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Abstract 

We have examined the approximate 𝑙𝑁−1-state solutions of the N-dimensional Schrödinger 

equation for a particle interacting with the Hellmann plus Kratzer potential. In 

hyperspherical coordinate system, we have constructed the bound state energy equation and 

the wavefunctions expressed by the hypergeometric function via the asymptotic iteration 

approach in detail. When considered the special cases of parameters in Hellmann plus 

Kratzer potential, this potential turns into several potential models. In this connection, the 

non-relativistic energy spectra for the modified Kratzer, Yukawa, Coulomb and Hellmann 

potentials in approximate analytic form have been obtained in hyperspherical coordinates. 

We have presented the numerical energy eigenvalues for the Hellmann, Yukawa and 

Coulomb potentials in  𝑁 = 3 dimensions. Our present results provide an appropriate test of 

the accuracy of asymptotic iteration formalism. 
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1. INTRODUCTION 

 

The interaction of quantum systems with the spherically symmetric fields have been attracted the attention 

of researchers since the dawn of quantum mechanics. The solutions of the N-dimensional Schrödinger 

equation for central potentials including centrifugal term are also of great interest. In establishing solutions 

for the exponential types-potential models, we have to use some approximations such as Greene-Aldrich, 

Pekeris. Our work address the problem of the construction of the N-dimensional rovibrational energy 

spectrum and radial wave functions for Hellmann plus Kratzer potential in the presence of Greene-Aldrich 

approximation scheme [1]. The solution methodology considered in this paper is based on asymptotic 

iteration method(AIM) proposed by Ciftci et al. [2-4]. 

 

Hyperspherical coordinate system is considerably useful for analyzing the quantum mechanical problem. 

In this connection, non-relativistic aspect of the N-dimensional bound state solutions for Hellmann plus 

Kratzer potential model has been reviewed in this present work. It should be mentioned that mathematical 

tools have been examined by Louck and Shaffer [5], Louck [6,7] and Chatterjee [8] to generalize the orbital 

angular momentum. In hyperspherical coordinates, Hellmann plus Kratzer potential can be expressed as 

       

𝑉𝑁(𝑟) = −
𝑉0

𝑟
+

𝑉1

𝑟
𝑒−𝛿𝑟 + 𝐷𝑒 (

𝑟−𝑟𝑒

𝑟
)

2
                                                                                                   (1) 
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where  𝑉0 and  𝑉1 are the strength of the potential, 𝛿 is the potential parameter, 𝑟𝑒 and  𝐷𝑒 are the equilibrium 

intermolecular seperation, dissociation energy, respectively. In Equation (1), if we consider the potential 

parameters as follows 

 

  𝐷𝑒 = 0, the potential turns to Hellmann potential, 

  𝑉0 = 0 and 𝑉1 = 0, it will reduce to the modified Kratzer potential, 

  𝐷𝑒 = 0 and 𝑉0 = 0, Equation (1) transforms to Yukawa potential, 

  𝐷𝑒 = 0 and 𝑉1 = 0, this potential becomes Coulomb potential. 

 

Hellmann potential which is a combination of the attractive Coulomb and Yukawa potentials is used to 

analyze the systemization of energyeigenvalues. This potential with 𝑉1 > 0  was firstly introduced by 

Hellmann[9-10] and then has been used to study for the case of positive and negative 𝑉1. Kratzer potential 

was proposed by Kratzer[11] in 1920 because of its importance in the description of molecular structures 

and interactions of diatomic molecules model. Subsequently, this potential has played a vital role in the 

realm of molecular physics and quantum chemistry. In the framework of non-relativistic and relativistic 

theory, extensive research has been carried out on Hellmann potential and Kratzer potential in literature[12-

15]. We present the graphical perspective of the Hellmann plus Kratzer potential with Matlab software. By 

considering  𝑉0 = 4, 𝑉1 = ±15, 𝐷𝑒 = 6, 𝑟𝑒 = 1.65, we have plotted the 3D graphics for Hellmann and 

Hellmann plus Kratzer potential. We remark that the effects of the existence and absence of the modified 

Kratzer potential have been investigated in Figures 1 and 2. In Figures1 and 2, the distance r and the 

parameter 𝛿 are in the range of 0.1-6, 0.1-0.5, respectively. In the case of  𝑉1 < 0, the effect of the 

modified Kratzer potential clearly have been observed in Figure 1(b). However, in Figure 2, the surface 

plots of Hellmann potential and Hellmann plus Kratzer potential have similar behaviour because the value 

of 𝑉1 has positive. 

 

 

 
Figure 1. In the case of  𝑉1 < 0 , the surface plots of (a) Hellmann potential and (b) Hellmann plus 

Kratzer potential as a function of  𝛿  and  𝑟 

 

 

In spherical coordinates, various forms of the potential given in Equation (1) have been examined by using 

different approaches such as the perturbation, variatonal, parametric NU and AIM[14-23]. On the other 

hand, by applying the orthogonal polynomial solution method[24], AIM[25], NU[26], researchers have 

studied the N-dimensional solutions of Schrödinger equation under Coulomb, the modified Kratzer 

potential which are the the special cases of  Hellmann plus Kratzer potential. To our knowledge, the 

asymptotic iteration formalism has not been applied to solve the N-dimensional Schrödinger equation with 

the Hellmann plus Kratzer potential. In this context, we focus on the approximate analytic solutions of this 
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potential in hyperspherical coordinates through the asymptotic iteration approach. This approach of solution 

is based on solving the second-order homogeneous linear differential equations. AIM is an alternative 

solution method because it is systematic and efficient. 

 

The main pillars of our work is as follows. Section 2 is devoted to the general view of asymptotic iteration 

method. In Section 3, we present the N-dimensional solutions of the Schrödinger particle interacting with 

the Hellmann plus Kratzer potential within the framework of Greene-Aldrich approximation and AIM. In 

Section 4, by considering different cases of the potential parameters, we introduce the energy equations for 

the special forms of this potential in hyperspherical coordinates. Besides, numerical results for energy 

spectra generated by Hellmann, Yukawa and Coulomb potentials are presented. Afterall, Section 5 contains 

the concluding remarks. 

 

 
Figure 2. In the case of  𝑉1 > 0 , the surface plots of (a) Hellmann potential and (b) Hellmann plus 

Kratzer potential as a function of  𝛿  and  𝑟 

 

 

2. APPROXIMATE BOUND STATE SOLUTIONS FOR THE HELLMANN PLUS KRATZER 

POTENTIAL 

 

The motion of a particle in the spherically symmetric potential field in N-dimensions is described within 

the framework of non-relativistic formalism as follows  

      

[−
ℏ2

2𝜇
∇𝑁

2 + 𝑉𝑁(𝑟)] 𝜓(𝑟) = 𝐸𝜓(𝑟)                                                                                                              (2) 

                                                                                                        

where 𝐸 and 𝜇 are non-relativistic energy and reduced mass, 𝑉𝑁(𝑟) is the N-dimensional central potential, 

ℏ is Planck constant.  

 

The Laplacian in N-dimensions is defined with respect to Cartesian coordinates 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑁 as 

       

∇𝑁
2 = ∑

𝜕2

𝜕𝑥𝑗
2

𝑁
𝑗=1  .                                                                                       (3) 

                                                                                                                                       

To begin with, we need to present the hyperspherical coordinates in N-dimensional space based on 

Louck[6] and Chatterjee’s works[8] as follows 
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𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2 sin 𝜃3 … sin 𝜃𝑁−1 

𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2 sin 𝜃3 … sin 𝜃𝑁−1 

𝑥3 = 𝑟 cos 𝜃2 sin 𝜃3 sin 𝜃4 … sin 𝜃𝑁−1 

𝑥4 = 𝑟 cos 𝜃3 sin 𝜃4 sin 𝜃5 … sin 𝜃𝑁−1 

   ⋮ 

𝑥𝑗 = 𝑟 cos 𝜃𝑗−1 sin 𝜃𝑗 sin 𝜃𝑗+1 … sin 𝜃𝑁−1,          3 ≤ 𝑗 ≤ 𝑁 − 1                                                                (4) 

𝑥𝑁 = 𝑟 cos 𝜃𝑁−1 

for  N=3,4,5… where the range of variable  is 0 ≤ 𝑟 ≤ ∞ , 0 ≤ 𝜃1 ≤ 2𝜋 , 0 ≤ 𝜃𝑗 ≤ 𝜋  for  𝑗 = 2, 3, … 𝑁 −

1 and r  is the radius of an N-dimensional sphere. In connection with the hyperspherical coordinates, the 

Laplacian has the form    

∇𝑁
2 =

1

𝑟𝑁−1

𝜕

𝜕𝑟
𝑟𝑁−1 𝜕

𝜕𝑟
+

1

𝑟2
∑

1

𝑠𝑖𝑛2𝜃𝑘+1𝑠𝑖𝑛2𝜃𝑘+2…𝑠𝑖𝑛2𝜃𝑁−1

𝑁−2
𝑘=1 (

1

𝑠𝑖𝑛𝑘−1𝜃𝑘

𝜕

𝜕𝑘
𝑠𝑖𝑛𝑘−1𝜃𝑘

𝜕

𝜕𝜃𝑘
)   

   

+
1

𝑟2 (
1

𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
) .                                                                                                (5)   

                                                                                                                                                  

By taking the hyperspherical total wavefunction as   

 

𝜓(𝑟, 𝜃1, 𝜃2, … , 𝜃𝑁−1) = 𝑟− 
𝑁−1

2 𝑅(𝑟)𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1)                          (6) 

                                                    

in which 𝑅(𝑟) and 𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1)  are the radial wavefunction, the generalized spherical 

harmonics, respectively and employing the way of separating variables, we obtain the non-relativistic wave 

equation in hyperspherical coordinates for the function  𝑅(𝑟) 

       
𝑑2𝑅(𝑟)

𝑑𝑟2 + [
2𝜇

ℏ2
(𝐸 − 𝑉(𝑟)) −

(𝑁−1)(𝑁−3)

4𝑟2 −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑅(𝑟) = 0.                   (7) 

                                                    

The eigenvalue equation of the generalized angular momentum operator is also given by 

    

𝐿𝑁−1
2 𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1

(𝜃1, 𝜃2, … 𝜃𝑁−1) = 

 

𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)ℏ2𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1).                                             (8) 

                           

It should be mentioned that the more detailed information about the generalized angular momentum 

operators can be found in [6,8]. 

 

2.1. N-dimensional Energy Spectrum In Approximate Analytic Form    
   

We now examine solutions of the radial Schrödinger equation with the Hellmann plus Kratzer potential in 

N-dimensions by means of the asymptotic iteration method. First of all, when we substitute Equation (1) 

into Equation (7), we obtain the radial Schrödinger equation for the Hellmann plus Kratzer potential in 

hyperspherical coordinates as 

 

𝑑2𝑅(𝑟)

𝑑𝑟2 + [
2𝜇

ℏ2 (𝐸 +
𝑉0

𝑟
−

𝑉1

𝑟
𝑒−𝛿𝑟 − 𝐷𝑒 (

𝑟−𝑟𝑒

𝑟
)

2
) −

(𝑁−1)(𝑁−3)

4𝑟2 −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑅(𝑟) = 0.            (9) 
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Equation (9) cannot be solved analytically for any 𝒍𝑵−𝟏-state on account of the presence of the centrifugal 

term. For this reason, an approximation has to be used in order to solve this equation. Proposed by Greene 

and Aldrich [1], an approximation scheme which is a good approximation to centrifugal term in short range 

potential as pointed out in [27] is written as follows 

1

𝑟2 ≈
𝛿2

(1−𝑒−𝛿𝑟)2                                            (10) 

 

which is valid for  𝛿 ≪ 1. If we apply this approximation and transformation  𝑦 = 𝑒−𝛿𝑟  to Equation (9), 

we rewrite the hyperradial wave equation in non-relativistic theory 

𝑑2𝑅(𝑦)

𝑑𝑦2 +
1

𝑦

𝑑𝑅(𝑦)

𝑑𝑦
+ [−

𝜀2

𝑦2 +
𝛾+𝜈

𝑦2(1−𝑦)
+

Λ

𝑦(1−𝑦)
−

𝜂

𝑦2(1−𝑦)2] 𝑅(𝑦) = 0 (11) 

                                                                 

where 

      

−𝜀2 =
2𝜇

ℏ2
(𝐸 − 𝐷𝑒),𝜅 = 𝑙𝑁−1 +

𝑁−3

2
,𝛾 =

4𝜇𝐷𝑒𝑟𝑒

ℏ2𝛿
 

        

Λ = −
2𝜇𝑉1

ℏ2𝛿
,𝜈 =

2𝜇𝑉0

ℏ2𝛿
,𝜂 =

2𝜇𝐷𝑒𝑟𝑒
2

ℏ2 + 𝜅(𝜅 + 1). (12) 

                                                                                     

To solve Equation (11) via asymptotic iteration approach, the following acceptable physical wavefunction 

is proposed  

   

𝑅(𝑦) = (1 − 𝑦)𝜌+1𝑦𝛽𝑓(𝑦) (13) 

                                                                                                                

where 𝑓(𝑦) is a function to be determined,  𝜌  and 𝛽  are defined as 

       

𝜌 = −
1

2
+

1

2
(1 + 4𝜂)

1

2,𝛽 = (𝜀2 − (𝛾 + 𝜈) + 𝜂)
1

2.                  (14) 

                                                                          

If this proposed wavefunction is substituted into Equation (11), the following second-order homogenous 

linear differential equation is obtained  

      
𝑑2𝑓(𝑦)

𝑑𝑦2 = [
(2𝛽+2𝜌+3)𝑦−(2𝛽+1)

𝑦(1−𝑦)
]

𝑑𝑓(𝑦)

𝑑𝑦
+ [

(1+𝜌)(2𝛽+1)+(2𝜂−(𝛾+𝜈))−Λ

𝑦(1−𝑦)
] 𝑓(𝑦)   (15) 

                                            

which is easily handled to AIM solutions. As well known, Equation (15) is called the hypergeometric 

differential equation. By employing functional analysis method, we can probe the solutions of this 

differential equation. However, the solution methodology considered in our study is based on the 

asymptotic iteration approach. 

If Equation (2) is taken into consideration, the expressions of  𝜆0 and  𝑠0  are determined. With Equation 

(A.4), it is then easy to obtain the values of  𝜆𝑛(𝑦)  and  𝑠𝑛(𝑦) in the following forms 

     

𝜆0 =
(2𝛽+2𝜌+3)𝑦−(2𝛽+1)

𝑦(1−𝑦)
  

      

𝑠0 =
(1+𝜌)(2𝛽+1)+(2𝜂−(𝛾+𝜈))−Λ

𝑦(1−𝑦)
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𝜆1 =
2𝜌+2𝛽+3

𝑦(1−𝑦)
−

(2𝜌+2𝛽+3)𝑦−(2𝛽+1)

𝑦2(1−𝑦)
+

(2𝜌+2𝛽+3)𝑦−(2𝛽+1)

𝑦(1−𝑦)2                

+
(1+𝜌)(2𝛽+1)+2𝜂−(𝛽+𝜈)−Λ

𝑦(1−𝑦)
+

((2𝜌+2𝛽+3)𝑦−(2𝛽+1))
2

𝑦2(1−𝑦)2   

      

 𝑠1 =
(1+𝜌)(2𝛽+1)+(2𝜂−(𝛾+𝜈))−Λ

𝑦2(1−𝑦)
+

(1+𝜌)(2𝛽+1)+(2𝜂−(𝛾+𝜈))−Λ

𝑦(1−𝑦)2   

                 

+
((1+𝜌)(2𝛽+1)+(2𝜂−(𝛾+𝜈))−Λ)((2𝛽+2𝜌+3)𝑦−(2𝛽+1))

𝑦2(1−𝑦)2   

           

⋮                                                   (16) 

                                                                                                                                                          

In order to calculate the radial energy eigenvalues in hyperspherical coordinates, the termination condition 

given by Equation (A.3) is used. Hence, these energy eigenvalues are obtained as follows  

      
𝑠0

𝜆0
=

𝑠1

𝜆1
 ⇒ Λ0 = 2𝛽𝜌 + 2𝛽 + 1 + 𝜌 + 2𝜂 − (𝛾 + 𝜈) 

      
𝑠1

𝜆1
=

𝑠2

𝜆2
 ⇒ Λ1 = 2𝛽𝜌 + 4𝛽 + 4 + 3𝜌 + 2𝜂 − (𝛾 + 𝜈) 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
 ⇒ Λ2 = 2𝛽𝜌 + 6𝛽 + 9 + 5𝜌 + 2𝜂 − (𝛾 + 𝜈) 

                      
⋮                                                                                                                                                                                                     (17) 

                                                                                         

When the above expressions are generalized, the eigenvalues turn out as 

    

Λ𝑛 = 2𝛽(𝜌 + 𝑛 + 1) + (2𝑛 + 1)𝜌 + (𝑛 + 1)2 + 2𝜂 − (𝛾 + 𝜈), 𝑛 = 0,1,2, …  (18) 

                            

If we substitute the used abbrevations into Equation (18), we obtain the rovibrational energy spectrum for 

the Hellmann plus Kratzer potential in hyperspherical coordinates  

      

𝐸𝑛𝑙𝑁−1
= 𝐷𝑒 +

ℏ2𝛿2

2𝜇
[

(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

4
+

2𝜇𝐷𝑒𝑟𝑒
2

ℏ2 −
2𝜇(𝑉0+2𝐷𝑒𝑟𝑒)

ℏ2𝛿
]  

                  

−
ℏ2𝛿2

2𝜇
[

4𝜇𝐷𝑒𝑟𝑒+2𝜇(𝑉0−𝑉1)

ℏ2𝛿
−

4𝜇𝐷𝑒𝑟𝑒
2

ℏ2 −
(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

2
−(𝑛+1)2−(𝑛+

1

2
)(−1+√1+

8𝜇𝐷𝑒𝑟𝑒
2

ℏ2 +(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1))

2𝑛+1+√1+
8𝜇𝐷𝑒𝑟𝑒

2

ℏ2 +(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

]

2

.  (19) 

            

In spherical coordinates, this energy spectrum coincides with the one obtained previously in [23].  

2.2. N-dimensional Wavefunctions 

In this section, we establish the N-dimensional wavefunctions related with the rovibrational energy 

eigenvalues found in the foregoing part. The corresponding eigenfunctions of the hyperradial Schrödinger 

equation with Hellmann plus Kratzer potential can be derived from the wavefunction generator given by 

Equation (A.6) 
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𝑓0(𝑦) = 𝐶2 = 𝐶2 12 F (0, 2𝜌 + 2𝛽 + 2, 2𝛽 + 1, 𝑦 )               

𝑓1(𝑦) = −𝐶2[2𝛽 + 1 − (2𝜌 + 2𝛽 + 3)𝑦] 

= −𝐶2(2𝛽 + 1)
12 F (−1, 2𝜌 + 2𝛽 + 3, 2𝛽 + 1, 𝑦 ) 

 

 

𝑓2(𝑦) = 𝐶2[(2𝛽 + 1)(2𝛽 + 2) − 2(2𝜌 + 2𝛽 + 4)(2𝛽 + 2)𝑦 + (2𝜌 + 2𝛽 + 4)(2𝜌 + 2𝛽 + 5)𝑦2] 

= 𝐶2(2𝛽 + 1)(2𝛽 + 2)
12 F (−2, 2𝜌 + 2𝛽 + 4, 2𝛽 + 1, 𝑦 ) 

𝑓3(𝑦) = −𝐶2[(2𝛽 + 1)(2𝛽 + 2)(2𝛽 + 3) − 3(2𝜌 + 2𝛽 + 5)(2𝛽 + 3)(2𝛽 + 2)𝑦 
3(2𝜌 + 2𝛽 + 6)(2𝜌 + 2𝛽 + 5)(2𝛽 + 3)𝑦2 − (2𝜌 + 2𝛽 + 7)(2𝜌 + 2𝛽 + 6)(2𝜌 + 2𝛽 + 5)𝑦3] 

= −𝐶2(2𝛽 + 1)(2𝛽 + 2)(2𝛽 + 3)
12 F (−3, 2𝜌 + 2𝛽 + 5, 2𝛽 + 1, 𝑦) 

⋮                                (20) 
                                                                                                                                                                           
According to these results, the wavefunction 𝑓(𝑦) can be generalized given below 

    

𝑓𝑛(𝑦) = 𝐶2(2𝛽 + 1)𝑛(−1)𝑛
12 F (−𝑛, 2𝜌 + 2𝛽 + 2 + 𝑛, 2𝛽 + 1, 𝑦)                                                                                               (21) 

                                                       

in which 12 F  represents the Gauss hypergeometric function being defined as 

12 F (−𝑛, 𝑏, 𝑐, 𝑥) = ∑
(−𝑛)𝑘(𝑏)𝑘𝑥𝑘

(𝑐)𝑘𝑘!
𝑛
𝑘=0   ,          

                                                                                               

the Pochhammer symbol (𝛼)𝑘  is defined by  (𝛼)0 = 1 and  (𝛼)𝑘 = 𝛼(𝛼 + 1)(𝛼 + 2) … (𝛼 + 𝑘 − 1) =
Γ(𝛼+𝑘)

Γ(𝛼)
   for  𝑘 = 1,2,3 … Hence, the unnormalized hyperradial wavefunction for the Hellmann plus Kratzer 

potential is 

      

𝑅(𝑦) =  (1 − 𝑦)𝜌+1𝑦𝛽𝐶2(2𝛽 + 1)𝑛(−1)𝑛
12 F (−𝑛, 2𝜌 + 2𝛽 + 2 + 𝑛, 2𝛽 + 1, 𝑦 )                                  (22) 

in which 𝐶2 denotes the integration constant that can be built by normalization condition. Then, when we 

substitute 𝑦 = 𝑒−𝛿𝑟 into Equation (22) and we use the relation between the hypergeometric function and 

the Jacobi polynomials [28], we obtain in the following form 

       

𝑅(𝑟) = 𝐶2 (1 − 𝑒−𝛿𝑟)𝜌+1𝑒−𝛿𝛽𝑟𝑛! 𝑃𝑛
(2𝛽,2𝜌+1)

(1 − 2𝑒−𝛿𝑟).   (23) 

                                                              

In order to find out this constant, we also benefit from the following two integrals [28] 

∫ (1 − 𝑥)𝛼−1(1 + 𝑥)𝛽1

−1
[𝑃𝑛

(𝛼,𝛽)
(𝑥)]

2
𝑑𝑥 = 2𝛼+𝛽 Γ(𝑛+α+1)Γ(𝑛+β+1)

𝑛!𝛼Γ(𝑛+𝛼+𝛽+1)
     

∫ (1 − 𝑥)𝛼(1 + 𝑥)𝛽1

−1
[𝑃𝑛

(𝛼,𝛽)
(𝑥)]

2
𝑑𝑥 = 2𝛼+𝛽+1 Γ(𝑛+α+1)Γ(𝑛+β+1)

𝑛!Γ(𝑛+𝛼+𝛽+1)(2𝑛+𝛼+𝛽+1)
  

and the normalized radial wavefunction for Hellmann plus Kratzer potential is determined as 

      

𝑅(𝑟) =  (1 − 𝑒−𝛿𝑟)𝜌+1𝑒−𝛿𝛽𝑟 [
2𝛽(𝑛+𝜌+𝛽+1)𝑛!Γ(2𝜌+2𝛽+2+𝑛)𝛿

(𝑛+𝜌+1)Γ(2𝜌+2+𝑛)Γ(2𝛽+1+𝑛)
]

1/2
  

                      

× 𝑃𝑛
(2𝛽,2𝜌+1)

(1 − 2𝑒−𝛿𝑟).   (24) 
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For 𝑁 = 3, this hyperradial wavefunction consistents with the one investigated by Edet et al.[23] using 

Nikiforov-Uvarov method. 

 

3.  SPECIAL CASES OF HELLMANN PLUS KRATZER POTENTIAL  

3.1. Hellmann Potential  

In the case of 𝐷𝑒 = 0, the potential given in Equation (1) has the form 

      

𝑉𝑁(𝑟) = −
𝑉0

𝑟
+

𝑉1

𝑟
𝑒−𝛿𝑟.     (25) 

                                                                                                                       

In this limit, we can find the N-dimensional rovibrational energy spectrum for Hellmann potential 

determined from Equation (19) as follows 

      

𝐸𝑛𝑙𝑁−1
=

ℏ2𝛿2

2𝜇
[

(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

4
−

2𝜇𝑉0

ℏ2𝛿
]  

             

−
ℏ2𝛿2

2𝜇
[

2𝜇(𝑉0−𝑉1)

ℏ2𝛿
− 

(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

2
−(𝑛+1)2−(𝑛+

1

2
)(−1+√1+(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1))

2𝑛+2𝑙𝑁−1+𝑁−1
]

2

. (26) 

                           

For 𝑁 = 3, we point out that Equation (26) transforms to the non-relativistic energy spectrum for Hellmann 

potential in three dimensions obtained by Hamzavi et al.[14]. 

 

3.2. The Modified Kratzer Potential  

When the screening parameter(𝛿) goes to zero and also 𝑉0 = 0, 𝑉1 = 0, Hellmann plus Kratzer potential 

turns to the modified Kratzer potential in the following form 

       

𝑉𝑁(𝑟) = 𝐷𝑒 (
𝑟−𝑟𝑒

𝑟
)

2
                 (27) 

 

and the energy equation which is given in Equation (19) becomes the energy spectrum for the modified 

Kratzer potential in hyperspherical coordinates as follows  
      

𝐸𝑛𝑙𝑁−1
= 𝐷𝑒 −

8𝜇𝐷𝑒
2𝑟𝑒

2

(2𝑛+1+√1+
8𝜇𝐷𝑒𝑟𝑒

2

ℏ2 +(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1))

2.                                                                          (28) 

We report that this non-relativistic energy spectrum agrees with the result of [25].  

 

 

3.3. Yukawa Potential  

If the parameters 𝐷𝑒 and  𝑉0 equal to zero, Equation (1) transforms to Yukawa potential in N-dimensions 

which is defined as 

     

𝑉𝑁(𝑟) =
𝑉1

𝑟
𝑒−𝛿𝑟                                         (29) 
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and so we can obtain the N-dimensional energy spectrum for quantum systems with Yukawa potential in 

the non-relativistic theory  

      

𝐸𝑛𝑙𝑁−1
=

ℏ
2

𝛿
2

2𝜇
[

(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

4
]  

             

−
ℏ2𝛿2

2𝜇
[

−2𝜇𝑉1
ℏ2𝛿

− 
(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

2
−(𝑛+1)2−(𝑛+

1

2
)(−1+√1+(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1))

2𝑛+2𝑙𝑁−1+𝑁−1
]

2

.      (30) 

 

In spherical coordinates, the non-relativistic energy spectrum reported for Yukawa potential is in agreement 

with the [29]. 
 

3.4. Coulomb Potential  

 

By setting 𝐷𝑒 = 0 and  𝑉1 = 0 in Equation (1), we can express Coulomb potential as follows 

      

𝑉𝑁(𝑟) = −
𝑉0

𝑟
                                                                                                                                             (31) 

                                  

and the rovibrational energy spectrum for Coulomb potential can be written in the hyperspherical 

coordinates 

 

      

𝐸𝑛𝑙𝑁−1
=

ℏ2𝛿2

2𝜇
[

(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

4
−

2𝜇𝑉0

ℏ2𝛿
]  

               

−
ℏ2𝛿2

2𝜇
[

2𝜇𝑉0
ℏ2𝛿

− 
(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1)

2
 −(𝑛+1)2−(𝑛+

1

2
)(−1+√1+(2𝑙𝑁−1+𝑁−3)(2𝑙𝑁−1+𝑁−1))

2𝑛+2𝑙𝑁−1+𝑁−1
]

2

. (32) 

                               

In three dimensions, this energy equation matches with the ones studied in [29]. On the other hand, if the 

screening parameter approaches zero (𝛿 → 0) and also 𝐷𝑒 = 0,  𝑉1 = 0, Equation (32) transforms to the 

energy spectrum obtained by Dong et al.[24] irrespective of  𝑙𝑁−1. 

 

  Table 1. Comparison of energy eigenvalues (𝐸𝑛,𝑙) for Hellmann potential in 𝑁 = 3 dimensional system  

States 
𝑉0 = 2 

𝛿 

𝑉1 = −1 

AIM 

 
NU[14] 

 
AP[14] 

1s  0.001 -2.250500 -2.24900 -2.248981 

  0.005 -2.252506 -2.24501 -2.244993 

  0.010 -2.255025 -2.24005 -2.240030 

2s  0.001 -0.563001 -0.561502 -0.561502 

  0.005 -0.565025 -0.557550 -0.557549 

  0.010 -0.567600 -0.552697 -0.552697 

2p  0.001 -0.562250 -0.561502 -0.561502 

  0.005 -0.561256 -0.557541 -0.557541 

  0.010 -0.560025 -0.552664 -0.552664 

3s  0.001 -0.250502 -0.249004 -0.249004 
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So as to exhibit the accuracy of the asymptotic iteration method, we compute the non-relativistic energy 

eigenvalues in three dimensional space for various quantum numbers with the different values of 𝛿. In these 

calculations, ℏ = 2𝜇 = 1 are taken. The calculated results are presented in Tables 1-3. It is seen that our 

results provide a good agreement with those obtained by using the Nikifirov-Uvarov(NU) and amplitude-

phase(AP) method. 

 

   Table 2. Comparison of energy eigenvalues (𝐸𝑛,𝑙) for Yukawa potential in 𝑁 = 3 dimensional system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Table 3. Comparison of energy eigenvalues (𝐸𝑛,𝑙) for Coulomb potential in 𝑁 = 3 dimensional system 

  0.005 -0.252556 -0.245111 -0.245110 

  0.010 -0.255225 -0.240435 -0.240435 

3p  0.001 -0.250168 -0.249004 -0.249004 

  0.005 -0.250867 -0.245103 -0.245102 

  0.010 -0.251802 -0.240404 -0.240404 

States 𝑉0 = 0 
𝛿 

𝑉1 = −3 
AIM 

 
NU[14]   

 
AP[14] 

1s  0.001 -2.248500 -2.248500 -2.247001 

  0.005 -2.242506 -2.242506 -2.235037 

  0.010 -2.235025 -2.235025 -2.220149 

2s  0.001 -0.561001 -0.561001 -0.559506 

  0.005 -0.555025 -0.555025 -0.547649 

  0.010 -0.547600 -0.547600 -0.533091 

2p  0.001 -0.560250 -0.560250 -0.559505 

  0.005 -0.551256 -0.551256 -0.547624 

  0.010 -0.540025 -0.540025 -0.532993 

3s  0.001 -0.248502 -0.248502 -0.247013 

  0.005 -0.242556 -0.242556 -0.235332 

  0.010 -0.235225 -0.235225 -0.221306 

3p  0.001 -0.248168 -0.248168 -0.247012 

  0.005 -0.240867 -0.240867 -0.235308 

  0.010 -0.231802 -0.231803 -0.221212 

States 𝑉0 = 3 
𝛿 

𝑉1 = 0 
AIM 

 
NU[14]   

 
AP[14] 

1s  0.001 -2.251500 -2.251500 -2.250000 

  0.005 -2.257506 -2.257506 -2.250000 

  0.010 -2.265025 -2.265025 -2.250000 

2s  0.001 -0.564001 -0.564001 -0.562500 

  0.005 -0.570025 -0.570025 -0.562500 

  0.010 -0.577600 -0.577600 -0.562500 

2p  0.001 -0.563250 -0.563250 -0.562500 

  0.005 -0.566256 -0.566256 -0.562500 
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4. CONCLUSION  

In this work, the problem of solving the N-dimensional Schrödinger equation with Hellmann plus Kratzer 

potential for any 𝑙𝑁−1-state have been studied from the point of view the asymptotic iteration formalism. 

To achieve this, we have applied a proper approximation scheme which is called the Greene-Aldrich 

approximation. Thus, the approximate analytic expressions for the energy eigenvalues and the 

corresponding wavefunctions of quantum system with Hellmann plus Kratzer potential have been built in 

hyperspherical coordinates. In addition, for the special cases of the potential parameters, we have also found 

the energy spectra for Hellmann, the modified Kratzer, Yukawa, Coulomb potentials in hyperspherical 

coordinates. We have computed the numerical energy eigenvalues for Hellmann, Yukawa, Coulomb 

potentials in 𝑁 = 3 dimensional systems. The results obtained within the framework of asymptotic iteration 

approach consistent with the other methods in literature. 

We highlight that asymptotic iteration formalism is a robust computational method to obtain the 

approximate solutions of the N-dimensional non-relativistic wave equation for a particle in central potential 

field. It should be emphasized that these N-dimensional results allow us to the comprehension of a general 

treatment of this problem. Moreover, we can also obtain directly the energy equations in two and three 

dimensions from the N-dimensional results for the system.  
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APPENDIX: FORMULATION OF THE ASYMPTOTIC ITERATION APPROACH 

 

Asymptotic iteration method is capable of solving second-order homogeneous linear differential equations 

of the form 

       

𝑦′′(𝑟) = 𝜆0(𝑟)𝑦′(𝑟) + 𝑠0(𝑟)𝑦(𝑟)                                                                                                          (A.1) 

                                                                                                                                                                                                                                                                                                               

in which  𝜆0(𝑟)  and  𝑠0(𝑟)  functions in 𝐶∞(𝑎, 𝑏) are sufficiently differentiable. The general solution of 

Equation (A.1) can be obtained in the following form 

     

𝑦(𝑟) = exp (− rdr
r

 )( ) [𝐶2 + 𝐶1   rdd
rr






 



 )(2)(exp 0 ].        (A.2) 

 

For sufficiently large k,    

      
𝑠𝑘(𝑟)

𝜆𝑘(𝑟)
=

𝑠𝑘−1(𝑟)

𝜆𝑘−1(𝑟)
= 𝛼(𝑟)  (A.3) 

 

in which  

       

𝜆𝑘(𝑟) = 𝜆𝑘−1
′ (𝑟) + 𝑠𝑘−1(𝑟) + 𝜆0(𝑟)𝜆𝑘−1(𝑟) 

𝑠𝑘(𝑟) = 𝑠𝑘−1
′ (𝑟) + 𝑠0(𝑟)𝜆𝑘−1(𝑟).                                                (A.4) 

                                                                                                   

If the eigenvalue problem has exact analytical solutions, the termination condition Equation (A.3), or  

equivalently 
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𝛿𝑘(𝑟) = 𝜆𝑘(𝑟)𝑠𝑘−1(𝑟) − 𝜆𝑘−1(𝑟)𝑠𝑘(𝑟) = 0 (A.5) 

                                                                                   

produces, at each iteration, an expression that is independent of r. It is note that k  displays the iteration 

number. Physically meaningful solution of Equation (A.1) is provided by the first term of Equation (A.2) 

not the second term, so we can use the first term as the wavefunction generator 

            

𝑦(𝑟) = 𝐶2𝑒𝑥𝑝 (−∫
𝑟 𝑠𝑘(𝑟′)

𝜆𝑘(𝑟′)
𝑑𝑟′)  (A.6) 

                                                                                                 

in which  𝐶2 denotes the integrant constant which can be determined by normalization. It should be 

mentioned that the details concerning this method can be found in [2-4]. 

 


