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ABSTRACT

Inspiring from Thurston’s asymmetric metric on Teichmüller spaces, we define and study a natural
(weak) metric on the Teichmüller space of the torus. We prove that this weak metric is indeed
a metric: it separates points and it is symmetric. Our main strategy to do this is to compute the
metric explicitly. We relate this metric with the hyperbolic metric on the upper half-plane. We
define another metric which measures how much length of a closed geodesic changes when we
deform a flat structure on the torus. We show that these two metrics coincide.
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1. Introduction

Teichmüller space of a surface of finite type is homeomorphic to a Euclidean space of appropriate dimension.
It parametrizes several important structures on the surface such as conformal structures and hyperbolic
structures. There are numerous metrics on Teichmüller spaces. Among them, we can count Teichmüller’s
metric, the Weil-Peterson metric, Thurston’s asymmetric metric, the Caretheodary, the Kobayashi and the
Bergman metrics.

Let Sg,p be a surface of genus g with p punctures. Take two conformal structures g and h on this surface. Let
Q be the set of all quasiconformal homeomorphisms

f : (Sg,p, g)→ (Sg,p, h)

that are isotopic to the identity map. Let K(f) be the quasiconformal dilatation of f . Then

τ(g, h) =
1

2
inf
f∈Q

logK(f)

is called Taichmüller’s metric. Let us denote the Teichmüller spce of Sg,p by T(Sg,p). It is known that
Teichmüller’s metric is a complete Finsler metric.

One can also consider T(Sg,p) as the set of equivalence classes of complete hyperbolic metrics on Sg,p which
have finite area if χ(Sg,p) < 0, where χ(Sg,p) is is the Euler characteristic of Sg,p. Let Diff0(Sg,p) be the group of
diffeomorphisms of Sg,p which are isotopic to the identity map. Now fix two hyperbolic metrics g1 and g2 on
Sg,p. If f ∈ Diff0(Sg,p), we set

K ′(f) = sup
x∈Sg,p

(
sup{‖dfx(u)‖ : u ∈ TxSg,p, ‖u‖ = 1}
inf{‖dfx(u)‖ : u ∈ TxSg,p, ‖u‖ = 1}

)
where dfx is the differential of f and the norm of dfx(u) and u are measured with respect to g2 and g1,
respectively. In that case, Teichmüller’s metric is given by
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τ(g1, g2) =
1

2
inf{logK ′(f) : f ∈ Diff0(Sg,p)}.

Thurston’s asymmetric metric was introduced by Thurston in [6]. Thurston considered Teichmüller space of
a surface of finite type as the set of isotopy classes of complete finite-area hyperbolic structures on the surface.
Let f ∈ Diff0(Sg,p) and g and h be two such hyperbolic structures. We define the Lipschitz constant of the map
f : (Sg,p, g)→ (Sg,p, h) as

Lip(f) = sup

{
dg2(f(x), f(y))

dg1(x, y)
: x, y ∈ Sg,p, x 6= y

}
Thurston’s asymmetric metric is defined as

λ(g1, g2) = inf{log Lip(f) : f ∈ Diff0(Sg,p)}.

This metric separates the points of the Teichmüller space, that is, if g1 6= g2, then λ(g1, g2) 6= 0. But it is not
symmetric: λ(g1, g2) 6= λ(g2, g1) in general.

Now consider a surface Sg,0 of genus g > 1 with no punctures and a hyperbolic metric g on it. Let α be an
isotopy class of closed curves on Sg and a : [0, 1]→ Sg be a representative for α. Let

lg(α) = inf{
∫ 1

0

√
g(ȧ, ȧ)dt : a ∈ α}.

Let S(Sg,0) be the set of nontrivial isotopy classes of closed curves in Sg,0. Thurston defined another
(asymmetric) distance on T(Sg,0):

κ(g1, g2) = sup
α∈S(Sg,0)

log
lg2(α)

lg1(α)
.

He proved that
λ(g1, g2) = κ(g1, g2).

In the present paper, we define and study a metric on T(T 2), Teichmüller space of the torus, whose definition
is completely analogous to that of the asymmetric metric defined by Thurston. Before stating our results, we
state the results on [1].

In [1], the authors studied Teichmüller space of T 2 as the set of equivalence classes of flat metric on T 2, where
T 2 is a surface of genus 1. Let F(T 2) be the set of flat metrics on T 2. If we scale a flat metric by a positive scalar,
then we get another flat metric. Thus we may define

T(T 2) = F(T 2)/(R∗+ ×Diff0(T 2)).

This means that instead of arbitrary flat structures, one should consider "normalized" flat structures on T 2.
However, there are several ways to normalize a flat structure on T 2. Now we explain the normalization used
by the authors of [1].

A marking of the torus is a group isomorphism ψ : Z2 → Π1(T2). Since Π1(T2) is abelian, there is nothing
to worry about the base point. Given a marked torus, we denote by ε the isotopy class corresponding to the
generator (1, 0) ∈ Z2. In [1], the authors defined T(T 2) as the set of equivalence classes of triples (S, g, ψ) where
S is a closed oriented surface of genus 1, g is a flat metric and ψ is a marking of S such that the length of
any geodesic in the isotopy class of ε is 1. They call two triples (S, g, ψ) and (S′, g′, ψ′) equivalent if there
exists a diffeomorphism f : S → S′ such that f∗g′ = g and f∗(ψ) = ψ′. Briefly, it means taht the normalization
is obtained by scaling any metric so that the length of any geodesic in the isotopy class of ε is equal to 1. After
this normalization, the authors define a weak metric inspiring from Thurston’s asymmetric metric. This metric
is not symmetric and does not separates points. Also, it is not quasi-isometric to Teichmüller’s metric τ on the
Teichmuller space of the torus. But one of its natural symmetrizations is equal to the Teichmüller’s metric.

There is another natural way to normalize a flat structure on T 2 or any compact surface. Simply, we can scale
the metric with a positive scalar so that the area of the resulting surface is equal to 1. In this paper, we use
this normalization to study T(T 2). We define analogues of the distances defined by Thurston. We denote these
metrics by λ and κ. We prove the following results.

• λ and κ coincide on T(T 2).
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• T(T 2) with the metric 2λ is isometric to upper half-plane with the hyperbolic metric dH. In particular,
• λ and κ are symmetric and they separate points.
• The extremal map for λ is induced by an affine map and it coincides with the Teichmüller extremal map

between two flat structures on the torus.
Note that in [3] and [4], the authors considered similar problems. But our approach is significantly
different then their approach. See [5], [7] and [8] for more information about flat metrics on surfaces.

2. Teichmüller space of the torus and the weak metrics λ and κ

In this section, we first give two equivalent definitions of T(T 2). First of all, we define T 2 to be the surface
C/Z + iZ. Let F1(T 2) be the set of unit area flat metrics on T 2. Note that by a flat metric we mean a Riemannian
metric on T 2 with constant curvature equal to 0. The Teichmüller space of T 2 is defined as

T(T 2) = F1(T 2)/Diff0(T 2),

where, as before, Diff0(T 2) is the group of diffeomorphisms of T 2 which are isotopic to the identity map. The
action of Diff0(T 2) on F1(T 2) is given by the pull-back of the metric.

Now we introduce the other definition. Recall that for a surface S of genus 1, a marking of S is a group
isomorphism ψ : Z2 → Π1(S). Consider the set of the tuples (S, g, ψ), where S is a closed surface of genus 1, ψ
is a marking of S and g is a flat metric of unit-area on S. Two triples (S, g, ψ) and (S′, g′, ψ′) are equivalent if
there is an isomorphism f : S → S′ such that f∗g′ = g and f∗ψ = ψ′.

We will define two weak metrics λ and κ on T(T 2). We will then show that λ and κ are metrics. Let us first
define what a weak metric is.

Definition. A weak metric on a set X is a map η : X ×X → R such that for all x, y, z ∈ X the following
properties hold:

1. η(x, x) = 0.

2. η(x, y) ≥ 0.

3. η(x, y) + η(y, z) ≥ η(x, z).

See [2] for more information about weak metrics.
Let g1 and g2 be elements of F1(T 2) and φ be a homeomorphism of T 2 which is to the identity map. We define

Lip(φ) = sup
x6=y

(
dg2(φ(x), φ(y))

dg1(x, y)

)
λ(g1, g2) = inf{log Lip(φ) : φ : T 2 → T 2 is a homeomorphism isotopic to the identity}

We see that λ(g1, g2) is invariant under the action of Diff0(T 2). So

λ : T(T 2)× T(T 2)→ R

is well-defined and it is clear that λ is a weak metric.
Now we define κ. Let g1 and g2 be in F1(T 2).

κ(g1, g2) = sup
α∈S(T 2)

log

(
lg2(α)

lg1(α)

)
,

where S(T 2) is the set isotopy classes of nontrivial closed loops on T 2. Note that since Π1(T 2) is abelian, S(T 2)
is in one-to-one bijection with the nontrivial elements of Π1(T 2).

It is not difficult to see that κ is invariant under the action of Diff0(T 2). Therefore

κ : T(T 2)× T(T 2)→ R

is well-defined and it is clear that it is a weak metric.
We will later show that κ = λ. Let us first prove the following important inequality.
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Lemma 2.1. κ ≤ λ.

Proof. This follows from the fact that for any homeomorphism f : (T 2, g1)→ (T 2, g2) and any curve c : [0, 1]→
T 2

lg2(f ◦ c) ≤ Lip(f)lg1(c).

3. The metric κ

In this section, we show that the weak metric κ is indeed a metric: it separates points and it is symmetric.
Actually, we show that the weak metric space T(T 2) with the metric 2κ is isometric with the upper half-
plane with the hyperbolic metric dH. We know that hyperbolic plane and Teichmüller space of the torus with
Teichmüller’s metric are isometric. See [1]. Thus we explicitly obtain the relation between κ and τ : 2κ = τ .

Before pursuing, we need to identify T(T 2) with the upper half-plane H = {x+ ıy ∈ C : y > 0}. Let (S, g, ψ) ∈
T(T 2) and γ1 and γ2 be geodesics of S which are in the isotopy class of ψ∗(1, 0) and ψ∗(0, 1), respectively. Cut S
through γ1 and γ2. Then you get a disk which is isometric to a parallelogram in C. Since the area of S is 1, the
area of the disk is 1, hence we can uniquely choose a parallelogram Px+ıy with vertices 0, 1y , x+ 1

y + ıy, x+ ıy

so that x ∈ R and y > 0. Note that the edges [0, 1y ] and [0, x+ ıy] of Px+ıy correspond to γ1 and γ2, respectively.
Thus we have a map

i : T(T 2)→ H
and we can construct a map

i′ : H→ T(T 2)

as follows. For each x+ ıy ∈ H, consider the parallelogram Px+ıy. Identify its opposite edges accordingly to
obtain an oriented flat torus S of area 1. Now let ψ : Z2 → Π1(S) be the marking which sends (1, 0) and (0, 1)
to the oriented edges [0, 1y ] and [0, x+ ıy] of S, respectively. It is clear that i and i′ are inverses of each other. So
T(T 2) and H are naturally identified.

Note that there is another way to obtain the flat torus from Px+ıy. The quotient space C/ 1
yZ + (x+ ıy)Z with

the induced flat metric gives the same point in T(T 2).
Now we find an explicit formula for κ. Since C is the universal cover of S = C/ 1

yZ + (x+ ıy)Z, any straight
line son C which starts at origin and ends a point in 1

yZ + (x+ ıy)Z gives us a geodesic in S. In particular, a
geodesic corresponding to (m,n) ∈ Z2 is represented by a straight line segment from the origin to the point
m
y + n(x+ ıy) = m

y + nx+ ıny: the projection C→ S gives us the desired geodesic. Thus the length of such a
geodesic is equal to

|m
y

+ nx+ ıny| =
√

(
m

y
+ nx)2 + n2y2

Now assume that the points (S1, g1, ψ1) and (S2, g2, ψ2) correspond the points ζ1 = x1 + ıy1, ζ2 = x2 + ıy2 ∈ H.
Then

exp(κ(g1, g2)) = exp(κ(ζ1, ζ2)) = sup
m,n∈Z

√
(my2 + nx2)2 + n2y22√
(my1 + nx1)2 + n2y21

= sup
m,n∈Z

√
( m
ny2

+ x2)2 + y22√
( m
ny1

+ x1)2 + y21

= sup
z∈R

√
( zy2 + x2)2 + y22√
( zy1 + x1)2 + y21

=
y1
y2

sup
z∈R

√
(z + x2y2)2 + y42√
(z + x1y1)2 + y41
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Let us write what we get in a single equation:

κ(g1, g2) = κ(ζ1, ζ2) = log

(
y1
y2

sup
z∈R

√
(z + x2y2)2 + y42√
(z + x1y1)2 + y41

)
(3.1)

We will find this limit explicitly. We need a result from [1]. Let M : H×H→ R be the function defined by

M(ζ, ζ ′) = sup
z∈R

|ζ ′ − z|
|ζ − z|

.

Lemma 3.1 (Proposition 3, [1]).

M(ζ, ζ ′) =
|ζ ′ − ζ̄|+ |ζ ′ − ζ|

|ζ − ζ̄|
. (3.2)

Theorem 3.1.

κ(ζ1, ζ2) = log

(√
(x1y1 − x2y2)2 + (y21 + y22)2 +

√
(x1y1 − x2y2)2 + (y21 − y22)2

2y1y2

)
(3.3)

Proof. Equation 3.1 indicates that

κ(ζ1, ζ2) = log

(
y1
y2

sup
z∈R

√
(z + x2y2)2 + y42√
(z + x1y1)2 + y41

)
By the definition of M , we have

κ(ζ1, ζ2) = log
y1
y2
M(ζ, ζ ′),

where ζ = −x1y1 + ıy21 and ζ ′ = −x2y2 + ıy22 . By Equation 3.2

κ(ζ1, ζ2) = log
y1
y2
M(ζ, ζ ′),

log

(
y1
y2

|ζ ′ − ζ̄|+ |ζ ′ − ζ|
|ζ − ζ̄|

)
= log

(
y1
y2

√
(x1y1 − x2y2)2 + (y21 + y22)2 +

√
(x1y1 − x2y2)2 + (y21 − y22)2

2y21

)
= log

(√
(x1y1 − x2y2)2 + (y21 + y22)2 +

√
(x1y1 − x2y2)2 + (y21 − y22)2

2y1y2

)

3.1. κ and dH

Now let us consider the hyperbolic metric on H. It is induced from the Riemannian metric ds2 = dx2+dy2

y2 , and
we denote it by dH. Let w1 = u1 + ıv1, w2 = u2 + ıv2 ∈ H. It is well known that

dH(w1, w2) = 2 log

(√
(u2 − u1)2 + (v2 − v1)2 +

√
(u2 − u1)2 + (v2 + v1)2

2
√
v1v2

)
Theorem 3.2. The weak metric space (T(T 2), 2κ) and the metric space (H, dH) are isometric.

Proof. We identify T(T 2) with H. We claim that the map A : (H, 2κ)→ (H, dH) given by

A(x+ ıy) = xy + ıy2

is an isometry. Let ζ1 = x1 + ıy1, ζ2 = x2 + ıy2 ∈ H. Let w1 = A(ζ1) = x1y1 + ıy21 and w2 = A(ζ2) = x2y2 + ıy22 .
Then
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dH(A(ζ1),A(ζ2))

= 2 log

(√
(x2y2 − x1y1)2 + (y22 − y21) +

√
(x2y2 − x1y1)2 + (y21 + y22)

2
√
y21y

2
2

)
= 2κ(ζ1, ζ2).

4. The metric λ

In this section we prove that λ = κ. We know that κ ≤ λ. Thus it remains to show that λ ≤ κ. Given
(S1, g1, ψ1) and (S2, g2, ψ2), we will find a marking preserving homeomorphism φ between S1 and S2 so that
log Lip(φ) = κ(g1, g2). Then it will follow from the definition of λ that λ ≤ κ. Now we proceed.

Let ζ1 = x1 + ıy1 and ζ2 = x2 + ıy2 be the points in H which correspond to (S1, g1, ψ1) and (S2, g2, ψ2),
respectively. Let φ̃ : C→ C be the affine map such that

φ̃(0) = φ̃(0), φ̃(
1

y1
) = φ̃(

1

y2
), φ̃(ζ1) = φ̃(ζ2).

Clearly, φ̃ induces a map

φ : C/y1Z + (x1 + ıy1)Z→ C/y1Z + (x2 + ıy2)Z
and Lip(φ) = Lip(φ̃). We claim that exp(Lip(φ̃)) = κ(ζ1, ζ2).

Observe that the map φ̃ has the matrix(
a b
c d

)
=

( y1
y2

x2

y1
− x1

y2

0 y2
y1

)
Using the complex notation, we see that φ̃(z) = αz + βz̄, where

α =
a+ ıc− (b+ ıd)ı

2
=

y1
y2

+ y2
y1
− ı(x2

y1
− x1

y2
)

2

β =
a+ ıc+ (b+ ıd)ı

2
=

y1
y2
− y2

y1
+ ı(x2

y1
− x1

y2
)

2

Now we need a result from [1].

Lemma 4.1 (Lemma 4, [1]). A map of the form f(z) = pz + qz̄, p, q ∈ C, has Lipschitz constant

Lip(f) = |p|+ |q|.

Now one can use the above lemma to show that Lip(φ̃) = expκ(ζ1, ζ2). Thus we have proved the following
theorem.

Theorem 4.1. λ = κ.

The inequality κ ≤ λ and the fact that κ separates points imply that λ separates points. Now we prove directly
from the definition of λ that it separates points.

Proposition 4.1. λ separates points of the Teichmüller space of the torus.

Proof. The proof of this proposition is similar to the proof of the Proposition 2.1 in [6]. It uses the fact that the
areas of the surfaces that we consider are the same. Assume that g and h are in T(T 2) so that λ(g, h) ≤ 0. Pick
a continuous map T 2 → T 2 with global Lipschitz constant equal to λ′ = expλ(g, h). This follows from the fact
that T 2 is compact Lipschitz continuous maps form an equicontinuous family. Since the Lipschitz constant of
the map is less than or equal to 1, it follows that every small closed disk is sent to a disk of the same radius.
Since the areas of the surfaces are equal, each disk is mapped to a disk of the same size, hence the map is an
isometry.
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İsmail Sağlam

Now assume that between (T 2, g) and (T 2, h) such that Lip(f) = 1. The argument in the previous proposition
implies that f is an isometry. Thus we have the following result.

Proposition 4.2. Let f be a homeomorphism between (T 2, g) and (T 2, h). Then Lip(f) = 1 if and only if f is an isometry.
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