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ABSTRACT. By introducing an operator E}} (8, A\, w, ¢, t) fy(2) via a linear com-
bination of two generalized differential operators involving modified Sigmoid
function, we defined and studied certain geometric properties of a new subclass
Ty Dy (e, B, pryw, @, A\, 1, &, t;p : n) of analytic functions in the open unit disk
U. In particular, we give some properties of functions in this subclass such
as; coefficient estimates, growth and distortion theorems, closure theorem and
Fekete-Szego inequality for functions belonging to the subclass. Some ear-
lier known results are special cases of results established for the new subclass
defined.

1. INTRODUCTION AND PRELIMINARIES

Let U = {z € ¢ : |z] < 1} be the unit disk. In the usual notation, let A denote
the class of functions f(z) which are analytic in the open unit disk and of the form

(o)
f(2) :z—|—2akzk, (1.1)
k=2
which is analytic in the open unit disk U and let
2
=— >0 1.2
W) = ey 52 (12)
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with v(s) =1 for s = 0 be the modified Simoid function. (See details in [T} 2, [3] [4,

)

Also, we denote by T the class of functions of the form
(oo}
f(2) :z—Zakzk, ar >0 (1.3)
k=2
as a subclass of A.

The class T of functions with negative coefficients from second term was first in-
troduced by Silverman [6] and has since then opened up a prolific line of research
in that direction among function theorists.

For f,(z) € T, Oluwayemi and Fadipe-Joseph [5] gave the following definition:

oo
fy(2) =2z — Zv(s)akzk, ag >0 (1.4)
k=2
as a consequence of (1.3). We note that y(s) = 1+ 35— 5:5° + 5155° — 1oa555" +- - -

defined by (L.2). Furthermore, we define identity function for T, as
ey(2) = 2. (1.5)

2. DIFFERENTIAL OPERATORS

2.1. Salagean Differential Operator.

Definition 2.1. [7] For f € A,n € X, the operator D" is defined by D™ : A — A.
Df(z) = f(2)
D'f(2) = 2f (2) (2.1)

D" f(z) = 2(D"f(2)), z€U
Remark 1:If f(2) =2+ ) apz® € A, then
k=2
D"f(z) =2+ Z khapz® 2 € U (2.2)

k=2
2.2. Al-Oboudi Differential Operator.

Definition 2.2. [§] For f € A,n € NUO, the Al-Oboudi differential operator DY
is defined by D™ : A — A.

D°f(2) = f(2)
D}f(2) = (1—06)f(2) +62f (2) = Dsf(2) (2.3)

D5 f(2) = Ds(Di f(2)), z€U.
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Remark 2 : If D} is a differential operator and for f € A :
o0
f) =2+ azh,
k=2
we have
oo
n _ n k
5f(z)—z+2[1+(k—1))\] arz”,z €U (2.4)
k=2

and
(D5 f(2)) = (D3 f(2) +02(D5H f(2))
When § = 1, we get the Salagean differential operator (2.2)).

zeU. (2.5)

2.3. Opoola New Differential Operator.
Definition 2.3. [9] For a function f € A with
Dif(z) =1+ 1+ (k+B—p— D "axz"", 0<p<pt>0.
k=2

Opoola defined the differential operator D™(u, 5,t)f(2) such that

D%(u, B, 1)f(2) = f(2)
DMp, B,6)f(2) = 2Di f(2) = 2tf (2) = 2t(p = B) + (1 + (u = B= D)) f(2) (2.6)

D" (, 8,0 (2) = =D[D" (11, 8,)f(=)], n €NUO.
Remark 3: If D"(u, 8,t)f(z) is a linear operator such that for f € A,
[ee]
D"(u, B, 1) f(2) = 2+ [1+(k+B—p—1)t]"arz", z€U0< pu<B,t>0. (27)
k=2
It turns out that the differential operator D™ (u, 8,t) f(z) reduces to the Salagean

and al-Oboudi differential operators (2.2) and ([2.4]) respectively for suitably varied
parameters and by letting ¢t = A.

2.4. Differential Operator Involving Modified Sigmoid Function.

Definition 2.4. [[4], [5]] Fadipe-Joseph et al. introduced Salagean differential op-
erator D" f.(z) involving modified sigmoid function which is defined as follows:
Let f,(z) € T, the Salagean differential operator denoted by D™ f.(z) is defined by

Dfy(2) = f5(2)

D" f,(z) = D[D""' f,(2)]
V(S)Z(D”_lfv(z)), zeU.
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Hence,

D" f,(z) )z + Z’y"“ "apz®, 2z e U. (2.9)

2.5. Darus and Ibrahim Generalized Differential Operator Involving Sig-
moid Function.

Definition 2.5. [[5] Oluwayemi and fadipe-Joseph introduced the generalized dif-
ferential operator DY , f+(2) involving sigmoid function as a consequence of [10] by

following (2.9):
DY, fy(2) )z — Zv"“ — 1)\ — w) + k]"ay2* (2.10)

for A\,w > 0. For more mformatwn on this, interested reader may see [4] and [10]
2.6. Ruscheweyh Operator Involving Modified Sigmoid Function.

Definition 2.6. [5] Recently, Oluyemi and Fadipe-Joseph gave a Ruscheweyh Dif-
ferential operator involving the modified Sigmoid function R" : T, — T, with
n € NUO such that

R"f(2) =2+ Z’y Ol wranz®, ap >0, zeU; (2.11)

where y(s) =
Moreover,

%, s >0 with y(s) =1 for s =0.

4+ +2)---(n+k—1) (2.12)
N (k—1)!
(n—|— 1)k—1

(Dg-1

Hence, B(0,k) = (k 6 1) — M1

Beas = Bun) = Bk = (")

(Dk-1

2.7. Linear Combination of a Generalized Salagean Differential Operator
and Ruscheweyh Operator involving modified sigmoid function.

Definition 2.7. [5] By combining the generalized Salagean differential operator
involving modified sigmoid and the Ruscheweyh operator involving modified sigmoid
function, the following operator was defined in [5] by Oluwayemi and Fadipe-Joseph
as:

;l,wf'y(z) = NDSL,wf'y(Z) + (1 — ﬂ)Rnf'y(Z)
= [py™(s) =+ 1]z = Y A(){py™(s)[(k — 1)(A = w)]" + (1 — p) Bi(n) yax 2",

k=2
(2.13)



86 OYEKAN EZEKIEL ABIODUN AND AWOLERE IBRAHIM TUNJI

for A€ [0,1] ,p€]0,1], zeU.
Where DY f,(z) and R"f,(z) are defined respectively in and (2.11)) respec-
tively.

We note the following in respect of given by (2.13)):

(i) Equation (2.13)) corrects the one defined for &%  f, () in [5].

(ii) That the operator defined in (2.13]) is consequent upon a generalized differ-
ent operator defined by Darus and Ibrahim [IT].

2.8. New Differential Operator Involving Modified Sigmoid Function.

Definition 2.8. Let f,(z) € T, then from (2.7) and (2.11) we obtain o generalized
differential operator involving modified sigmoid function as follows:

D" (¢, B,1) f(2) Z+Zv"“ 1+ (k+B—p—Dt"ax*, 2 €U, (2.14)

for0<p<pB, neNuUo0,t>0.

We note here that 1 has been replaced by ¢ for convenience.
2.9. New Differential Operator Involving Sigmoid Defined by Convolu-
tion. For the purpose of defining our new differential operator of interest, the

following definition is required:

Definition 2.9. (Hadamard product or convolution): The Hadamard (or
convolution) of two analytic functions f(z) given by (L1)) and g(z) = z + Y by2*
k=2

is given by
F)xg(z) = (f9)(z) =2+ Y _axbez", z€U. (2.15)
k_

Following - for (2.10)) and ( -, a certain new differential operator involving

sigmoid function deﬁned by convolution is defined as follows:

DX (@, 8,0) f1(2) = (DX o f1(2)) * (D™ (0, B,1) f+(2))

z—l—Z’y"H N1+ (k+8—¢—Dt]"[(k— 1)\ —w) + k]"ap2"

(2.16)

2.10. Linear Combination of the New Differential Operator Involving Sig-
moid defined by Convolution and Ruscheweyh Operator involving modi-

fied sigmoid function. Following (|2 , we combined equations ([2.11)) and (| -
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above to obtain a certain operator define as follows:

EL(B, A w, ¢,1) f(2)
= uDX (@, 8,0)f7(2) + (1 = )R f+(2)

= 7" (s) =+ Uz = Yy " L+ (k+ 5 — ¢ = D" [(k = (A — w) + K]"
k=2

+ (1 — ) Bg(n)}arz"

(2.17)
Remark 4: (i) Forn=0,u=11in (2.17) we have,
F) =2 = 3 As)ans,ar > 0,
k=2
defined by (L.4).
(i) Fort=0,u=11in (2.17) we have,
D" (¢, B,t) f(2) Z+Zv”“ 1+ (k+ 8- ¢ — )t a2
defined by ([2.16]).
(iii) For pu=01in (2.17) we have,
R"f,(z —Z—Z’y n+k71akzk, ar <0, zeU
defined by (2.11).
(Iv) Fort=0in (2.17) we have,
% ofy(2) = [y (s)—pt1]2 Zv ){i" (5)[(k=1)(A=w)]" +(1—p) Bi (n) Yar 2",

as defined in (2.13]) and corrects the one defined in [5].
(v) Fors=0,u=1t=6,=¢p=0,A=1and w=2in (2.17) we have,

oo

Pf(z)=2— Z[l + (k= D)N"apz*, 2z € U
k=2
which is Al-Oboudi differential operator for function f € T of the form (|1.3)).
(vi) Fors=0,u=1,t=0,A=w=0in (2.17) we have,

D"f(z —z—Zk apz®, 2z €U,

which is Salagean differential operator for functions f € T.

In the field of geometric function theory, various subclasses of the normalized
analytic functions which are univalent have been studied from different viewpoints.
Many authors such as [[3],[4], 5], [10], [11], [12], [13], [14], [15], [16] [17], [18], [19], 201, [21], [22] ]
have successfully defined and studied various subclasses of univalent functions. Par-
ticularly, Joshi and Sangle[13] introduced and investigated subclass T, Dy o, (e, 8, &, ;1)
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of univalent functions by using Al-Oboudi operator as a generalized Salagean dif-
ferential operator in the unit disk U. This was followed by the work of oluwayemi
and Fadipe-Joseph[5] wherein they introduced and investigated subclass
Ty Dy o fy(a, 5,&, s p - n) by using the generalized differential operator (I)K,wfv(z)‘
The motivation for this present work are the works of both Joshi and Sangle and
Oluwayemi and Fadipe-Joseph. In particular, we introduce and investigate the class
Ty Dy (e, B, t,w, ¢, A, n, &, t;p - n) as a subclass of univalent functions by using the
generalized differential operator E}} (53, A\, w, ,t) f,(2).

2.11. The class T, Dy . (a, B, pt,w, p, \, 1, &, t;p : n).

Definition 2.10. {T',Dj (e, 8,w, 0, \,n, &, t;p = n) :} A function f,(z) € Ty de-
fined by is in the class Ty Dy (v, B,w, 0, \,n,&,t;p 2 n) if
B3 (B 2w, 0,0 f+(2)] — [ (s) — p+ 1]
PEI(EL (B, A w, 0, 8) f+(2)) ] = [(ER (B, A w, 0, 1) f1(2))" = [uy™(s) — p + 1]

where a € [0,4),7 € (0,1),3 << 1,1 €[0,1],0 > ¢ < B,n € NUO,
n,t >0,p>2and z € U.

<,

3. MAIN RESULTS

In this section we find the coefficient estimates for the functions in the class
T,Dy (e, B, 1w, 0, A\, 0, &, t;p : n) . Our main characterization theorem for this
function class is stated as Theorem 3.1 below.

3.1. Coefficient Estimates for class T, Dy . (o, 5, 1, w, o, A, 0, &, t;p - n).

Theorem 3.1. If a function f.(z) belongs to the class Ty Dy ., (a, B, p,w, 0, A\, 1n,&,t;p :

n),
then

Y k()L +npé = D" ()L + (k+ 8 — @ = DI [(k = (A —w) + k)"
k=2

+ (1= ) Bg(n)}agz"
< pnlpy™(s) — p+1—af

Proof. Suppose f-(z) € TyDx o (a, B, t,w, 0, A, 1, &, t;p = n), by equation (2.17) and
definition [2.10} we have that

\ =S k() )+ (B — o — DAk~ (A —w) + A"
k=2

+ (1 — ) Bi(n)}yapz"1

< =Y pénlpy"(s) — g+ 1= alky(s)[1+n(1 = p&)[{ur" (s)
|
k=2

[+ (k+ 8 —o—DH"[(k = 1)(A = w) +&]" + (1 — p) By (n) barz"""!
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|z| <r and as r — 17, then

Zkv Huy" ()1 + (k+ 8 — ¢ = Di]"[(k = (A —w) + k" + (1 — p) B(n) fak

< pénluy™(s) — p+1—al + > nky(s)(1 = p&){py"(s)
k=2

1+ (k+8—¢— D" [(k—1)(A—w) + k" + (1 — u) Br(n) tar
=>Zk7 [1+n(pg = DI{p" ()1 + (k+ 8 — o — DI [(k = 1)(A —w) + k]"

+(1— 1) Bi(n) Yax,
<pénlpy"(s) —p+1-qj

(3.1)
Hence,
- pEnlpy™(s) —p+1—af
2. S AT - D @ Gr g )
[(k = 1)(A —w) + k]" 4+ (1 — ) B(n)}
The result is sharp for
fe) =z - pEnlpy"(s) —p+1—af k
ky(s)[L+np€ = D™ ()1 + (k+ B8 —p — 1)t]"
[(k = 1)(A —w) + k]" 4+ (1 — ) B(n)}
0

Corollary 3.2. Let a function f,(z) € TyDy (o, B, pt,w,0,X\,n,&,t;p 2 n), then

Z k()L +n(p€ — D]{pn" (s)[(k — 1)(A = w) + K" + (1 — p) Bre(n) }ay2"

Spfn[m (8) —p+1—al,

which is the correct form of Theorem 8.1 in [5] when n = f.

Corollary 3.3. Let s =0, then we have that a function f.(z) belongs to the class
TID)\,w (Ol, ﬁv M, W, ©, >‘7 1, f, t7p : TL), then

D KL+ n(pé = DIy ()L + (k+ 5 — o = DI [(k = (A —w) + k)"
k=2

+ (1 ) Bi(n)}ay
S pfﬁ(l - Oé),

Corollary 3.4. Ift =0, in corollary[3.3,then we have the following:
Let a function f,(z) belongs to the class T1 Dy (v, B, p,w, 0, A\, n,&,0;p : n), then

DKL+ (€ — D{ul(k = 1)(A —w) + k" + (1= u) Bi(n) haxz*

S p@?(l - Oé),
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which is Corollary 3.2 in [B] when n = 3.

Corollary 3.5. If u =1, in corollary[3.4 then we have the following:
Let a function f,(z) belongs to the class Th Dy (a, 5,1, w, 0, A,n,&, 0;p : n), then

KL+ 006 = DI{[(k = DA = w) +&]" + (1 = 1) Bi(n) yaxz"

M8

o

=2
< pfn(l - a)v

which is Corollary 3.3 in [5] when n = f.

4. GROWTH AND DISTORTION THEOREMS FOR THE CLASS
T’yD)\,w(a7 67 H, W, @, A7 m, ga tap : n)

Theorem 4.1. If a function f(z) € TyD (e, B, 1, w, @, A\, n,&,t;p = n), then for
|z| <r <1, we have

. pEn[py"(s) —p+1—a 2

2[1+ (s = D ()1 + (k + 8 — o = D [(A = w) +2]" + (1 — p) Ba(n) }

< |f+5(2)]
- pEn[p" (s) —p+1—aq .2
2L+ @€ — D{py(s)[L+ (k+ 8 — ¢ — D" [(A — w) +2]" + (1 — ) Bz(n)}

and

L pénlpy"(s) —p+1—qf .

[1+nmpE =Dy ()1 + (k+8 —¢ = Di]"[(A = w) +2]" + (1 — p) Bz(n) }
< |f5(2)]

N pén(py"(s) —p+1—a ,
[ +npE =Dy ()1 + (k+ 8 — ¢ — D" [(A = w) +2]" + (1 — p) Bz (n) }
Proof. Since f,(z) € Ty D w(c, B, t,w, 0, A, 0, &, 85 p - 1), Theoremreadily yields
the inequality

ia - pénlpy"(s) —p+1—al
P22+ nE — D{m ()1 + (k+B8—¢— DI [(A —w) + 2"

b= (1 1)Ba(n)}
(4.1)
Thus, for |z| = r < 1, and by making use of (4.2]) we have
() < L2+ D v(s)anlF < r+a(s)r* Y ax
k=2 k=2
pEn[py"(s) —p+1—qf 2

<r+4

29(5)[L+ n(pé — D" ()1 + (k+ B — o — D[N —w) + 2 f
+ (1 = p)Ba(n)

and
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(2 12l = Y A(s)anl2] = r = (s)r® ) a
k=2 k=2
. pénlpy™(s) —p+1—a .2
T A= D+ (k4B e = DI —w) 27
+ (1 = p)Bz(n)

Also from Theorem it follows that
()1 + 0P — D" ()1 + (B + B8 — ¢ — D" [(A —w) +2]"

+ (1= @)Ba(n)} Y kay
k=2

Y k(L + (k+ 8= = DA = w) +2]" + (1 - u) Bz(n) by
k=2

pénlpy"(s) —p+1—al.

Hence,
£ ()] <1+ A(s)kar|F| < T+A(s)r > ax
k=2 k=2
<14 PNy (s) —p+1—af .
= [D+nmE = DR ()4 (k+ B8 — ¢ — DI [(A —w) +2]" )
+ (1 — p)Ba2(n)
and . .
F @2 1= 3 (ka2 1) > ar
k=2 k=2

— pEnlpy"(s) —p+1—of .
— o e =D G+ B+ B - = DI —w) + 2"
+ (1 = p)Bs(n)

This completes the proof of Theorem O

4.1. Closure Theorem.

Theorem 4.2. If a function f,(z) € TyDy(a,B, p,w,0,\,n,&tp @ n). Let
fi(z) =z and
Fi(2) = o pénlpy"(s) —p+1—al Lk
K ky(s)[L+n(p€ = D" (s)[L+ (k+ 8 — o = Di]"[(k = 1)(A —w) + K]" ) ’
+ (1 — ) Bi(n)

k> 2.
Then the function fy(z) € TyD (e, B, pt,w, 0, A\, n,&,t;p : n) if and only if it can
be expressed in the form

F(2) = e fr(2), (4.2)
k=2

o)
where p >0 and > up = 1.
k=1
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Proof. Let f,(z) = § i fe(2), 1 >0,k =1,2,--- , and ic: pr = 1.
Thus = =
£ =S wfele) = mh2) + 3 mful2)
k=1 k=2
Therefore,
fry (2) = pf1(2)
+Zuk{z pénlpy"(s) —p+1—al ok

s)1+nPE— D" ()L + (k+ 68— ¢ —1t]" )
[(k = 1)(A —w) + k" + (1 — ) Bi(n)
= (pr+po+ps+---)z

_Z“ pénluy"(s) —p+1—af N
Pt "y (s)[1 + n(p€ - )]{ " (8)[1+ (k+ B — ¢ — 1)t]" )
(k= 1)(A —w)+k]”+(1—u)3k(n)

pa(2) + p2(2) + ps(z) + - = pa(2) + Zﬂkflc(z)

118

where p1 +p1 +pyp + -0 = i = 1. Then

k=1

o

L pénlpy"(s) —p+1—a
F(2) = g;%kﬂ@ﬂ+n@§—UHwW@ML+%+ﬁ—¢—1MWW—4XA—W+WP }
+ (1 = p) Bg(n)

It follows that

Z . pén[uy"(s) —p+1—aqj
L+n(pé = Dy ()1 + (k+ 8 — ¢ — D] [(k — 1)(A —w) + k|™ + (1 — ) Br(n) }
" kw( )[1 + n(p§ — D" () + (k+ 8- = D" [(k = 1)(A —w) + k" + (1 — p) Be(n)}
pénlpy(s) —p+1—q]

oo
Z#k=1—u1 <L
k=2

In other words,

fw(z):u1+2uk=1:>1—,u1§1.
k=2
By Theorem [3.1] therefore,

f’Y(Z) € T"/D)\,w(aaﬁalu’vc"},@aAvnagat;p : Tl)
Conversely, if f(2) € TyDy o (e, B, pt,w, ¢, A\, n,&,t;p : n), then by Theorem

o < pénlpy"(s) —p+1—af
= ky(s)[L+n@€ = D" ()1 + (k+ 8= =Dt [(k = 1)(A —w) + k]" )
+ (1 — p) By (n)
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By setting

- pEnpy™(s) —p+1—af
M= TG nE D G+ (4 5=~ DI = D0~ w) + R
+ (1= ) By () 1

and

(oo}
p=1- Zuk-
k=2

So that
pEnluy"™(s) = p+1 = alky(s)[L+ n(p — D{py"(s)[1 + (K + B — o — )"
e = [(k = 1)(A—w) + K" + (1 — p) Br(n)
[L+nmE =Dy (s)[L+ (k+ B8 — o — D"[(k = 1)(A —w) + k]"
+ (1= ) Br(n)pénluy™(s) — p+ 1 — aJky(s).
Consequently, fi can be expressed in the form . Hence , f+(2) = > peq e fr(2).
Thus the proof is complete. 0

5. FEKETE-SZEGO INEQUALITY FOR THE CLASS
T’yD)\,w(av Bv H,w, @, )‘7 m, 57 t; p: n)

In this section, Fekete-Szego inequality for functions f,(z) belonging to the class
T, Dy (e, B, 1w, ¢, A\, n, &, t;p - n) was established.

Theorem 5.1. If a function f,(z) belongs to the class ToyDy (v, B, p,w, @, A\, 0, &, t;p
n), and A € N. Then

<

az — Aa it

‘AB2 — AAQC‘

Proof. From (77),

péEn[py"(s) —p+1—q]

%S T 0 - D G+ i p—p—nr . =% 6D
(k= 1)(A\ —w) +k]" 4+ (1 — 1) Br(n)}
From ,
o — pénlpn™(s) —p+1-af (h=2)
2T ()L +n0E - Dy () 1+ 0+ B — )" ’
(A —w)+2" + (1 — p)Bz(n)}
and
- pén[uy"(s) —p+1—a] (k= 2)
* T 3y (s) L+ npE — D{m ()L + 2+ B— )"
2(A —w) +3]" + (1 — ) Bs(n)}
So that
e — Ad2 — pénlpy"(s) —p+1—af
° 27 391+ (s — D{py" ()1 + (24 8 — p)i]"
20\ —w) +3]" + (1 — u)Bs(n)}
_ { pén™(s) —n+1—al }2
2y(s)[1 +n(p§ — D" ()1 + (1 + B — p)t]"
[(A=w)+2]" + (1 — p)B2(n)}
Such that

A=p&nlpy™(s) —p+1—a
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g 3L +neE = D" ()1 + 2+ 8 - )t]"
20 —w) +3]" + (1 = p) Bs(n)}
o — 2L +npg = DI{py™(s)[1 + (14 5 — p)t]”
[(A=w) +2]" + (1 = p) Bz(n)}
Therefore,

'AB2 — AAZC"

as — Aa3| < it

Let t = 0 in Theorem [5.1] we have the following:

Corollary 5.2. If a function f(z) belongs to the class To,Dx ., (c, B, pt,w, o, A, 1, &, 05 p :
n), and ¢ € N. Then

AB? — AA2C RO2 — oR2Q)
a3 — Aay) < ’ el ‘ 29155 1
For
A=pénpy"(s) —p+1-a]=R
B, = )1+ — " (s) _Q
! 2(A —w) +3]" + (1 —p)Bs(n)} — 7
o, = 2L +nE = DH{m ()L + A+ 6=t o
! (A —=w)+2]" + (1 = p)Ba(n)} —
Remark 5:
ROZ — pR2Q
oo - | < [ S

where A = ¢ is the result in [5] that is due to Oluwayemi and Fadipe-Joseph.

6. CONCLUSION

This work is a generalization of some earlier well-known (defined) differential
operators, some of which were illustrated in this work. Particularly in this work,
we studied some geometrical properties of functions in the class

T’ka,w(Oﬁ6)”7(*}7%0’)‘777)6’7&;]) : n)a

and when ¢ = 0 we obtained the class T, Dy (e, 8, &, 1;p : n) studied in [5]. Fur-
thermore, by suitably specializing the parameters involved, we obtained some of
the results in [5] as special cases of our own results. Finally, by suitably varying
the parameters involved in the results obtained in this new work, one is guaranteed
of some other existing results and presumably new ones.
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