Istanbul Commerce University Journal of Science *İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 18(36), Güz 2019* http://dergipark.gov.tr/ticaretfbd

Research Article

STATISTICAL CONVERGENT FUNCTIONS VIA IDEALS WITH RESPECT TO THE INTUITIONISTIC FUZZY 2- NORMED SPACES[*](#page-0-0)

Rahmet SAVAŞ

İstanbul Medeniyet University, Faculty of Engineering and Natural Sciences, Department of Mathematics, Istanbul, Turkey. rahmet.savas@medeniyet.edu.tr, Orcid.org/0000-0002-3670-622X

Abstract

The main objective of this paper is to introduce and study the notion of ideal λ -statistical convergence of a nonnegative real-valued Lebesque measurable function in the interval $(1, \infty)$ with respect to the intuitionistic fuzzy 2-normed (μ, ν) . We gave some introduction definitions such as statistical convergence, λ-statistical convergence, intuitionistic fuzzy sets, and so on.Than we investigated their relationship, and made some observations about these classes. Further, we prove some inclusion theorems.

Keywords: Statistical convergence, intuitionistic fuzzy, ideals.

Araştırma Makalesi

SEZGİSEL BULANIK 2-NORMLU UZAYLAR ÜZERİNDE IDEALLER İLE İSTATİSTİKSEL YAKINSAK FONKSİYONLAR

Öz

Bu makalenin başlıca amacı, sezgisel bulanık 2-normlu uzaylar (μ, ν) .üzerinde, $(1, \infty)$ aralığında tanımlı, sıfırdan farklı reel değerli Lebesque ölçülebilir, λ-istatistiksel yakınsak fonksiyonları tanıtmaktır. İstatistiksel Yakınsaklık, λ-istatistiksel yakınsaklık, sezgisel bulanık kümeler ve benzer tanımları verdik.Daha sonra, gözlemlenen bazı sınıflandırmalar yaptık ve bu sınıflar arasındaki ilişkileri inceledik. Ayrıca, bazı sonuç teoremleri de ispatlanacaktır.

Anahtar kelimeler: İstatistiksel yakınsaklık, sezgisel bulanık, ideal.

Corresponding Author/ Sorumlu Yazar : rahmet.savas@medeniyet.edu.tr

^{*} Received / Geliş tarihi: 01.07.2019 Accepted / Kabul tarihi: 12.12.2019

1.INTRODUCTION

The concept of statistical convergence has been introduced by Fast (Fast,1951,241- 244) in 1951 and than developed extensivel in different directions by Connor (Connor,1988,47-63), Fridy (Fridy,1985,301-313), Šalát (Šalát,1980,139-150) and many others.

A number sequence $t = (t_k)$ is said to be statistically convergent to *C* if for every $\varepsilon > 0$, $\delta\left(\left\{k \in \mathbb{N} : |t_k - C| \geq \epsilon\right\}\right) = 0$. If (t_k) is statistically convergent to *C*, we write $st - \lim t_k = C$.

Furthermore, Kostyrko et al. (Kostyrko vd,2001,669-685) introduced a very interesting generalization of statistical convergence called as $\mathcal I$ -convergence. More about this convergence can be found in (Savas and Das, 2011, 826-830). We should mention here that the idea of λ -statistical convergence was introduced by Mursaleen (Mursaleen, 2000, 111-115).

Following the introduction of fuzzy set theory by Zadeh (Zadeh,1965,338-353), there has been extensive research to find applications and fuzzy analogues of the classical theories. The theory of intuitionistic fuzzy sets was introduced by Atanassov (Atanassov,1986,87-96); it has been extensively used in decision-making problems (Atanassov vd.,2000,115-119). The concept of an intuitionistic fuzzy metric space was introduced by Park (Park,2004,1039-1046). Furthermore, Saadati and Park (Saadati and Park,2006,331-344) gave the notion of an intuitionistic fuzzy normed space. So far, a good number of research works have been done on various types of intuitionistic fuzzy normed space for instances, (see (Mohiuddine and Lohani,2009,1731-1737 ; Savas and Gurdal, 2014,1621-1629 ; Savas,2015,59-63 ; Savas and Gurdal, 2015, 1513-1874))

However, in (Colak,2010,121-129 ; Colak and Bektaş,2011,953-959) a different direction was given to the study of these important summability methods where the notions of statistical convergence of order α and λ -statistical convergence of order α were introduced and studied. In this note we intend to introduce the concept of \mathcal{I}_1 -statistical convergence of order α for a nonnegative real-valued Lebesque measurable function in the interval $(1, \infty)$ by using ideal with respect to the intuitionistic fuzzy 2-normed space (μ, v) and investigate some of its consequences. We now recall some notation and basic definitions used in the paper.

Definition 1 A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is said to be a continuous t−norm if the following conditions are satisfied

- 1. * is associative and commutative,
- 2. * is continuous,
- 3. $a * 1 = a$ for all $a \in [0, 1]$,

4. $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0, 1]$.

Definition 2 A binary operation \Diamond : $[0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous t-conorm if it satisfies the following conditions:

- 1. \Diamond is associate and commutative,
- 2. \Diamond is continuous,
- 3. $k \lozenge 0 = k$ for all $k \in [0,1]$,
- 4. $k \lozenge l \le q \lozenge p$ whenever $k \le q$ and $l \le p$ for each $k, l, q, p \in [0,1]$.

Gähler, [Gähler, S., 1965, 1-43], presented the below concept of 2-normed space.

Definition 3 Let *K* be a real vector space of dimension *n*, where $2 \le n < \infty$. A 2-norm on *K* is a function $\|\cdot\|$: $K \times K \to \mathbb{R}$ which satisfies,

- 1. $\|x, y\| = 0$ if and only if *x* and *y* are linearly dependent;
- 2. $||x, y||=||y, x||;$
- 3. $\|\alpha x, y\| = |\alpha| \|x, y\|;$
- 4. $\|x, y+z\| \le \|x, y\| + \|x, z\|.$

The pair $(K, \|\cdot\|)$ is then called a 2-normed space.

Mursaleen and Lohani (Mursaleen and Lohani ,2009, 224-234) used the idea of 2 normed space to define the intuitionistic fuzzy 2-normed space.

Definition 4 The five-tuple $(K, \mu, \nu, *, \Diamond)$ is said to be an intuitionistic fuzzy 2norm space (for short, IF2NS) if *K* is a vector space, * is continuous t-norm, \Diamond is continuous t-conorm, and μ , *v* are fuzzy sets on $K \times K \times (0, \infty)$ satisfying the following conditions for every *x*, $y \in K$ and $p, s > 0$.

- 1. $\mu(x, y; p) + v(x, y; p) \leq 1$,
- 2. $\mu(x, y; p) > 0$
- 3. $\mu(x, y; p) = 1$ if and only if *x* and *y* are linearly dependent,
- 4. $\mu(\alpha x, y; p) = \mu(x, y; \frac{p}{|\alpha|})$ for each $\alpha \neq 0$,

3

R. Savaş / Statistical Convergent Functions Via Ideals With Respect To The Intuitionistic Fuzzy 2- Normed Spaces

- 5. $\mu(x, y; p) * \mu(x, z; s) \leq \mu(x, y + z; p + s)$,
- 6. $\mu(x, y;..) : (0, \infty) \rightarrow [0,1]$ is continuous,
- 7. $\lim_{p \to \infty} \mu(x, y; p) = 1$ and $\lim_{p \to 0} \mu(x, y; p) = 0$,
- 8. $\mu(x, y; p) = \mu(y, x; p)$
- 9. $v(x, y; p) < 1$,
- 10. $v(x, y; p) = 0$ if and only if *x* and *y* are linearly dependent,
- 11. $v(\alpha x, y; p) = v(x, y; \frac{p}{|\alpha|})$ for each $\alpha \neq 0$,
- 12. $v(x, y; p) \Diamond v(x, z; s) \ge v(x, y + z; p + s)$,
- 13. $v(x, y;..)$: $(0, \infty) \rightarrow [0,1]$ is continuous,
- 14. $\lim_{p \to \infty} v(x, y; p) = 0$ and $\lim_{p \to 0} v(x, y; p) = 1$,
- 15. $v(x, y; p) = v(y, x; p)$

In this case (μ, v) is called an intuitionistic fuzzy 2-normed on K , and we denote it by (μ, v) ₂.

2. \mathcal{I}_{λ} -STATISTICAL CONVERGENCE OF A NONNEGATIVE REAL-**VALUED FUNCTION ON IF2NS**

Before we can begin, it will be necessary to introduce some definitions and notation.

Definition 5 A non-empty family $\mathcal{I} \subset 2^N$ is said to be an ideal of \mathbb{N} if the following conditions hold:

1. $R, S \in \mathcal{I}$ imply $R \cup S \in \mathcal{I}$, 2. $R \in \mathcal{I}$, $S \subset R$ imply $S \in \mathcal{I}$.

Definition 6 A non-empty family $\mathcal{F} \subset 2^{\mathbb{N}}$ is said to be a filter of \mathbb{N} if the following conditions hold:

- 1. $\varnothing \notin \mathcal{F}$,
- 2. $R, S \in \mathcal{F}$ imply $R \cap S \in \mathcal{F}$,
- 3. $R \in \mathcal{F}, R \subset S$ imply $S \in \mathcal{F}$.

If $\mathcal I$ is a proper nontrivial ideal of $\mathbb N$ (i.e $\mathbb N \notin \mathcal I$), then the family of sets $F(\mathcal{I}) = \{ M \subset \mathbb{N} : \exists R \in \mathcal{I} : M = \mathbb{N} \setminus R \}$ is a filter of \mathbb{N} . It is called the filter associated with the ideal $\mathcal I$. A proper ideal $\mathcal I$ is said to be admissible if $\{n\} \in \mathcal I$ for each $n \in \mathbb{N}$.

Definition 7 A sequence (x_n) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $C \in \mathbb{R}$ if for each $\epsilon > 0$ the set $A(\epsilon) = {n \in \mathbb{N} : |x_n - C| \ge \epsilon} \in \mathcal{I}$.

Throughout by function $x(t)$ we shall mean a nonnegative real-valued Lebesque measurable function in the interval $(1, \infty)$. N will stand for the set of natural numbers.

Let $\varphi = \varphi_n$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\varphi_{n+1} \leq \varphi_n + 1$, $\varphi_1 = 1$. The collection of such a sequence φ will be denoted by ∆. The generalized de Valee-Pousin mean is defined by

 $I_n(x) = \frac{1}{n} \sum x_k$ where $I_n = [n - \varphi_n + 1, n].$ $n \; k \in I_n$ $t_n(x) = \frac{1}{x} \sum x_k$ where $I_n = [n - \varphi_n + 1, n]$ $\frac{1}{\varphi_n} \sum_{k \in I_n} x_k$ where $I_n = [n - \varphi_n +$

We are now ready to define our main results.

Definition 8 Let $(K, \mu, \nu, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space. Then, a function $x(t)$ is said to be $\mathcal I$ -statistically convergent of order α to $C \in K$ where $0 < \alpha \leq 1$, with respect to the intuitionistic fuzzy 2-normed space (μ, v) , if for every $\epsilon > 0$, and every $\delta > 0$, $p > 0$, and for non zero $z \in K$.

$$
\left\{ n \in \mathbb{N} : \frac{1}{n^{\alpha}} \left| \begin{cases} t \leq n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \\ or \nu(x(t) - C, z; p) \geq \epsilon \end{cases} \right| \geq \delta \right\} \in \mathcal{I}.
$$

In this case we write $x(t) \xrightarrow{(\mu, v)} C(S^{\alpha}(\mathcal{I})^{(\mu, v)}).$

Remark 1 For

 $\mathcal{I} = \mathcal{I}_{\text{fin}} = \{ A \subseteq \mathbb{N} : A \text{ is a finite subset} \},\$

 I -statistically convergent of order α with respect to IF2NS for functions coincides with statistical convergence of order α with respect to IF2NS. For an arbitrary ideal $\mathcal I$ and for $\alpha = 1$ it coincides with $\mathcal I$ -statistical convergence with respect to IF2NS (Savas, 2015, 59-63). When $\mathcal{I} = \mathcal{I}_{fin}$ and $\alpha = 1$ it becomes only statistical convergence with respect to IF2NS, (Savas,2015,59-63).

Definition 9 Let $(K, \mu, \nu, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space. Then, a function $x(t)$ is said to be $[V, \varphi](\mathcal{I})$ -summable to $C \in K$ of order α to $C \in K$, where $0 < \alpha \leq 1$, with respect to the intuitionistic fuzzy 2-normed space (μ, v) , if for every $\epsilon > 0$, and $\delta > 0$, $p > 0$, and for non zero $z \in K$

$$
\left\{ n \in \mathbb{N} : \frac{1}{\varphi_n^{\alpha}} \left| \int_{n-\varphi_n+1}^n \left\{ t \leq n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \atop \text{or } v(x(t) - C, z; p) \geq \epsilon \right\} \right| \geq \delta \right\} \in \mathcal{I}.
$$

In this case we write $[V, \varphi]^{\alpha}$ (*I*)^{(μ, ν)₂ – lim $x = C$.}

Definition 10 A function $x(t)$ is said to be \mathcal{I}_{λ} -statistically convergent or $S_{\varphi}^{\alpha}(\mathcal{I})$ convergent of order α to $C \in K$, where $0 < \alpha \leq 1$, with respect to the intuitionistic fuzzy 2-normed space (μ, v) , if for every $\epsilon > 0$, and $\delta > 0$, $p > 0$, and for non zero $z \in X$

$$
\left\{ n \in \mathbb{N} : \frac{1}{\varphi_n^{\alpha}} \middle| \begin{cases} t \in I_n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \\ or \ v(x(t) - C, z; p) \geq \epsilon \end{cases} \middle| \geq \delta \right\} \in \mathcal{I}.
$$

In this case we write $S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)}$ ² - $\lim x = C$ or $x(t) \rightarrow C(S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)}$ ²).

Remark 2 For

$$
\mathcal{I} = \mathcal{I}_{fin} = \{ A \subseteq \mathbb{N} : A \text{ is a finite subset} \},
$$

 \mathcal{I}_{φ} -statistically convergent of order α with respect to the intuitionistic fuzzy 2normed space (μ, v) coincides with φ -statistical convergence of order α with respect to the intuitionistic fuzzy 2-normed space. For an arbitrary ideal $\mathcal I$ and for $\alpha = 1$ it coincides with \mathcal{I}_{φ} -statistical convergence with respect to the intuitionistic fuzzy 2-normed space (μ, v) , (Savas, 2015, 59-63). When $\mathcal{I} = \mathcal{I}_{fin}$ and $\alpha = 1$ it becomes only φ -statistical convergence with respect to the intuitionistic fuzzy 2normed space (μ, v) , (Savas, 2015, 59-63). We shall denote by $S^{\alpha}(\mathcal{I})^{(\mu, v)}$. $S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)}$, and $[V, \lambda]_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)}$ the collections of all \mathcal{I} -statistically convergent of order α , $S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)}$ -convergent of order α and $[V, \varphi]_{\alpha}^{\alpha}$ (*I*)^{(μ, ν)₂ -convergent of order α sequences respectively.}

Theorem 1 Let $(K, \mu, \nu, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space, $\varphi = (\varphi_n)$ be a sequence in Δ and let $0 < \alpha \leq \beta \leq 1$. Then $S^{\alpha}_{\varphi}(\mathcal{I})^{(\mu,\nu)} \subset S^{\beta}_{\varphi}(\mathcal{I})^{(\mu,\nu)}$.

Proof. Let $0 < \alpha \le \beta \le 1$. For given $\epsilon > 0$, every $p > 0$, and for non zero $z \in X$, we write

$$
\frac{\left| \left\{ t \in I_n : \mu(x(t) - C, z; p) \le 1 - \epsilon \text{ or } v(x(t) - C, z; p) \ge \epsilon \right\} \right|}{\varphi_n^{\beta}}
$$
\n
$$
\le \frac{\left| \left\{ t \in I_n : \mu(x(t) - C, z; p) \le 1 - \epsilon \text{ or } v(x(t) - C, z; p) \ge \epsilon \right\} \right|}{\varphi_n^{\alpha}}
$$

and so for any $\delta > 0$,

$$
\left\{ n \in \mathbb{N} : \frac{\left| \left\{ t \in I_n : \mu(x(t) - C, z; p) \le 1 - \epsilon \text{ or } v(x(t) - C, z; p) \ge \epsilon \right\} \right|}{\varphi_n^{\beta}} \ge \delta \right\}
$$
\n
$$
\subset \left\{ n \in \mathbb{N} : \frac{\left| \left\{ t \in I_n : \mu(x(t) - C, z; p) \le 1 - \epsilon \text{ or } v(x(t) - C, z; p) \ge \epsilon \right\} \right|}{\varphi_n^{\alpha}} \ge \delta \right\}.
$$

Hence if the set on the right hand side belongs to the ideal $\mathcal I$ then obviously the set on the left hand side also belongs to $\mathcal I$. This shows that $S^{\alpha}_{\varphi}(\mathcal{I})^{(\mu,\nu)_2}\subset S^{\beta}_{\varphi}(\mathcal{I})^{(\mu,\nu)_2}.$

Corollary 1 If a function is \mathcal{I}_{φ} -statistically convergent of order α to C for some $0 < \alpha \leq 1$, then it is \mathcal{I}_{ϱ} -statistically convergent to *C* i.e. $S^{\alpha}_{\varphi}(\mathcal{I})^{(\mu,\nu)_2} \subset S_{\varphi}(\mathcal{I})^{(\mu,\nu)_2}.$

Similarly we can show that

Theorem 2 Let $(K, \mu, \nu, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space and let $0 < \alpha \leq \beta \leq 1$. Then 1. $S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu, v)} \subset S_{\varphi}^{\beta}(\mathcal{I})^{(\mu, v)}$, $2. \left[V,\varphi \right]_{\varphi}^{\alpha} (\mathcal{I})^{(\mu,\nu)} \subset \left[V,\varphi \right]_{\varphi}^{\beta} (\mathcal{I})^{(\mu,\nu)}$ $3. S^{\alpha}(\mathcal{I})^{(\mu,\nu)_2} \subset S(\mathcal{I})^{(\mu,\nu)_2}$ and $[V,\varphi]^{\alpha}(\mathcal{I})^{(\mu,\nu)_2} \subset [V,\varphi](\mathcal{I})^{(\mu,\nu)_2}$.

Theorem 3 Let $(K, \mu, v, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space, $\varphi = (\varphi_n)$ be a sequence in Δ . If $x(t) \to L[V, \varphi]_{\varphi}^{\alpha}(\mathcal{I})^{(\mu, v)}$, then $x(t) \rightarrow C(S^{\alpha}_{\varphi}(\mathcal{I})^{(\mu,\nu)}).$

Proof. This can be proved by using the techniques similar to those used in Theorem 1 of Savas (Savas,2017,1).

Theorem 4 Let $(K, \mu, v, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space. Then

$$
S^{\alpha}(\mathcal{I})^{(\mu,\nu)_2} \subset S^{\alpha}_{\varphi}(\mathcal{I})^{(\mu,\nu)_2} \text{ if } \liminf_{n \to \infty} n^{\frac{\varphi_n^{\alpha}}{n^{\alpha}}} > 0.
$$

Proof. For given $\epsilon > 0$, every $p > 0$, and for non zero $z \in X$, we write

$$
\frac{\left|\left\{t \leq n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \text{ or } v(x(t) - C, z; p) \geq \epsilon\right\}\right|}{n^{\alpha}}
$$
\n
$$
\geq \frac{\left|\left\{t \in I_n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \text{ or } v(x(t) - C, z; p) \geq \epsilon\right\}\right|}{n}
$$
\n
$$
= \frac{\varphi_n^{\alpha} \left|\left\{t \in I_n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \text{ or } v(x(t) - C, z; p) \geq \epsilon\right\}\right|}{\varphi_n^{\alpha}},
$$
\n
$$
\inf_{n \to \infty} \frac{\varphi_n^{\alpha}}{n} = \alpha \text{, then from definition }\left\{n \in \mathbb{N} : \frac{\varphi_n^{\alpha}}{n^{\alpha}} < \frac{\alpha}{2}\right\} \text{ is finite. For every } \epsilon > 0,
$$
\n
$$
\left\{n \in \mathbb{N} : \frac{\left|\left\{t \in I_n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \text{ or } v(x(t) - C, z; p) \geq \epsilon\right\}\right|}{\varphi_n^{\alpha}} > \delta\right\}
$$
\n
$$
\subset \left\{n \in \mathbb{N} : \frac{\left|\left\{t \in I_n : \mu(x(t) - C, z; p) \leq 1 - \epsilon \text{ or } v(x(t) - C, z; p) \geq \epsilon\right\}\right|}{n^{\alpha}} \geq \frac{\alpha}{2}\delta\right\}
$$
\n
$$
\cup \left\{n \in \mathbb{N} : \frac{\varphi_n^{\alpha}}{n^{\alpha}} < \frac{\alpha}{2}\right\}.
$$

Since $\mathcal I$ is admissible, the set on the right-hand side belongs to $\mathcal I$ and this completed the proof.

The following result immediately follows from the above theorem by using the same techniques.

Theorem 5 Let $(K, \mu, v, *, \Diamond)$ be an intuitionistic fuzzy 2-normed space. If $\varphi \in \Delta$

be such that for a particular $\alpha, 0 < \alpha \leq 1$, $\lim_{n \to \infty} \frac{n - \varphi_n}{a} = 0$ *n*α $\frac{-\varphi_n}{\alpha} = 0$ then

$$
S_{\varphi}^{\alpha}(\mathcal{I})^{(\mu,\nu)_2} \subset S^{\alpha}(\mathcal{I})^{(\mu,\nu)_2}.
$$

REFERENCES

Atanassov, K.T., (1986), "Intuitionistic fuzzy sets", Fuzzy Sets and Systems 20(1), 87-96.

Atanassov, K., Pasi, G., Yager, R., (2000), "Intuitionistic fuzzy interpretations of multi-person multicriteria decision making", in: Proceedings of 2002 First International IEEE Symposium Intelligent Systems, 1,115-119.

Colak, R., Bektas, C. A., (2011), " λ -statistical convergence of order α ", Acta Math. Scientia, 31B (3), 953-959.

Colak, R., (2010), "Statistical convergence of order α ", Modern methods in Analysis and its Applications, New Delhi, India, Anamaya Pub., 121-129.

Connor, J., (1988), "The statistical and strong p-Cesaro convergence of sequences", Analysis, 8, 47-63.

Fast, H., (1951), "Sur la convergence statistique", Colloq. Math. 2, 241-244.

Fridy, J.A., (1985), "On statistical convergence", Analysis 5, 301-313.

Gähler, S., (1965), "Linear 2-normietre Raume", Math. Nachr. 28, 1-43.

Kostyrko, P., Šalát, T., Wilczynki, W., $(2000-2001)$, " \mathcal{I} -convergence," Real Anal. Exchange 26 (2) 669-685

Mohiuddine, S. A., Lohani, Q. M. D., (2009), "On generalized statistical convergence in intuitionistic fuzzy normed space", Chaos, Solitons and Fractals, 42(3). 731-1737.

Mursaleen, M., (2000), "λ -statistical convergence", Math. Slovaca 50, 111-115.

R. Savaş / Statistical Convergent Functions Via Ideals With Respect To The Intuitionistic Fuzzy 2- Normed Spaces

Mursaleen, M., Danis Lohani, Q.M., (2009), "Intuitionistic fuzzy 2-normed space and some relates concepts", Chaos, Solitons and Fractals, 42, 224-234

Park, J.H., (2004), "Intuitionistic fuzzy metric spaces", Chaos Solitons Fractals 22, 1039-1046.

Saadati, R., Park, J.H., (2006), "On the intuitioistic fuzzy topologicial spaces", Chaos Solitons Fractals, 27, 331-344.

Šalát, T., (1980), "On statistically convergent sequences of real numbers", Math. Slovaca 30, 139-150.

Savas, E., Das, P., (2011), "A generalized statistical convergence via ideals", Applied Mathematics Letters, 24, 826-830.

Savas, E., (2015), "Generalized statistical convergence in intuitionistic fuzzy 2 normed space". Applied Mathematics & Information Sciences, 9(1L), 59-63.

Savas, E., (2017), "A generalized statistical convergent functions via ideals in intuitionistic fuzzy normed spaces", Applied Mathematics and Computation, 16(1), 31-38.

Savas, E., Gürdal, M., (2014), "Certain summability methods in intuitionistic fuzzy normed spaces", Journal of Intelligent & Fuzzy Systems, 27(4), 1621-1629.

Savaş, E., Gürdal, M., (2015), "A generalized statistical convergence in intuitionistic fuzzy normed spaces", Science Asia, 41(4), 1513-1874

Zadeh, L.A., (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353.