txlll, | Rate
1/4 |5.3861e-1 --- 4.4585e-1 --- 2.4682 ---

1/8 |1.5552e-1 1.85 1.3711e-1 1.70 6.5782e-1 1.91
1/16 | 3.4477e-2 2.22 3.5219e-2 1.97 1.3904e-1 2.24
1/32 | 8.0471e-3 2.15 8.8744e-3 1.99 3.1829%¢-2 2.13
1/64 | 1.9507e-3 2.09 2.2280e-3 1.99 7.6539¢-3 2.06

Table 2. Spatial errors and rates for an end time t* = 0.001and At = 0,0001

h  |lllu—uplll, o |Rate | [[IT —Tylll, » |Rate | [[IT —Tylllz, 4| Rate
1/2|8.3533¢-3 5.8896e-3 2.6225¢-2 | ---

1/4 |2.1083e-3 1.99  [1.4828e-3 199  [6.6020e-3  [1.99
1/8 [5.1801e-4 203 |3.6277e-4 204 [16133e-3  [2.03
1/16 [ 1.2761e-4 2.02  |8.9073e-5 203 [39599%-4  [2.03
1/32 | 3.1745e-5 201  [2.2134e-5 201 ]9.839%e-5  [2.01
1/64 | 7.9238e-6 200 |55241e-6 200 |2.4576e-5  [2.00

We point out that both w;, and u,, approximate the same fluid variable, u. Therefore, | wy, — (VX up) |l

. . 1 1
should be very small. To observe this, we make three calculations when for t* = 1—6,h =5 t" =

1 1

—,h= Landt* = i, h = —. We labelled the plots obtained from these calculations by Level 1,
32 64 64 128

Level 2 and Level 3, respectively. The results can be seen in Figure 1.
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Figure 1. Shown above is a plot of ||wy, — V X uy || versus time, for the finest 3 dlscretlzatlons

4.2. Numerical experiment 2: Marsigli’s experiment with Re = 1000

The second numerical experiment tests the proposed algorithm on a benchmark problem, named
Marsigli’s experiment. For the problem set-up, we follow the paper [18]. Flow region is an insulated
box [0,8] x [0,1] divided at x = 4. The initial velocity is taken to be zero since the flow is at rest, and
the initial temperature on the left hand side of the box is t° = 1.0, and on the right hand side t° = 1.5.
The dimensionless flow parameters are setto be Re = 1000, Ri = 4, Pr = 1 and the flow starts from
rest.

Our goal here is to compare Algorithm 1 and BE-FEM of the VVVT-model on the same moderately fine
mesh. Taking the same flow parameters as in DNS except time step At = 0.02, we calculated all
solutionsatt™ = 2, 4, 6, 8 onthe same mesh. The results from these computations are shown in Figure
3. Even though BE-FEM gives very similar results at t* = 2, t* = 4 to those of the paper [18], see
Figure 2, it produces time delay solutions t* = 6 and t* = 8. However, Algorithm 1 catches very well
the flow pattern and temperature distribution as in [18] at all time levels, t* = 2, 4, 6, 8. Hence, the
proposed method dramatically improves the results of BE-FEM for VVT model.

Figure 2. The temperature contours of direct numerical simulaitons for Boussinesq equations,
respectivelty, at t* =2, 4,6, 8
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Figure 3. The temperature contours of our model and of BE-FEM for VVT-model, respectively, at
t*=2,4,6,8

5. CONCLUSIONS

In this paper, we proposed, analyzed and tested a numerical method for VVT model of the Boussinesq
equations. The method combines the standard BE-FEM with three modular second order linear time
filters, one each for the velocity, the temperature and the vorticity. Since these filter steps are
implemented as completely decoupled steps, the method requires only three lines of code into the
standard BE-FE code at each time step. Eliminating intermediate steps leads to an equivalent method
which is second order, A-stable. It was proven that approximate solutions are unconditionally stable in
time, and possess optimal convergence rates. The numerical experiments presented here verify
theoretical convergence rates, and reveal the superiority of the method over the standard BE-FEM of
the VVT model on a benchmark problem, named Marsigli’s experiment.
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