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We propose some classes of series representations for 1/ and 72 by using a new WZ-pair. As examples,

Furthermore, our results lead to new combinatorial identities and binomial sums involving harmonic
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1. Introduction

In 1914 in his famous paper [25] Indian genius mathematician Srinivasa Ramanujan proposed 17 extraordinary
series for 1/m without giving a complete proof. The most well known two of them were as follows:
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and
1~ (3)i42n+5 1

16 & (1)3 64

Here (a), stands for the Pochhammer symbol defined by
(a)p=1 and (a), =ala+1)(a+2)...(a+n—-1) ,n>1.

Ramanujan’s series for 1/m have not received much interest from mathematical community until 1985. In 1985
Gosper used one of Ramanujan’s series to calculate 17,526,100 digits of 7, which is at that time was a world record
[2]. In 1987 Peter and Jon Borwein [5] provided rigorous proofs of all 17 of Ramanujan'’s series for 1/7 for the first
time and also offered many new series representations for this constant; see [3, 4, 6]. ]. Guillera provided the proofs
of 11 of Ramanujan series by using the W Z-method [19, Tables LII]. At about the same time as the Borweins were
devising their proofs, David and Gregory Chudnovsky [9] derived new series representations for 1/7 and used the
following their Ramanujan-type series

6n 13591409 + 545140134n
L2y
3n) 64032030 + 3/2

to calculate 2,260,331,336 digits of 7, which was a world record even in 1989. It should be remarked that before
Ramanujan in 1859 G. Bauer [1], and in 1905 W. L. Glaisher [10] had given series representations for 1/7. The
studies on Ramanujan-like series for 1/7 are continuing intensively today, too and recently, many new series of
this type have been published, see for example [7,8,11-23]. The aim of this paper is to derive new classes of series
representations for 1/m and 72 by using the W Z-method. Our results enable us to establish infinity many of new
Ramanujan type series for the constants 1/7 and 72. Our results also lead to some new combinatorial identities
involving harmonic numbers. The remainder of this paper organized as follows. In the next section, we explain how
the W Z-method works briefly. In Section 3, we present our main theorems. In the final section choosing particular
values for a free parameter, we offer many series representations for the constants 1/7 and 72. In this paper we
shall frequently use the generalized binomial coefficient

s\ I'(s+1)

t) T+1)I(s—t+1)
where ¢ and s are real numbers which are not negative integers, and the Legendre’s duplication formula for the
classical gamma function I'(z) = [ t""te~'dt (x > 0)

r (n + ;) éf:)’lﬁ n € NU{0}. (1.1)

2. The WZ-method (Wilf-Zeilberger Method)

In this section we want to explain the W Z-method briefly. A discrete function A(n, k) is hypergeometric if both

A(n+1,k) and A(n,k+1)
A k) A(n, k)
are rational functions in both n and k. A pair (F,G) of hypergeometric functions is said to be a WZ— pair

(Wilf-Zeilberger pair) if for all k € Zand n = 0, 1,2, ... they satisfy
Fn+1,k)— F(n,k) = G(n,k+ 1) — G(n, k). (2.1)
In this case Wilf and Zeilberger [24, Chapter 7] and [27] proved that there exists a rational function C(n, k) such

that G(n, k) = C(n, k)F(n, k). Wilf and Zeilberger called C(n, k) as certificate of the pair (F, G). Summing onn > 0
both sides of (2.1), one gets

i{G(n,k +1)—-G(n,k)} = i{F(n +1,k) — F(n,k)} = lim F(n,k) — F(0,k). (2.2)

n— 00
n=0 n=0
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In most applications it is usually very easy to evaluate F'(0, k) and lim,,_,o F'(n, k). So, taking particular values for

k in (2.2), we can obtain many identities. We can also sum both sides of (2.1) over ks and in this case we get

oo

k=0

If G(n,0) = 0 and limy_,c G(n, k) = 0, we get

i{F(n +1,k)—F(n,k)}=0n=0,1,2,3,...),
k=0

Z{F(n +1,k)—F(k)} = Z{G(n,k +1)-G(n,k)} = klln;o G(n, k) — G(n,0).
k=0

which implies that >, F(n, k) is a constant. Let us say > -, F(n, k) = C. Usually, it is very easy to evaluate
this constant by choosing a particular value for k (usually k=0), in other cases we evaluate it by taking the limit as

k — oo. Please refer to [24] and [27] for more information about the W Z-method.

3. Main results

In this section we collect our main results.

Theorem 3.1. Let a be any real number, which is not zero and a negative integer. Then we have

i Bn+2a+1)P(n+1/2)P(n+a+1)  4/70(a) 2
~  (n+al(n+2)T(n+a+3/2)  T(a+1/2) d

Proof. Consider the following discrete function.

F(n, k)= —

1 (n+2a)(k+1/2)['(n—k+1/2)T(n+a+1)'(a+1/2)

T oark+a)n—k+a)l (@I (k+ )I(n—k+)l(n+a+1/2)

The package EKHAD [24] allows us to obtain the companion

-10Bn+2a—2k+3)I'(n—k+3/2)T(n+a+1I'(k+1/2)T(a+1/2)

G(n, k)= —

27 (n—k+a+1)n+ 1)K (a)T(n+a+3/2)T(n—k+2)

where k € Z and n € NU {0}. That is, (F, G) is a WZ-pair, so that, we have
Fn+1,k)— F(n,k) = G(n,k+1) — G(n, k).
Summing over n both sides of (3.4), we get

Z{F(n +1,k)— F(n,k)} = Z{G(n, kE+1)—G(n,k)}
n=0 n=0

or

n—roo

i{G(n, k+1)—G(n,k)} = lim F(n,k) — F(0,k).
n=0

By Stirling’s formula n! ~ n"e™"+v/27mn, we can easily find that

(n+2a)'(n—k+1/2)T(n+a+1)
nooo (n—k+al(n—k+1)T(n+a+1/2)

which yields

lim F(n, k)=

1

IN'k+1/2)T(a+1/2)
(k+a)l(a)T(k+1) "
We therefore have

S (G k4 1)~ Gl k) = g T — O,

(3.1)

(3.2)

(3.5)

(3.7)
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For k = 0 this immediately gives

;{G(n, 1)~ G(n,0)} = ;rr(l/i)(l;(ji)lﬂ) L

But since G(n,0) = 0 and I'(1/2) = /7, we get

iG(n 1= 1 Ta+1/2)

Z 2/7 T(a+1)
or by (3.3)
i Bn+2a+DI(n+1/2)T(n+a+1)  4/al(a) 2
~  (n+al(n+2)T(n+a+3/2)  Tla+1/2)
O
If we substitute a = m — 1/2 (m € Z) in (3.1), we get
Corollary 3.2. Let m be any integer. Then, we have
i 3n+2m 2n\ (2n+2m\ 1 4™ T(m+1/2) 4™ 1 (3.8)
(n+1)(2n+2m — 1) n+m )16n  w(@2m—1)I(m) 22m—1)7 '
In particular, if m is zero or a negative integer, we have
2 —4m 3n + 2m 2n\ (2n+2m\ 1 1
4m+1 nz_%(n+1)(2n+2m—1)(n><n+m)16”_7r' 3.9)
Theorem 3.3. Let a be any real number, which is not a negative integer, then we have
z": 2k\ (2n—2k\ 1 2"I(a)[(n+a+1/2) (3.10)
k n—k Jk+a T(n+a+DT(a+1/2) '

k=0

Proof. let F'and G be as in (3.3) and (3.4). Summing both sides (3.4) on k = 0,1,2,..., we get
> {F(n+1,k) = F(n,k)} = Jim G(n, k) — G(n,0).
—00

By using Stirling formula it is very easy to see that limy_,., G(n, k) = 0. Clearly, we also have G(n,0) = 0. Then for
alln=0,1,2,..., we get

oo oo

iF(n,k):ZFnJrlk:ZFnJer ,
k=0

k=0

which implies that >".~ , F(n, k) is a constant. Let Y- , F(n, ) = A. We can evaluate the constant A by setting
n = 0, so that we obtain

A iF 1 2aI‘(a+1) (a+1/2)i D(k+1/2)T(—k+1/2)
(

— B T(@)T(a+1/2) & (k+a)(a—kT(k+ 01— k)

Notice that this sum is zero for k = 1,2, ... except k = 0. Hence we get

_1T(a+1)al(1/2)* 1T(a+lam _

A 7 T(a) a? _7r1"(a+1)a_

Hence, we conclude that foralln =0,1,2, ...

iF(n, k) = 1.
k=0
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From this identity, by the help of (1.1), we obtain

- L(k+1/2)T(n—k+1/2 2rT(a)L(n+a+1/2
Z /2)I( /2) _ (a)I'( /2)

k:O

n—k+a)l(k+1DT(n—k+1) (m+2a)l(n+a+1(a+1/2)

k=0
Since

1 1 1 1
(k+a)(n—k+a) _n+2a<k+a+nchra)7

" 2K\ (2n—2k\ 1  4"T(a)['(n+a+1/2)
;_()(k)(n—k>k+a_F(n—|—a+1)F(a—|—1/2)’

we get from (3.11)

which is the desired result.
Corollary 3.4. Let a be any real number, which is not zero and a negatve integer. Then we have

I Y R A ()
Z 4n(n+a) T(a+1/2)

n=0

"L 2K\ [2n — 2k 1 22T (@) (n+a+1/2)
Z(k)( n—k )(k+a)(n—k+a) - (n+2a)T(n+a+ 1)l (a+1/2)

(3.11)

(3.12)

Proof. Multiplying by 1/n4~" both sides of (3.10) and taking infinity the upper bound of the summation, we get

Z(%)f(zn_zk) I T Jal(m+a+1/2)

k) 4n —k Jk+a T(a+1/2) TI(n+a+1)

k=0

Since, by Stirling’s formula,

lim
n—oo 4mM

_ —k
Vn (2n =2k _ 4 and  lim vnl(n+a+1/2) _1,
n—k N3 nsoo  D(n+a+1)

the proof follows from (3.13) by letting taking the limit of both ides as n — oo.

Corollary 3.5. Let a be a non-zero real number such that 2a is not a negative integer. Then we have

i <2n+2a> 4=n V722411 (a)

n+a Jn+2a Ia+1/2)

n=0

Proof. From (3.11), we have

Zn: ) (n) _ 2T (a)T(n+a+1/2)
Ak (k+a) 4 F(n—k +a)  (n+2a)T(n+a+ 1) (a+1/2)

Summing both sides (3.15) over n, it follows that

n=0
Since the left side is a Cauchy product of two series, we conclude

o0

S 0 B 2P T(n+a+1/2)
(;)4”(71—1—(1)) B 1/2 Z (n+2a)T(n+a+1)

Now the proof follows from (3.12) by the help of (1.1). the result by using (3.4).

= (3) ) _wW(a) & Tnta+1/2)
Z (kz—o 4k(kk—|— a) 4nF(n —kk + a)) - T(a+1/2) nzz:o (n+2a)F(n+a+1)

(3.13)

(3.14)

(3.15)

O

Remark 3.6. The identity (3.12) can also be obtained from the Gauss hypergeometric series but we want to give a

proof because of the method we used can be employed in other places.
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4. Applications

4.1 Series for 1/7

Taking particular values for m in (3.7) and (3.8) we can obtain many series for 1/7 by the help of the duplication
formula (1.1).
Example 1. If we set m = 0 in (3.9), we get

22 167 n—|—711)(2n—1)<2n> :%

Example 2. If we set m = —1in (3.9), we get

;i 3n—2) o\ 1
44=16n(2n—3)(2n—1)(n+1)\n /) 7

Example 3. If we set m = —2in (3.9), we get

i 2n+3 JBrn+2)(2n+1) (2n)* 1 1
— ) 16" 7

D(n+2)(n+3)(2n—1 T

Example 4. If we set m = —3 in (3.9), we get

20K (2n+5)(2n+3)(2n + 1) <2n 11
6 ) ) 6n 7

6 < (2n—1)(n+4)(n+3)(n+2 T

Example 5. If we set m = —4 in (3.9), we get

9 = (Bn4+4)(2n+7)(2n+5)(2n+3)(2n + 1) (2n>2 11
) 67 7

32 4= 2n—1)(n+5)(n+4)(n+3)(n+2)(n+1 P
Example 6. If we set m = 1in (3.8), we get
,1§ nt2 (m)* 11
44~ (n+1)2\n) 16" =
Example 7. If we set m = 2in (3.8), we get
§_§§: @2n+1)Bn+4) 20\ 1 1
2 84 (n+1)2(n+2) \n/ 16" 7«
Example 8. If we set m = 3 in (3.8), we get

6" 7

8 16 — (n+1)%2(n+3)

15 15 <= (2n+1)(2n + 3) <2n>2 11
n

Example 9. If we set m = 4 in (3.8), we get

35 7 o= (2n+1)2n+3)2n+5)(3n+8) 20\ 1 1
n) 16" 1

16 324 (n+2)(n+3)(n+4)(n+1)2 -

4.2 Series for 72
Taking particular values for a in (3.14) we can obtain many series for 2.
Example 1. Setting a = 1/2 in (3.14) we get

o0

1 4n )
420 mt+DEn+1) ()
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Example 2. If we set a = 3/2 in (3.14), we get

- n+1 4n
167;) T+ 3@+ DEn+3) () .
Example 3. If we set a = 5/2 in (3.14), we get
128 & (n+1)(n+2) 4 )
B mrsent D t3)@nts) ()
Example 4. If we set a = 7/2 in (3.14), we get
512 (n+1)(n+2)(n+3) 4n )

=T .

5 —~ (n+7)2n+1)2n+3)2n+5)(2n+T7) (277)

4.3 Combinatorial identities involving harmonic numbers
Differentiating w.r.t a both sides of (3.10), we get

"2k (20— 2K\ 1 (Pnt2m)
5 = s={Y(a) +Y(n+a+1/2) —p(n+a+1)—(a+1/2)}, (4.1)
%(k)(n—k)(k—i—a) m(*™)

where ¢ (z) = I''(2)/T'(z) is the digamma function. Substituting particular values for a in (4.1) and using the
following duplication formula for the digamma function

) (n+ ;) = 2¢(2n) — 2log2 — ¢(n) = —y + 2Hs,, — H, — 2log 2,

where v = 0.57721... is the Euler constant, we obtain the following combinatorial identities involving harmonic
numbers.
Example 1. If we substitute a = 1/2 in (4.1), we get

n 2k 2n — 2k 1 . 16n{H2n+1 B H"}
kz_o<k>(n—kz)(2k+1)2_ @n+ 1)) (4.2)

Example 2. If we substitute a = m € Nin (4.1), we get

"2k (2n — 2k 1 2(Fmren) 1
- s Hmn Hm_Hm_Hm n = |-
Z(k)(nk)(km)z 2my < o AR 22 +2m)

k=0 m(m
Example 3.
o~ 2" {Hap i1 — H,
Z {Han 11 _ }:Elog2+G,

where G is the Catalan constant defined by G = Y~ ((71)n

@nynz- We want to give a proof of this identity. Summing
both sides of (4.2), after dividing by 87, we get

0o n o co n 2k 2n—2k o] 2k oo 2k
S - L g e L e 69
n=0 (277, + 1) ( n ) n=0 k=0 ( + ) k=0 ( + ) k=0
By [3, pg. 386], we have
oo (2k
sl @)
i
and (2k>
= (%) o _arcsin(2x)
Dot T T (45)
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Integrating both sides of (4.5) over (0,/2/4), and making the change of variable arcsin(2z) = u, we get

1 oo (2n> 1 /4
n = t udu. 4.6
33 24500 + 1 S et 4o

From [26, pg. 44,45] we have

/4 G
/ wcot udu = = log2 + —. (4.7)
0 8 2

Combining the identities (4.3)-(4.7), the result is obtained.
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