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ABSTRACT

In this paper, we study the curvature features of the class of homogeneous Randers metrics. For
these metrics, we first find a reduction criterion to be a Berwald metric based on a mild restriction
on their Ricci tensors. Then, we prove that every homogeneous Randers metric with relatively
isotropic (or weak) Landsberg curvature must be Riemannian. This provides an extension of well-
known Deng-Hu theorem that proves the same result for a homogeneous Berwald-Randers metric
of non-zero flag curvature.
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1. Introduction.

Unlike the Riemannian geometry and its natural connection (the Levi-CiVita connection), while in Finsler
geometry there are some important connections such as Berwald connection, Chern connection, Cartan
connection. All of these connections have their self Riemannian curvatures that are related to other Riemannian
curvatures of other Finslerian connections. These connections make different hh-Riemannian curvature and
then they provide different Ricci curvature if the definition of Ricci curvature is the same as Riemannian case
because in this case and unlike Riemannain case the obtained tensor is not necessarily symmetric. Indeed, in
Finsler geometry there is a vast opportunity to define the Ricci tensor. H. Akbar-Zadeh has proposed two Ricci
curvature tensors to Finsler geometry: one is defined by Ricjk := 1

2 [F 2Ric]yjyk where Ric is Ricci curvature and
trace of Rkl which is abtained by contracting with yi and yj of hh-curvature tensor of Finslerian coonnections
i.e. Rmm and the other can be defined by R̃icab := 1

2 (Rab +Rba), where Rab is the trace of hh-curvature of Cartan
connection defined by Rab = Rlalb. The substraction of Ricij and R̃icij is related to H-curvature which is
another important Finslerian quantity. In [2], D. Bao studied the Ricci flow in Finslerian setting by taking into
account the first choice of defining the Ricci tensor. In order to provide a natural extension of Einstein metrics
from Riemannian geometry to Finsler one, in 1988, Akbar-Zadeh used his first method of defining the Ricci
curvature and defined a new curvature so-called scalar curvature [1] and later In 1995, introduced Einstein
Finsler manifolds.

In [12], Li-Shen defined a new Ricci curvature tensor and obtain its relation with some non-Riemannian
quantities such as χ-curvature and the quantity H. Also, Bao-Robles characterized the Einstein-Randers
manifolds [3][16]. This motivates us to reinvestigate the Ricci tensor.

Riemannian homogeneous spaces paly an important role in cosmological models, representation theory
and geometric analysis. Similar to the Riemannian setting, a Finsler manifold whose Lie group of isometries
acts transitively on it is called homogeneous. In [8], Deng-Hu extended Wallach’s theorem from Riemannian
manifolds to Finslerian ones and proved that SU(2) is the only Lie group among simply connected compact Lie
groups that admits a positively curved left-invariant Finsler structure. . This result provides a characterization
of positively curved homogeneous Randers spaces. It is proved that the imposing the conditions of being
Einsteinian metric with negative Ricci curvature on a homogeneous Randers space reduces it to a Riemannian
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one. In [11], they proved that a homogeneous Randers metric is Ricci-quadratic if and only if it is a Berwald
metric.

Let Rijkl = Rijkl(x, y) denote the Riemannian curvature of the Cartan connection and define the Ricci tensor
as Rij := R r

i jr. Using it, let us define a new Ricci tensor in Finsler geometry as follows

Rij := Rij −
1

n+ 1

[
(Rijk +Rkji + F−1FyiRkmjy

m)Ik + IiRkjy
k
]
, (1.1)

where R r
i jr := grmRimjr, Ckli and Ii denote the Cartan and mean Cartan torsions of F , respectively [20].Rij is

not a symmetric tensor, in general. But in a Riemannian space, we get Rij = Rij which is a symmetric tensor.
A Finsler metric F is called R-flat if Rij = 0. We prove the following.

Theorem 1.1. Every R-flat homogeneous Randers metric is a Berwald metric.

Let (M,F ) be a Finsler manifold. Suppose that Cy, Iy, Ly and Jy denote the Cartan, mean Cartan, Landsberg
and mean Landsberg curvatures of F , respectively. The Landsberg (resp., mean Landsberg) curvature is the
rate of change of the Cartan (resp. mean) torsion along geodesics. By definition, L/C and J/I are regarded as
the relative rate of change of C and I along Finslerian geodesics, respectively. Then F is said to be relatively
isotropic (resp., mean) Landsberg metric if L + cFC = 0 (resp., J + cF I = 0), where c = c(x) is a scalar function
on M . In [9], Deng-Hu proved that a homogeneous Randers metric of Berwald type whose flag curvature
is everywhere nonzero must be Riemannian. We give the same type of rigidity property for homogeneous
Randers metrics which are isotropic mean Landsberg metrics. Indeed, we prove the following.

Theorem 1.2. Let (M,F ) be a homogeneous Randers manifold. If F is an isotropic mean Landsberg metric J + cF I = 0,
where c = c(x) is a nonzero and bounded scalar function on M , Then F is Riemannian.

Theorem 1.2 dose hold for homogeneous Randers metric with vanishing Landsberg curvature.

If F is Riemannian, i.e., F (y) =
√

g(y, y) for some Riemannian metric g, then Ry := R(·, y)y, where R(u, v)z
denotes the Riemannian curvature tensor of g. In this case, Ry is quadratic in y ∈ TxM . There are many Finsler
metrics whose Riemann curvature in every direction is quadratic. A Finsler metric F is said to be R-quadratic
if Ry is quadratic in y ∈ TxM at each point x ∈M . Every Berwald metric is R-quadratic. In [21], the authors
proved that every homogeneous R-qudratic metric is a Landsberg metric. There is a natural extension of
Landsberg metrics, namely stretch metrics. In [4], Berwald introduced the new non-Riemannian quantity called
by stretch curvature Σ which can be considered as a generalization of Landsberg curvature. The geometric
meaning of stretch metrics investigated by Shibata in [19] and Matsumoto in [14]. Recently, the authors prove
that every homogeneous (α, β)-metric is a stretch metric if and only if it is a Berwald metric [21]. This throws
a light into the well-known Deng-Xu’s conjecture that every homogeneous Landsberg metric is a Berwald
metric [25]. As its applications, the authors show that the classes of R-quadratic or generalized Landsberg
homogeneous (α, β)-metrics are Berwaldian. There is a weaker notion of metrics- weakly stretch metrics.
Taking trace with respect to gy in first and second variables of Σy gives rise the mean stretch curvature Σ̄y.
A Finsler metric is said to be weakly stretch metric if Σ̄ = 0 [24]. Then we have the following

{Berwald metrics} ⊆ {R-quadratic metrics} ⊆ {Landsberg metrics}
{Generalized Landsberg metrics} ⊆ {Stretch metrics} ⊆ {Weakly stretch metrics}.

Theorem 1.3. Let F = α+ β be a homogeneous Randers metric on a manifold M . Then the following are equivalent:

(i) F is a R-quadratic metric;

(ii) F is a Landsberg metric;

(iii) F is a generalized Landsberg metric;

(iv) F is a stretch metric;

(v) F is a weakly stretch metric.

In this case, F reduces to a Berwald metric.
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2. Preliminary

Let M be an n-dimensional C∞ manifold, TM =
⋃
x∈M TxM the tangent bundle and TM0 := TM − {0} the

slit tangent bundle. Let (M,F ) be a Finsler manifold. The following quadratic form gy : TxM × TxM → R is
called fundamental tensor

gy(u, v) =
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
s=t=0

, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define Cy : TxM × TxM × TxM →
R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
t=0

=
1

4

∂3

∂r∂s∂t

[
F 2(y + ru+ sv + tw)

]
r=s=t=0

,

where u, v, w ∈ TxM . By definition, Cy is a symmetric trilinear form on TxM . The family C := {Cy}y∈TM0
is

called the Cartan torsion.
Put

Cy(u, v, w) = Cijk(y)uivjwk,

where u = ui∂i, v = vj∂j and w = wj∂j . Then

Cijk =
1

2

∂gij
∂yk

=
1

4

∂3F 2

∂yi∂yj∂yk
.

By definition, F is a Riemannian metric gij = gij(x) if and only if Cijk = 0.
For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈M . The family I := {Iy}y∈TM0
is called the mean Cartan torsion [5].

Let (M,F ) be an n-dimensional Finsler manifold. For a nonzero vector y ∈ TxM0, define the Matsumoto
torsion My : TxM × TxM × TxM → R by

My(u, v, w) := Cy(u, v, w)− 1

n+ 1

{
Iy(u)hy(v, w) + Iy(v)hy(u,w) + Iy(w)hy(u, v)

}
.

In local coordinates,

Mijk := Cijk −
1

n+ 1

{
Iihjk + Ijhik + Ikhij

}
,

where hij := FFyiyj is the angular metric. A Finsler metric F is said to be C-reducible if My = 0.

Lemma 2.1. (Matsumoto-Hōjō Lemma) A Finsler metric F on a manifold of dimension n ≥ 3 is a Randers metric if
and only if the Matsumoto torsion vanishes.

Given an n-dimensional Finsler manifold (M,F ), then a global vector field G is induced by F on TM0, which
in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where Gi = Gi(x, y) are called

spray coefficients and given by following

Gi =
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
.

G is called the spray associated to F . A Finsler metric F is said to be affinely equivalent to another Finsler
metric F̄ on M if F and F̄ induce the same sprays. A curve c = c(t) in TM0 is called an integral curve of G if it
satisfies G(c) = ċ.

Define By : TxM × TxM × TxM → TxM by By(u, v, w) := Bijkl(y)ujvkwl ∂
∂xi |x, where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
.
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F is called a Berwald metric if B vanishes or equivalently Gi are quadratic functions with respect to the
direction argument.

For y ∈ TxM , define the Landsberg curvature Ly : TxM × TxM × TxM → R by

Ly(u1, u2, u3) := −1

2
gy
(
By(u1, u2, u3), y

)
,

and locally, Ly(u1, u2, u3) := L ijk(y)ui1u
j
2u
k
3 , where

Lijk := −1

2
ylB

l
ijk.

A Finsler metric with vanishing L-curvature is called a Landsberg metric.
For y ∈ TxM , define Jy : TxM → R by Jy(u) := Ji(y)ui, where

Ji := gjkLijk.

A Finsler metric with vanishing J-curvature is said to be a weakly Landsberg metric.
Let c(t) be a smooth curve and U(t) = U i(t) ∂

∂xi |c(t) be a vector field along c. Define the covariant derivative
of U(t) along c by

DċU(t) :=
{dU i
dt

(t) + U j(t)
∂Gi

∂yj

(
c(t), ċ(t)

)} ∂

∂xi |c(t)
.

U(t) is said to be linearly parallel if DċU(t) = 0. In this case, the Landsberg and mean Landsberg curvatures of
F can be defined as follows

Ly(u, v, w) : =
d

dt

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]
|t=0,

Jy(u) : =
d

dt

[
Iσ̇(t)

(
U(t)

)]
|t=0,

where σ(t) is the geodesic with σ(0) = x, σ̇(0) = y and U(t), V (t),W (t) are linearly parallel vector fields along
σ with U(0) = u, V (0) = v,W (0) = w.

For a nonzero vector y ∈ TxM0, the Riemann curvature is a family of linear transformation Ry : TxM → TxM
with homogeneity Rλy = λ2Ry, ∀λ > 0 which is defined by Ry(u) := Rik(y)uk ∂

∂xi , where

Rik(y) = 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
. (2.1)

The family R := {Ry}y∈TM0
is called the Riemann curvature. Let us put

Rikl :=
1

3

{∂Rik
∂yl
− ∂Ril
∂yk

}
, Rij kl :=

1

3

{ ∂2Rik
∂yj∂yl

− ∂2Ril
∂yj∂yk

}
. (2.2)

Then

Rik = Rij kly
jyl, Rikl = Rij kly

j , Rij kl +Rij lk = 0, (2.3)

Take a local coordinate system (xi) in M , the local natural frame { ∂
∂xi } of TxM determines a local natural

frame ∂i|v for π∗vTM the fibers of the pull-back tangent bundle π∗TM , where ∂i|v = (v, ∂
∂xi |x), and v = yi ∂

∂xi |x ∈
TM0. The fiber π∗vTM is isomorphic to Tπ(v)M where π(v) = x. There is a canonical section ` of π∗TM defined
by `v = (v, v)/F (v). Suppose that∇ denotes the Cartan connection on π∗TM . Let {ei}ni=1 be a local orthonormal
frame field for π∗TM with en := `. If {ωi}ni=1 denotes its dual co-frame field, then put

∇ei = ω j
i ⊗ ej , Ωei = 2Ω j

i ⊗ ej ,

where {Ω j
i } and {ω j

i } are called respectively, the curvature forms and connection forms of ∇ with respect to
{ei}. Put ωn+i := ω i

n + d(logF )δin. Then {ωi, ωn+i}ni=1 is a local basis for T ∗(TM0). Since {Ω j
i } are 2-forms on

TM0, they can be expanded as

Ω j
i =

1

2
R j
i klω

k ∧ ωl + P j
i klω

k ∧ ωn+l +
1

2
Q j
i klω

n+k ∧ ωn+l.

www.iejgeo.com 220

http://www.iej.geo.com


A. Sadighi, M. Toomanian & B. Najafi

Let {ēi, ėi}ni=1 be the local basis for T (TM0), which is dual to {ωi, ωn+i}ni=1. The objects R, P and Q are
called, respectively, the hh-, hv- and vv-curvature tensors of the Cartan connection with the components
R(ēk, ēl)ei = R j

i klej , P (ēk, ėl)ei = P j
i klej and Q(ėk, ėl)ei = Q j

i klej .
Let “|" and “," denotes the horizontal and vertical derivation with respect to the Cartan connection ∇ of

F , respectively. It is proved that hv-curvature satisfies P j
i kl if and only if the Finsler metric F is a Landsberg

metric. Also, then the Riemannian curvature of ∇ satisfies the following identities

Rijkl = −Rjikl, Rijkl = −Rijlk,

Rijkl +Riljk +Riklj = −
{
Cmi jRmkl + Cmi kRmjl + Cmi kRmjl

}
,

Rijkl = Rklij + Cml iRmkj + Cml jRmki.

In [13], Matsumoto proved the following Bianchi identity of Cartan connection

R h
l ij,k +Q h

l krR
r
ij +

{
R h
l irC

r
jk + P h

l irL
r
jk + P h

l jk|i

}
+
{
R h
l jrC

r
ik + P h

l jrL
r
ik + P h

l ik|j

}
= 0. (2.4)

By contraction of h and j in (2.4), one can get the following

Rlk,i = P s
l srL

r
ki −RlrCrki − P s

l si|k + P r
l ki −R m

l krC
r
mi − P m

l krL
r
si +Q m

l irR
r
mk, (2.5)

which is the relation (2.5) in [20]. Contracting (2.5) by yl yields

R0k,i = Rik −RmrCrkiym − Ji|k + LrkiJr + Lrki|r −R
s
krC

r
si − LskrLrsi. (2.6)

3. Proof of Theorem 1.1.

In this section, we are going to prove Theorem 1.1. First, we remark the following.

Lemma 3.1. ([21]) Let (M,F ) be a homogeneous Finsler manifold. Then, every invariant tensor under the
isometries of F has bounded norm with respect to it.

Suppose that φ is a local isometry of the Finsler metric F , i.e.,

F (xi, yi) = F
(
φi(x), yj

∂φi

∂xj

)
. (3.1)

Setting

x̂i = φi(x), ŷi = yj
∂φi

∂xj

we get F (xi, yi) = F (x̂i, ŷi). We use the following conventions

φij :=
∂φi

∂xj
, φijk :=

∂2φi

∂xj∂xk
.

Since φ is an isometry, the matrix (φij) invertible. Put (ψij) := (φij)
−1. We have

∂φi

∂yj
= 0,

∂ψi

∂yj
= 0.

Put

gij :=
1

2

∂2F 2

∂yi∂yj
, ĝij :=

1

2

∂2F 2

∂ŷi∂ŷj
.

By definition, we get
∂2F 2

∂yi∂yj
=

∂2F 2

∂ŷr∂ŷs
φriφ

s
j .
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Thus

gij = ĝrsφ
r
iφ
s
j . (3.2)

It follows that
(gij) = ΨT (ĝij)Ψ, (3.3)

where Ψ := (φri ). Thus
(ĝij) = (ĝij)

−1 = Ψ(gij)
−1ΨT .

It follows that
ĝij = gpqφipφ

j
q.

Moreover, he following holds
∂3F 2

∂yi∂yj∂yk
=
∂φr

∂xi
∂φs

∂xj
∂φt

∂xk
∂3F 2

∂ȳr∂ȳs∂ȳt
(3.4)

(3.4) implies that
Cijk = C̃rstφ

r
iφ
s
jφ
t
k. (3.5)

Multiplying (3.5) with gij yields
Ik = Ĩtφ

t
k, (3.6)

which shows that every isometry of F preserves the mean Cartan tensor of F .

Now, we deal with the transformation of spray coefficients of F under the isometry φ.

Ĝi(x̂, ŷ) = Gi(x, y)φji −
1

2
φjrsy

rys, (3.7)

where Ĝi(x̂, ŷ) := Gi
(
φ(x), φ∗x(y)

)
, and consequently, we have

∂3Ĝl

∂ŷi∂ŷj∂ŷk
=

∂3Gr

∂ys∂yt∂yp
φlrψ

s
iψ

t
jψ

p
k, (3.8)

which is equivalent to

B̂lijk = Brstpφ
l
rψ

s
iψ

t
jψ

p
k. (3.9)

Thus, the Berwald curvature of F remains unchanged under any (local) isometry of F . By (3.9), we get

L̂ijk = −1

2
ŷmB̂

m
ijk = −1

2
yqψ

q
lB

r
stpφ

l
rψ

s
iψ

t
jψ

p
k = Lstpψ

s
iψ

t
jψ

p
k. (3.10)

Multiplying (3.10) with ĝij implies that

Ĵk = −1

2
ĝij ŷlB̂

l
ijk = −1

2
gmnφimφ

j
nyqψ

q
lB

r
stpφ

l
rψ

s
iψ

t
jψ

p
k = −1

2
gstyrB

r
stpψ

p
k = Jpψ

p
k. (3.11)

Thus the (mean) Landsberg curvature of F remains unchanged under any isometry of F .

In order to prove Theorem 1.1, we need the following key Lemma.

Lemma 3.2. For an R-flat Randers metric F on an n-dimensional manifold M and any geodesic σ = σ(s) and any
parallel vector field U = U(s) along σ of F , the following functions

I(s) := Iσ̇(U(s)), J(s) := Jσ̇(U(s)) (3.12)

satisfy
I(s) = I(0) + s J(0). (3.13)

www.iejgeo.com 222

http://www.iej.geo.com


A. Sadighi, M. Toomanian & B. Najafi

Proof. By assumption, F is R-flat. Then by (1.1), we get

Rab =
1

n+ 1

[
(Rabp +Rpba + F−1`aRpmby

m)Ip + IaRpby
p
]
, (3.14)

where `i := Fyi . It follows from (3.14) that

Rmay
m = 0, (n+ 1)Rasy

s = 2IpRpsay
s. (3.15)

The Cartan tensor of F is given by the following

(n+ 1)Cabc = Iahbc + Ibhca + Ichab. (3.16)

Using the identities hab|c = 0 and Cabc|sy
s = Labc infer that

(n+ 1)Labc = Jahbc + Jbhca + Jchab (3.17)

Then (3.17) implies that

Lmab|m =
1

n+ 1

{
Jm|mhab + Jb|a + Ja|b − F−1(Jb|sy

s`a + Ja|sy
s`b)

}
, (3.18)

By putting (3.16), (3.17) and (3.18) into (2.6), we get

Rsa,by
s =

1

n+ 1

{
Jb|a − F−1Jb`a +

n− 3

2
JaJb −

1

n+ 1
(Rmay

m − F−1Rrsyrys`a)Ib

}
+

1

n+ 1

{
Ja|b − F−1Ja`i +

n− 3

2
JaJb −

1

n+ 1
(Rmby

m − F−1Rrsyrys`b)Ia
}

+
1

n+ 1

{
Jr|r + (n− 1)JrJr −

1

n+ 1
Rsmy

sIm
}
hba +Rba, (3.19)

where Rab defined by (1.1). Multiplying (3.19) with ya yields

Jb|sy
s = (Rbj +Rjb)y

j − 1

n+ 1

{
2RmrbI

m + IiRrsy
s
}
yr −Rrs,byrys. (3.20)

By putting (3.15) in (3.20), we get
Jb|ly

l = Ib|l|sy
lys = 0. (3.21)

By definition of Iy and Jy, we have

J(s) = I
′
(s). (3.22)

By (3.21) and (3.22) it follows that I
′′
(s) = 0. Then I

′
(s) = I

′
(0). By (3.22), we get (3.13).

Proof of Theorem 1.1: Suppose that y ∈ TxM is an arbitrary unit vector and take a tangent vector u ∈ TxM .
Suppose that σ(s) is the geodesic with σ(0) = x and σ̇(0) = y and let U(s) be the parallel vector field along σ
with U(0) = u. Define I(s) and J(s) as in (3.12). Lemma 3.2 infers

I(s) = I(0) + s J(0). (3.23)

Due to boundedness of the mean Cartan tensor, by letting t→ ±∞, we get

Jy(u) = J(0) = 0. (3.24)

Hence, F has vanishing J-curvature and by (3.17), we conclude that F has also vanishing L-curvature. On
Randers metrics, being Landsbergian and Berwaldian are equivalent. ,This completes the proof.
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4. Proof of Theorems 1.2 and 1.3

In this section, we are going to prove Theorem 1.2. In order to prove it, we remark the following.

Lemma 4.1. For a homogeneous Randers metric F on a manifold M and τ ∈ C∞(M), L + τFC = 0 if and only if
J + τF I = 0.

Lemma 4.2. For a homogeneous Randers metric F on a manifold M and nonzero scalar function τ ∈ C∞(M), if
J + τF I = 0, then F is Riemannian.

Proof. It is known that that M is geodesically complete. Suppose that σ : R −→M is the geodesic with σ(0) = x
and σ′(0) = y. Suppose that U(t) is the parallel vector field along σ(t) with U(0) = u. We define I(s) = I(U(s))
and J(s) = J(U(s)). According to Ji = Ii|my

m we have J(s) = I′(s). Restricting J + τF I = 0 to the geodesic σ, we
get the following ODE

I′(s) + τ(t)I(s) = 0,

which its general solution is

I(s) = e−
∫ s
0
τ(t)dtI(0), (4.1)

where τ(s) := τ(σ(s)). For some positive number c we have

ecs < e−
∫ s
0
τ(t)dt < e−cs.

Suppose that I(0) is nonzero. Letting s→ ±∞ yields that I(s) is unbounded which is a contradiction with
boundedness of the mean Cartan tensor of the homogeneous Finsler metric F . Thus, I(0) vanishes. It follows
from (4.1) that I(s) = 0 for all s. Therefore, F is Riemannian by applying Deicke’s theorem.

Now, we are going to prove Theorem 1.3. First, we prove the following.

Lemma 4.3. Suppose that (M,F ) is a weakly stretch Finsler manifold. With the notations of previous lemma, we have

I(s) = I(0) + s J(0). (4.2)

Proof. By definition, we have
Σ̄ij = 2(Ji|j − Jj|i).

By assumption F is weakly stretch metric then

Ji|j = Jj|i. (4.3)

Contracting (4.3) with yj , one can get Ji|jyj = 0 which gives rise the constancy of the rate of changes of the
J-curvature along geodesics of F . From our definition of Jy, we have J(s = I

′
(s). Then, we obtain

I
′′
(s) = J

′
(s) = 0. (4.4)

Then (4.4) yields (4.2).

Proof of Theorem 1.3: Let F = F (x, y) be a weakly stretch metric on a manifold M . Take an arbitrary unit
vector y ∈ TxM and an arbitrary vector v ∈ TxM . Let c = c(t) be the geodesic with c(0) = x and ċ(0) = y and
V (t) be the parallel vector field along c with V (0) = v. Then by Lemma 4.3, we get

I(s) = I(0) + s J(0). (4.5)

By letting t→ ±∞ in (4.5) and considering ||I|| <∞, one can get Jy(v) = J(0) = 0. Hence, F is a weakly
Landsberg metric.
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