(v\ec“omc Joy,,

N
°

INTERNATIONAL ELECTRONIC ]OURNAL OF GEOMETRY
VOLUME 14 NO. 1 PAGE 217-225 (2021)
DOI: HTTPS: / /DOI.ORG/10.36890/1EJG.797112

wternag
,’Q/
m
/
tJ»o
Ano0°°

\

On Homogeneous Randers Metrics

Akbar Sadighi, Megerdich Toomanian® and Behzad Najafi

(Dedicated to the memory of Prof. Dr. Aurel BEJANCU (1946 - 2020))

ABSTRACT

In this paper, we study the curvature features of the class of homogeneous Randers metrics. For
these metrics, we first find a reduction criterion to be a Berwald metric based on a mild restriction
on their Ricci tensors. Then, we prove that every homogeneous Randers metric with relatively
isotropic (or weak) Landsberg curvature must be Riemannian. This provides an extension of well-
known Deng-Hu theorem that proves the same result for a homogeneous Berwald-Randers metric
of non-zero flag curvature.
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1. Introduction.

Unlike the Riemannian geometry and its natural connection (the Levi-CiVita connection), while in Finsler
geometry there are some important connections such as Berwald connection, Chern connection, Cartan
connection. All of these connections have their self Riemannian curvatures that are related to other Riemannian
curvatures of other Finslerian connections. These connections make different hh-Riemannian curvature and
then they provide different Ricci curvature if the definition of Ricci curvature is the same as Riemannian case
because in this case and unlike Riemannain case the obtained tensor is not necessarily symmetric. Indeed, in
Finsler geometry there is a vast opportunity to define the Ricci tensor. H. Akbar-Zadeh has proposed two Ricci
curvature tensors to Finsler geometry: one is defined by Ric;;, := $[F?Ric],s,. where Ric is Ricci curvature and
trace of R® which is abtained by contracting with ¢ and y’ of hh-curvature tensor of Finslerian coonnections
i.e. R, and the other can be defined by ﬁz’vcab = %(Rab + Ryp,), where R, is the trace of hh-curvature of Cartan

connection defined by R,, = R,;,. The substraction of Ric;; and R?ZE” is related to H-curvature which is
another important Finslerian quantity. In [2], D. Bao studied the Ricci flow in Finslerian setting by taking into
account the first choice of defining the Ricci tensor. In order to provide a natural extension of Einstein metrics
from Riemannian geometry to Finsler one, in 1988, Akbar-Zadeh used his first method of defining the Ricci
curvature and defined a new curvature so-called scalar curvature [1] and later In 1995, introduced Einstein
Finsler manifolds.

In [12], Li-Shen defined a new Ricci curvature tensor and obtain its relation with some non-Riemannian
quantities such as y-curvature and the quantity H. Also, Bao-Robles characterized the Einstein-Randers
manifolds [3][16]. This motivates us to reinvestigate the Ricci tensor.

Riemannian homogeneous spaces paly an important role in cosmological models, representation theory
and geometric analysis. Similar to the Riemannian setting, a Finsler manifold whose Lie group of isometries
acts transitively on it is called homogeneous. In [8], Deng-Hu extended Wallach’s theorem from Riemannian
manifolds to Finslerian ones and proved that SU(2) is the only Lie group among simply connected compact Lie
groups that admits a positively curved left-invariant Finsler structure. . This result provides a characterization
of positively curved homogeneous Randers spaces. It is proved that the imposing the conditions of being
Einsteinian metric with negative Ricci curvature on a homogeneous Randers space reduces it to a Riemannian
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one. In [11], they proved that a homogeneous Randers metric is Ricci-quadratic if and only if it is a Berwald
metric.
Let R;jii = Rijii(z,y) denote the Riemannian curvature of the Cartan connection and define the Ricci tensor

as R;; := R;;,. Using it, let us define a new Ricci tensor in Finsler geometry as follows
1 _ .
Rij := Rij — T (Riji. + Riji + F ' Fyi Ry jy™) " + IiRkjyk} (1.1)
where R = g"" Rimjr, Crii and I; denote the Cartan and mean Cartan torsions of F, respectively [20]. R;; is

not a symmetric tensor, in general. But in a Riemannian space, we get R;; = R;; which is a symmetric tensor.
A Finsler metric F' is called R-flat if R;; = 0. We prove the following.

Theorem 1.1. Every R-flat homogeneous Randers metric is a Berwald metric.

Let (M, F') be a Finsler manifold. Suppose that C,, I, L, and J,, denote the Cartan, mean Cartan, Landsberg
and mean Landsberg curvatures of F, respectively. The Landsberg (resp., mean Landsberg) curvature is the
rate of change of the Cartan (resp. mean) torsion along geodesics. By definition, L/C and J/I are regarded as
the relative rate of change of C and I along Finslerian geodesics, respectively. Then F is said to be relatively
isotropic (resp., mean) Landsberg metric if L + ¢F'C = 0 (resp., J + ¢FI = 0), where ¢ = ¢(z) is a scalar function
on M. In [9], Deng-Hu proved that a homogeneous Randers metric of Berwald type whose flag curvature
is everywhere nonzero must be Riemannian. We give the same type of rigidity property for homogeneous
Randers metrics which are isotropic mean Landsberg metrics. Indeed, we prove the following.

Theorem 1.2. Let (M, F)) be a homogeneous Randers manifold. If F is an isotropic mean Landsberg metric J 4+ ¢FI = 0,
where ¢ = c(z) is a nonzero and bounded scalar function on M, Then F is Riemannian.

Theorem 1.2 dose hold for homogeneous Randers metric with vanishing Landsberg curvature.

If F is Riemannian, i.e., F'(y) = 1/g(y, y) for some Riemannian metric g, then R, := R(:, y)y, where R(u,v)z
denotes the Riemannian curvature tensor of g. In this case, R, is quadratic in y € T,, M. There are many Finsler
metrics whose Riemann curvature in every direction is quadratic. A Finsler metric F is said to be R-quadratic
if R, is quadratic in y € T,, M at each point « € M. Every Berwald metric is R-quadratic. In [21], the authors
proved that every homogeneous R-qudratic metric is a Landsberg metric. There is a natural extension of
Landsberg metrics, namely stretch metrics. In [4], Berwald introduced the new non-Riemannian quantity called
by stretch curvature 3 which can be considered as a generalization of Landsberg curvature. The geometric
meaning of stretch metrics investigated by Shibata in [19] and Matsumoto in [14]. Recently, the authors prove
that every homogeneous (a, 3)-metric is a stretch metric if and only if it is a Berwald metric [21]. This throws
a light into the well-known Deng-Xu’s conjecture that every homogeneous Landsberg metric is a Berwald
metric [25]. As its applications, the authors show that the classes of R-quadratic or generalized Landsberg
homogeneous (a, 5)-metrics are Berwaldian. There is a weaker notion of metrics- weakly stretch metrics.
Taking trace with respect to g, in first and second variables of 3, gives rise the mean stretch curvature s,

A Finsler metric is said to be weakly stretch metric if £ = 0 [24]. Then we have the following

{Berwald metrics} C {R-quadratic metrics} C {Landsberg metrics}
{Generalized Landsberg metrics} C {Stretch metrics} C {Weakly stretch metrics}.

Theorem 1.3. Let F' = a + [3 be a homogeneous Randers metric on a manifold M. Then the following are equivalent:
(i) F is a R-quadratic metric;
(ii) F is a Landsberg metric;
(iii) F is a generalized Landsberg metric;
(iv) F is a stretch metric;
(v) F is a weakly stretch metric.

In this case, F reduces to a Berwald metric.
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2. Preliminary

Let M be an n-dimensional C'* manifold, TM = | J,.,, T» M the tangent bundle and T'M, := TM — {0} the
slit tangent bundle. Let (M, F) be a Finsler manifold. The following quadratic form g, : T, M x T, M — R is
called fundamental tensor

1 92
8,(1.v) = 555

[F%y—l—su—i—tv)} , u,v €T M.
s=t=0
Let x € M and F, := F|r,m. To measure the non-Euclidean feature of F,, define C, : T, M x T, M x T, M —
R by
L g )] =1 i
2 di |Byttw? =0 4 0rdsot

where u,v, w € T, M. By definition, C, is a symmetric trilinear form on 7T, M. The family C := {C,},crn, is
called the Cartan torsion.
Put

Cy(u,v,w) := {FZ(y—&—ru—Fsv—Ftw)}

9
r=s=t=0

Cy (’LL, v, U)) = Cl]k(y)ulvjwkv

where u = u'9;, v = v79; and w = w’9;. Then

Ciip — 10giy _ 1 0°F"
kT Oyl T 4 0yioyi oYk

By definition, F is a Riemannian metric ¢;; = g;;(x) if and only if C;;, = 0.
Fory € T, My, define I, : T, M — R by

L(u) =Y g7 (y)Cy(u,d;,0;),
=1

where {0;} is a basis for T, M at x € M. The family I := {I,},c7, is called the mean Cartan torsion [5].
Let (M, F) be an n-dimensional Finsler manifold. For a nonzero vector y € T, My, define the Matsumoto
torsion M, : T, M x T, M x T, M — R by

1
M, (u, v, w) := Cy(u,v,w) — m{Iy(u)hy(U,w) + I, (v)hy(u, w) + Iy(w)hy(u,v)}.
In local coordinates,
1
Mijk = Cijr — m{lihjk + Ll + Ikhij}v
where h;; := F'Fy:,; is the angular metric. A Finsler metric F' is said to be C-reducible if M, = 0.

Lemma 2.1. (Matsumoto-Hojo Lemma) A Finsler metric F' on a manifold of dimension n > 3 is a Randers metric if
and only if the Matsumoto torsion vanishes.

Given an n-dimensional Finsler manifold (A7, F'), then a global vector field G is induced by F on T'M,, which

in a standard coordinate (z°,y') for TM, is given by G = y' ;2 — 2G*(z,y)z2, where G' = G'(z, y) are called

Dyt
spray coefficients and given by following !

1, O°F? 8F2]

¢t = 19 8$k8y1y 9!

G is called the spray associated to F. A Finsler metric I is said to be affinely equivalent to another Finsler
metric ¥ on M if F and F induce the same sprays. A curve ¢ = ¢(t) in T'M, is called an integral curve of G if it
satisfies G(c) = ¢.

Define B, : T, M x T, M x T, M — T, M by By (u,v,w) := B, (y)u/v*w' 22|, where
; oatel
Bjkl = ayjaykayl'
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F is called a Berwald metric if B vanishes or equivalently G* are quadratic functions with respect to the
direction argument.
For y € T, M, define the Landsberg curvature L, : T,M x T, M x T,M — R by

1

Ly(u17u27u3) = 7§gy (B?j(ula u27u3)7y>7

and locally, L, (u1, ug,u3) := L ijk(y)uiuéulg, where
1
Liji = _§lelz‘jk'

A Finsler metric with vanishing L-curvature is called a Landsberg metric.
Fory € T, M, define J,, : T, M — Rby J,(u) := J;(y)u’, where
Ji = gjkLijlv

A Finsler metric with vanishing J-curvature is said to be a weakly Landsberg metric.
Let ¢(t) be a smooth curve and U(t) = U i(t)% «(t) be a vector field along c. Define the covariant derivative

of U(t) along ¢ by
du’ L OG! o)
j )
dt ) +U7(¢) oy? (C(t)’ C(t)) } 0% |e(t)
U(t) is said to be linearly parallel if D.U(t) = 0. In this case, the Landsberg and mean Landsberg curvatures of
F can be defined as follows

D:U(t) = {

Ly, w): — %[Cd(t) (0. VD). w(®))]l=o

J,(u): = % [L,(t) (U(t))} l—o,

where o(t) is the geodesic with o(0) = z, 6(0) = y and U(t), V(t), W (t) are linearly parallel vector fields along
o with U(0) = u, V(0) = v, W(0) = w.

For a nonzero vector y € T, M, the Riemann curvature is a family of linear transformation R, : T, M — T, M
with homogeneity R, = A?R,, VA > 0 which is defined by R, (u) := R} (y)u* 52, where

, OG? 02Gh . - 92GE 0G* 0GY
Ri(y) =2— — ——17 +2G7 — - — . 2.1
k() ozk  OxI 8yky * Oyioyk Oyl Oy* @1)
The family R := {Ry },c7ar, is called the Riemann curvature. Let us put
1 (OR., OR! » 1( 0°Ri O?R; }
by = — — Loy = = - - - . 2.2
R 3{ oyl OyF }’ gk { Oyidyt  Oyioyk 22)
Then
Ry =R 'y, Ry=Ruy, Rju+R;,=0 (2.3)

Take a local coordinate system (z°) in M, the local natural frame {32} of T, M determines a local natural

frame 0;|, for 7T M the fibers of the pull-back tangent bundle 7*TM, where 0;|, = (v, % 2),and v = % s €
T My. The fiber 7;T'M is isomorphic to T’(,,,M where 7(v) = x. There is a canonical section ¢ of 7*T'M defined
by ¢, = (v,v)/F(v). Suppose that V denotes the Cartan connection on 7*T'M. Let {e;}}"_; be a local orthonormal
frame field for 7*TM with e,, := £. If {w}?" ; denotes its dual co-frame field, then put

Ve, =w/ ® ej, Qe; = 20 ® ej,

where {©;} and {w,’} are called respectively, the curvature forms and connection forms of V with respect to
{ei}. Put w" := w,! + d(logF)d:,. Then {w’,w"T*}" | is a local basis for T*(T'My). Since {2/} are 2-forms on
T My, they can be expanded as

1 , 1.
Q] = §Rijkzwk Ao+ Plyw® w4 iQijklwnJrk AWt
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Let {é;,¢;}", be the local basis for T(T'My), which is dual to {w’,w™™*}? ;. The objects R, P and Q are
called, respectively, the hh-, hv- and vv-curvature tensors of the Cartan connection with the components
R(ék-, él)ei = Rijklej/ P(ék, él)ei = Pi]klej and Q(ék, él)ei = Qi]klej'

Let “|" and “," denotes the horizontal and vertical derivation with respect to the Cartan connection V of
F, respectively. It is proved that hv-curvature satisfies P,’, if and only if the Finsler metric F is a Landsberg
metric. Also, then the Riemannian curvature of V satisfies the following identities

Rijri = —Rjiri,  Rijr = —Riji,
Rijii + Rijr + Ry = *{CijRmkz + C L R + szkijl},
Rijii = Riij + Ol Rinkej + C'y R

In [13], Matsumoto proved the following Bianchi identity of Cartan connection
Rl}zj,k + thkrRTij + {thirCZ'k + P, }iLrLTjk + Pl};k\i}
+ {Rl};’rcrik' + B I;rLrik + Pl}iLij} = 0. (2.4)
By contraction of h and j in (2.4), one can get the following
Riki = P Ly — RinClyi — Py + Bl — R Clns — PG L + Q5 Rl (2.5)
which is the relation (2.5) in [20]. Contracting (2.5) by ' yields

Roki = Rik = Binr O™ = Jijge + L'y Jr + Ly — R, Cly = L L, (2.6)

3. Proof of Theorem 1.1.

In this section, we are going to prove Theorem 1.1. First, we remark the following.

Lemma 3.1. ([21]) Let (M, F) be a homogeneous Finsler manifold. Then, every invariant tensor under the
isometries of F' has bounded norm with respect to it.

Suppose that ¢ is a local isometry of the Finsler metric F, i.e.,

Pt ) = F(6).0 22, G

Setting

N " xoly
2t =9¢'x), ¥ =y 55

we get F(z%,y") = F(2%,§"). We use the following conventions

. ai . 821'

I dgd” IR T 9pigxk”

Since ¢ is an isometry, the matrix (¢}) invertible. Put (%) := (¢%)~". We have

o9t ot
A
Put
U SRVt SN S e
Gij = 2 ayiaij Gij = 9 8@’8@ .
By definition, we get
O*F? D*F?
i b5

Yoy 0y
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Thus

9ij = Grs0; &5 (3.2)
It follows that
(9i5) = ¥7(3:5)¥, (3.3)
where ¥ := (¢]). Thus
(97) = (9i5) " = W(giy) 10",
It follows that
9 = 90361,
Moreover, he following holds
DPF? 99" 0¢° 99" OPF?

By~ 9t 021 0 DOy oY
(3.4) implies that
Cijk = Crst®} 5 0}.. (3.5)
Multiplying (3.5) with g% yields
Iy = Li¢l, (3.6)
which shows that every isometry of F preserves the mean Cartan tensor of F'.
Now, we deal with the transformation of spray coefficients of F' under the isometry ¢.
(s i j L r,s
Gl($7y> =G (%y)% - 5 g“sy v, (37)
where G¥(2,9) := G*((2), ¢.x(y)), and consequently, we have
¢! PG
which is equivalent to
By = B dhilur. (3.9)
Thus, the Berwald curvature of F' remains unchanged under any (local) isometry of F. By (3.9), we get
T 1. m 1 r s s
Lijr = *§ymB ijk — *iyqi/}?B stp(?lﬂ/’i wﬁwi = Ltpt; w;w? (3.10)
Multiplying (3.10) with % implies that
7 1Ai'A 5 1 mn i 4 j r s 1 s T
Jk = _59 jleli_jk) = _59 ¢m¢%yq¢qu stp(b'lrwi w;wz = _59 tyTB stpwz = Jpwz (311)

Thus the (mean) Landsberg curvature of F' remains unchanged under any isometry of F.

In order to prove Theorem 1.1, we need the following key Lemma.

Lemma 3.2. For an R-flat Randers metric F' on an n-dimensional manifold M and any geodesic o = o(s) and any
parallel vector field U = U (s) along o of F, the following functions

I(s) := L (U(s)), J(s) == Js(U(s)) (3.12)

satisfy
I(s) =1(0) 4 s J(0). (3.13)
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Proof. By assumption, F is R-flat. Then by (1.1), we get

Ruy [(Rab,, ¥ Rypa + F 10 Ry ™) 1P + Iapryp} , (3.14)

T+l

where ¢; := F:. It follows from (3.14) that
Rpnay™ =0, (n+1)Rasy® = 2IPRps.y°. (3.15)
The Cartan tensor of F is given by the following
(n +1)Cape = Lohve + Iphea + Lchap. (3.16)

Using the identities A,y = 0 and Cype sy® = Labe infer that

(n + l)Labc = Jahbc + thca + Jchab (317)
Then (3.17) implies that
1 _ s s
Lrgb|m = m{ Tmhab + Jb\a + Ja|b - F I(Jb\sy by + Ja\sy Eb)}v (318)

By putting (3.16), (3.17) and (3.18) into (2.6), we get

1 _ n—3 1 - _ .
Rsa,bys = Nl {Jb‘a —F lJbga + 7:]an — m(Rmay - F ersy y ga)]—b}
-3
+ n+1 {Ja|b - F_IJagi + nTJan — m(Rmbym — F_ersyrysfb)Ia}
71 T T 1 stm
+ Tl+1{ |r+(n_1)J Jr’_mRsmy I }hba+Rba7 (3.19)

where R, defined by (1.1). Multiplying (3.19) with y“ yields

s j 1 m s r r,s
Jb\sy = (ij + ij)y] - m{2Rm7‘bI + Iz'RrSy }y - R’r‘s,by Y. (320)
By putting (3.15) in (3.20), we get
gt = Lysy'y® = 0. (3.21)
By definition of I, and J,,, we have
J(s) =T (s). (3.22)
By (3.21) and (3.22) it follows that I (s) = 0. Then I'(s) = I (0). By (3.22), we get (3.13). O

Proof of Theorem 1.1: Suppose that y € T, M is an arbitrary unit vector and take a tangent vector u € T, M.
Suppose that o(s) is the geodesic with ¢(0) = 2 and ¢(0) = y and let U(s) be the parallel vector field along o
with U(0) = u. Define I(s) and J(s) as in (3.12). Lemma 3.2 infers

I(s) =1(0) + s J(0). (3.23)
Due to boundedness of the mean Cartan tensor, by letting ¢t — 00, we get

J,(u) = J(0) = 0. (3.24)

Hence, F' has vanishing J-curvature and by (3.17), we conclude that F' has also vanishing L-curvature. On
Randers metrics, being Landsbergian and Berwaldian are equivalent. ,This completes the proof. O
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4. Proof of Theorems 1.2 and 1.3

In this section, we are going to prove Theorem 1.2. In order to prove it, we remark the following.

Lemma 4.1. For a homogeneous Randers metric F on a manifold M and 7 € C*°(M), L+ 7FC = 0 if and only if
J+7FI=0.

Lemma 4.2. For a homogeneous Randers metric F' on a manifold M and nonzero scalar function T € C*(M), if
J +7F1 =0, then F is Riemannian.

Proof. It is known that that M is geodesically complete. Suppose that o : R — M is the geodesic with 0(0) = =
and ¢’(0) = y. Suppose that U(t) is the parallel vector field along o(t) with U(0) = u. We define I(s) = I(U(s))
and J(s) = J(U(s)). According to J; = I;|,,y™ we have J(s) = I'(s). Restricting J + 7FI = 0 to the geodesic o, we
get the following ODE

I'(s) + 7(t)I(s) =0,

which its general solution is
I(s) = e~ Jo 71 (0), 4.1)

where 7(s) := 7(0(s)). For some positive number ¢ we have

e < o~ Jg T(@)dt < e %,

Suppose that I(0) is nonzero. Letting s — +oo yields that I(s) is unbounded which is a contradiction with
boundedness of the mean Cartan tensor of the homogeneous Finsler metric F'. Thus, I(0) vanishes. It follows
from (4.1) that I(s) = 0 for all s. Therefore, I is Riemannian by applying Deicke’s theorem. O

Now, we are going to prove Theorem 1.3. First, we prove the following.

Lemma 4.3. Suppose that (M, F) is a weakly stretch Finsler manifold. With the notations of previous lemma, we have

I(s) = 1(0) + s J(0). (4.2)

Proof. By definition, we have

Zij = 2(Jujg — Jjla)-
By assumption F' is weakly stretch metric then
Jity = Jji (4.3)

Contracting (4.3) with 3/, one can get J;;4° = 0 which gives rise the constancy of the rate of changes of the
J-curvature along geodesics of F. From our definition of J,, we have J(s = I (s). Then, we obtain

1'(s) =] (s) = 0. (4.4)

Then (4.4) yields (4.2). O

Proof of Theorem 1.3: Let I' = F(x,y) be a weakly stretch metric on a manifold M. Take an arbitrary unit
vector y € T, M and an arbitrary vector v € T, M. Let ¢ = ¢(t) be the geodesic with ¢(0) = 2 and ¢(0) = y and
V (t) be the parallel vector field along ¢ with V(0) = v. Then by Lemma 4.3, we get

I(s) = 1(0) + s J(0). (4.5)

By letting ¢t — +oo in (4.5) and considering ||I|| < co, one can get J, (v) =J(0) = 0. Hence, F' is a weakly
Landsberg metric.
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