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Abstract 

Major developments in relevant technology make the advanced driver assistance systems and 

autonomous driving functions more attainable. Thus, conventional practices being applied in 

vehicle production evolves towards highly automated, safer, and more comfortable vehicles. 

Although advanced driver assistance systems and autonomous driving functions have many 

advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns 

related to safety still exist. For instance, failures related to sensors or algorithms being used can 

lead to critical problems. Therefore, controller algorithms should be more robust and well-

optimized in order to eliminate these safety issues. This requires the implementation of automated 

optimization algorithms for the controller parameter tuning process. The main objective of this 

study is to optimize the designed controller for an adaptive cruise control system by using the 

particle swarm optimization method, which is a swarm intelligence optimization technique. Based 

on the results, it is observed that the use of automated optimization techniques for adaptive cruise 

control systems leads to better accuracy and safety for driving control. Furthermore, the time 

consumed for the controller parameter tuning process is also decreased significantly. In 

conclusion, the adaptive cruise control system requirements can be easily and accurately ensured 

by the use of particle swarm optimization algorithm. 
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1. INTRODUCTION 

 

According to the data provided by Turkish National Police Academy, the number of accidents that involves 

road vehicles is about 10 million in Turkey during the last decade [1]. Furthermore, driver fault appears as 

the major cause of these accidents as evident from Figure 1, where approximately 90% of accidents is 

caused due to driver faults. 

 

In order to minimize the effect of driver fault, enhance driving comfort and increase fuel efficiency; 

advanced driver assistance system (ADAS) features are being developed and integrated to modern vehicles 

in an increasing trend [2]. For example, Gürbüz and Buyruk [3] propose a new model that is used to 

calculate the safe stopping distance of a vehicle by considering factors due to driver, vehicle and 

environment. Authors suggest that this information can be displayed on a screen to driver as an assistant 

for enhancing safety [3]. Nevertheless, safety related concerns for ADAS features still persist. To avoid 

unexpected behaviors and eliminate these concerns for autonomous features, ADAS algorithms must be 

generated with robust logics in order to overcome all kinds of traffic scenarios in real life. Hence, 

optimization of algorithms becomes an important task which must be carefully undertaken.
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Figure 1. Distribution of causes for vehicle accidents in Turkey from 2009 to 2018 

 

As an important ADAS feature, cruise control (CC) aims to keep the vehicle speed at the set value by 

controlling the engine throttle and brake actuators. Thus, the system usually requires an accurate 

mathematical model of the vehicle. Though, this could be cumbersome in some cases due to many existing 

uncertainties. Vedam et al. [4] develops a model free technique, where a complete information of about the 

vehicle is not required. Their approach determines the integral and derivative coefficients, while keeping 

the proportional gain intact. Furthermore, the authors suggest that the PID controller parameters can be 

altered in real time by coupling this approach with a proper algorithm. As an extension to CC, Adaptive 

Cruise Control (ACC) aims to regulate the speed of a vehicle with respect to a lead vehicle. The system 

utilizes a range sensor to detect the preceding vehicle and determines the speed of the lead vehicle and 

relative distance between two vehicles in order to set the vehicle speed [2]. In one particular paper by Jiang 

et al., authors develop a stochastic optimal control algorithm that can diversify the controller behavior of 

the ACC system based on driver characteristics [5]. Future trends go towards highly automated and 

cooperative systems with no driver intervention. 

 

Controller parameter optimization problem for ACC algorithms have been extensively studied by many 

researchers. In one study, Rout et al. utilize genetic algorithm method for the optimization of PID controller 

parameters used in an intelligent speed assist system [6]. Authors adopt the transfer function approach in 

order to model the dynamics of the vehicle on which the CC algorithm is embedded [6]. Results of two 

systems are compared in terms of maximum overshoot, peak time, rise time, settling time and steady state 

error and it is observed that the model with controller whose parameters are tuned with genetic algorithm 

provides superior results over the conventional PID controller. In another study, Abdulnabi [7] develops a 

transfer function based vehicle model equipped with a CC algorithm. Here, author compares the 

performance of a PID controller that is tuned with particle swarm optimization (PSO) technique to other 

predesigned controllers, and observes that the former provides better response in terms of maximum 

overshoot, peak time, rise time, settling time. In yet another paper, antlion optimization technique is used 

for PID controller parameter tuning of a CC system [8]. Again, the results of the proposed approach are 

compared to others (conventional PID, state space method, fuzzy logic and genetic algorithm), and it is 

claimed that the controller with parameters tuned with antlion optimizer provides superior performance. As 

evident from the literature review, algorithms used for controller parameter tuning increase the accuracy of 

the controller and optimum controller parameters can be obtained promptly. 

 

The chief objective of this study is to implement PSO algorithm for the tuning of PID parameters of an 

ACC system while meeting the requirements related to safety and performance. Furthermore, several voids 

in the related literature [6-8] are aimed to overcome. First, a single degree of freedom vehicle model 

incorporating a gearbox subsystem is developed as opposed to the transfer function based modeling 

approach. Second, the ADAS system is assumed as ACC, not CC as in the prior papers [6-8]. Consequently, 

the objectives of this study are: 1) to build a one-mass longitudinal vehicle dynamics model integrated with 
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an ACC controller; 2) to develop an ACC controller parameter tuning algorithm based on PSO method; and 

3) to compare the performance of PSO method with conventional tuning techniques. 

 

2. OPTIMIZATION OF ADAPTIVE CRUISE CONTROL PARAMETERS 

 

In order to optimize ACC parameters, a vehicle model and an ACC controller algorithm are developed. In 

this section, the ACC algorithm is first explained. Then, the details of the one-mass vehicle model are given. 

Subsequently, PSO algorithm is integrated into the model which includes ACC algorithm and vehicle 

model. 

 

2.1. Adaptive Cruise Control Algorithm 

 

Adaptive Cruise Control structure has two main layers which can be named as high and low level. High 

level loop calculates the desired wheel torque to keep the vehicle at desired conditions, while the low level 

loop is assumed as a first order system [9]. The high level loop is controlled by a PD controller with a time 

gap. The time gap that is set by the driver is employed to calculate the desired distance 𝑑𝑑𝑒𝑠 as shown in 

Equation (1), where 𝜏𝑠𝑒𝑡 refers to the time gap between the lead and ego vehicles, and 𝑉𝑒𝑔𝑜 represents the 

speed of the ego vehicle. Here, it should be mentioned that the ego vehicle is the one equipped with ACC. 

 

𝑑𝑑𝑒𝑠 = 𝑉𝑒𝑔𝑜𝜏𝑠𝑒𝑡 . (1) 

 

Desired distance error and vehicle speed error are the main control inputs of the system. The main equation 

of the ACC controller is shown in Equation (2): 

 

𝑇𝑤ℎ𝑒𝑒𝑙,𝑑𝑒𝑠 = 𝐾𝑣(𝑉𝑙𝑒𝑎𝑑 − 𝑉𝑒𝑔𝑜) + 𝐾𝑡(𝑑𝑎𝑐𝑡 − 𝑑𝑑𝑒𝑠) , (2) 

 

where  𝐾𝑣 and  𝐾𝑡  are the main controller parameters, 𝑉𝑙𝑒𝑎𝑑 refers to the lead vehicle speed and 𝑑𝑎𝑐𝑡 is the 

actual relative distance between the lead and ego vehicle that is calculated with Equation (3): 

 
𝑑𝑎𝑐𝑡 = ∫𝑉𝑙𝑒𝑎𝑑𝑑𝑡 − ∫𝑉𝑒𝑔𝑜𝑑𝑡 . (3) 

 

The simulations are initialized with 0- and 40-meter positions for the ego and lead vehicles, respectively. 

Thus, the initial relative distance between lead and ego vehicles is assumed as 40 meters. 

 

2.2. Vehicle Modeling 

 

The ego vehicle is assumed as a passenger car with a 1.4-liter diesel engine and a 6-speed transmission, 

whose related data is adopted from a mass-produced road vehicle. Based on the data available for this 

vehicle (engine torque curve at full load, transmission ratios at all gears, final gear ratio and wheel radius), 

corresponding traction force curves at each gear are evaluated and depicted in Figure 2. 
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Figure 2. Traction force curves for the forward speeds of the vehicle 

 

The road-tire interaction is defined with the Pacejka model, where the longitudinal traction forces are 

assumed as the function of longitudinal slip. Longitudinal slip for braking and traction cases are expressed 

below in Equations (4) and (5), respectively: 

 

𝑠 = 1 −
𝑅0𝜔𝑤ℎ𝑒𝑒𝑙

𝑉
  , (4) 

  

𝑠 = 1 −
𝑉

𝑅0𝜔𝑤ℎ𝑒𝑒𝑙
  . (5) 

  

 

Here, 𝑅0 and 𝜔𝑤ℎ𝑒𝑒𝑙 corresponds to the dynamic radius of the tire and its angular velocity, respectively. 

The Pacejka model for longitudinal tractive forces is given in Equation (6): 

 

𝐹𝑥 = 𝐴 sin(𝐵 tan−1(𝐶𝑠 − 𝐷(𝐶𝑠 − tan−1(𝐶𝑠)))) , (6) 

 

where the parameters 𝐵, 𝐶 and 𝐷 are referred to as shape factors and these parameters are functions of slip 

angle, slip ratio, camber angle and wheel force. Furthermore, 𝐴 is the maximum value of the longitudinal 

force. These parameters are all determined experimentally [10]. Resistive forces are integrated into model 

as a combination of aerodynamic resistance, rolling resistance and grade resistance. Finally, the dynamics 

of the vehicle in longitudinal direction is defined as in Equation (7), where 𝜌 is the air density, 𝐶𝑑 is the 

aerodynamic drag coefficient, 𝑓𝑟 is the rolling resistance coefficient, 𝜃 is the angle of inclination of the road 

and 𝐴𝑓 and 𝑚 are the cross sectional area and the mass of the vehicle, respectively. Furthermore, the term 

𝐹𝐴𝑐𝑐𝑒𝑙 in Equation (7) is the inertial resistance which is due to the longitudinal acceleration of the vehicle. 

 

𝐹𝐴𝑐𝑐𝑒𝑙 = 𝐹𝑥 −
1

2
𝜌𝐶𝑑𝐴𝑓𝑉

2 −𝑚𝑔𝑓𝑟 −𝑚𝑔 sin(𝜃) . (7) 

 

The dynamic model of the vehicle with ACC algorithm is built and depicted in Figure 3 in block diagram 

form. 
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Figure 3. Vehicle model and its subsystems 

 

2.3. Controller Parameter Tuning with Particle Swarm Optimization 

 

Most of the optimization methods are inspired from a natural event such as foraging. Species such as insects, 

birds, etc. have to forage to survive. During the foraging behavior, the members of the swarm should 

communicate with each other and the basic objective is to reach the food as quickly as possible [11]. Thus, 

the objective in the optimization process is to reach a desired value as fast as possible. The discipline which 

employs the collective behavior of a social group is referred to as swarm intelligence. The Particle Swarm 

Optimization technique is a member of swarm intelligence-based optimization methods and developed by 

Kennedy and Eberhart in 1995 [12]. The main principle behind PSO is that every member of the swarm 

sets its position according to the best position in the group. During this process, there are two significant 

elements, which are position and velocity. The position of the particle is labeled as 𝑥𝑠
𝑖 , where the superscript 

𝑖 and subscript 𝑠 refer to the iteration and particle numbers, respectively. Furthermore, the velocity of a 

particle is shown with 𝑉𝑠
𝑖. The initial positions of each particle in the swarm are determined randomly as 

shown in Equation (8): 

 

𝑥𝑠
𝑖 = 𝑟𝑎𝑛𝑑(1, 𝑛𝑣𝑎𝑟) . (8) 

 

The velocity of each particle in the swarm are set to zero initially, and they are evaluated at each iteration 

according to Equation (9). In this equation the parameter 𝑃𝑏𝑒𝑠𝑡𝑠
𝑝𝑜𝑠 represents the best position of each swarm 

particle at an iteration and 𝐺𝑏𝑒𝑠𝑡
𝑝𝑜𝑠 is the global best position of the entire swarm. Furthermore, the 

coefficients 𝑐1, 𝑐2 and 𝛽 determines the characteristics of the algorithm. Here, the coefficients 𝑐1 and 𝑐2 

are known as acceleration constants and the parameter 𝛽 refers to as an inertia factor. In this study, linearly 

decreasing inertia weight method is used, and the lower and upper bounds for 𝛽 are set to as 0.4 and 0.9, 

respectively. 

 

𝑉𝑠
𝑖+1 = 𝛽𝑉𝑠

𝑖 + 𝑐1𝑟𝑎𝑛𝑑(1, 𝑛𝑣𝑎𝑟)(𝑃𝑏𝑒𝑠𝑡𝑠
𝑝𝑜𝑠 − 𝑥𝑠

𝑖) + 𝑐2𝑟𝑎𝑛𝑑(1, 𝑛𝑣𝑎𝑟)(𝐺𝑏𝑒𝑠𝑡
𝑝𝑜𝑠 − 𝑥𝑠

𝑖) . (9) 

 

The position of each swarm particle is updated at each iteration according to 𝑥𝑠
𝑖+1 = 𝑥𝑠

𝑖 + 𝑉𝑠
𝑖+1. 

Furthermore, the flowchart of the PSO algorithm that is implemented in this study is shown in Figure 4. 
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Figure 4. Flowchart of the controller parameter tuning process with particle swarm optimization method 

 

Personal best and global best values are determined by comparing the objective values of each swarm 

particle. With the initialization of the algorithm, each particle is assigned a personal best value that is 

essentially its best objective value, and the personal best value is updated at each iteration. In terms of the 

global best value, it is also calculated at each iteration step and it is essentially the best objective value of 

all particles at a given iteration step. It is again updated at all iterations accordingly, until the maximum 

number of iterations is reached. 

 

The speed trace of the lead vehicle is generated computationally with AVL VSM [13], which is a 

comprehensive tool for simulating activities of complex vehicle dynamics. This tool requires a detailed 

information about the lead vehicle such as tire size, coast down parameters, suspension parameters, 

driveline, engine and gearbox characteristics. 

 

In order to tune the controller parameters, the vehicle model, PSO and ACC algorithms are combined. 

Though, the objective function is first determined. In this study, the objective function is chosen as 
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integrated absolute error (IAE), which can be described as the area under the absolute error curve. The 

objective function is shown in Equation (10): 

 

𝐼𝐴𝐸𝐴𝐶𝐶 = ∫ |𝑡𝑠𝑒𝑡 − 𝑡𝑎𝑐𝑡|𝑑𝑡
𝑡𝑡𝑜𝑡
0

 . (10) 

 

The model flow of the system where the vehicle model, PSO and ACC subsystems are combined is shown 

below in Figure 5. 

 

 
Figure 5. Block diagram of the entire system with corresponding subsystems: vehicle model (shown as 

Plant), adaptive cruise control algorithm, and particle swarm optimization process 

 

3. SIMULATION RESULTS 

 

The results of the simulations are depicted in figures given below. Notice that the initial inter-vehicle 

distance in simulations is set as 40 m as mentioned before, and the lead vehicle accelerates from 0 to 60 

km/h, while the ego vehicle follows the lead vehicle based on the operation of its ACC algorithm. These 

operational parameters are selected arbitrarily, and they do not affect the performance of the proposed 

controller parameter tuning algorithm. Simulations are run at two different controller parameter sets. In the 

first parameter set, the controller parameters are assumed as  𝐾𝑣 = 10 and 𝐾𝑡 = 10, and these are referred 

to as base parameters. In the second set, the parameters 𝐾𝑣 and 𝐾𝑡 are optimized with the PSO method. 

Note that the velocity time histories for lead vehicle, ego vehicle with base controller parameters and ego 

vehicle with optimized controller parameters are shown in Figure 6. Observe that the ego vehicle with 

optimized controller parameters (𝐾𝑣 = 286.3 and 𝐾𝑡 = 27.2) approaches the objective, which is a constant 

time gap, faster than the ego vehicle with base controller parameters. Furthermore, the speed response of 

the ego vehicle with base controller parameters is oscillatory, which would not be a desired response. 
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Figure 6. Simulation results in terms of vehicle speed time histories 

 

Figure 7(a) demonstrates the change of cumulative error (difference between the desired and actual time 

gaps) with respect to iteration number of 100 iterations and a swarm of 3 particles. As seen, the solution 

converges to the desired solution in about 80 iterations. The time history of the time gap between lead and 

ego vehicles is shown in Figure 7(b).  Notice that the time gap quickly reaches to the objective value, which 

was set to be 1 second, and remains at this value for the entire event. Furthermore, the time gap does not 

go below the 0.8 second value, which is assumed as a critical limit according to ISO 15622:2018 standard 

[14]. 
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Figure 7. a) Cumulative error with respect to iteration number b) Actual relative time gap between lead 

and ego vehicles 

 

The time histories for the actual and desired inter-vehicle distances are depicted in Figure 8. Observe that 

the desired inter-vehicle distance is not constant due to the time varying speed profile of the lead vehicle, 

and it is calculated based on the 1 second time gap objective. As in Figure 7(b), the ego vehicle reaches the 

desired inter-vehicle distance in about 10 seconds and successfully follow the lead vehicle. 

 

 
Figure 8. Actual and desired relative distances between lead and ego vehicles 

 

4. CONCLUSION AND FUTURE RECOMMENDATIONS 

 

In this study, an adaptive cruise control system is designed and combined with a one-mass longitudinal 

vehicle model that includes all resistive forces (aerodynamic, rolling, and grade resistances), a tire model 

(Pacejka magic formula), and a powertrain model. Furthermore, the PID controller parameter tuning is 
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performed by the particle swarm optimization method. Finally, the performance of the adaptive cruise 

control system is compared for optimized and initial controller parameter sets. According to the results, it 

is observed that the parameters obtained with particle swarm optimization method leads to a better 

performance in terms of keeping constant time gap between lead and ego vehicles. Also, it is observed that 

the optimum parameter set for the PID controller can be obtained rapidly with the particle swarm 

optimization method. Hence the ego vehicle, whose controller parameters are optimized with particle 

swarm optimization method starts to cruise at the desired speed profile promptly. This increases the 

robustness of the controller system, which is a key requirement for calibration activities. Therefore, the 

capability of the controller expands for more complex structures. 
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