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ABSTRACT 
 

This paper considers the estimation of a nonparametric regression model with randomly right-censored data. To estimate the 

model, rational (Padé) approximation based on truncated total least squares (P-TTLS) is used as a smoothing method. Because 

of censored, data points cannot be used directly in modeling process, a data transformation is needed for overcoming this 

problem. As known, synthetic data transformation assigns censored points as zero and gives additional magnitudes to 

uncensored ones associated with Kaplan-Meier distribution of the censored dataset. Thus, the differences between censored 

and uncensored observations grow which causes a kind of spatial variation in the shape of data. In this paper, to bring a solution 

to this problematic situation, P-TTLS is used that works well on spatial variation. Also, to see the performance of the P-TTLS 

on censored data modeling, a simulation study is carried out and it is compared with the benchmarked kernel smoothing (B-

KS) method to observe how P-TTLS behaves. 
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1. INTRODUCTION 
 

Right-censored data is a common kind of data irregularity that researchers across in many application 

fields such as bioinformatics, industrial researches, biology and particularly in clinical trials and medical 

studies. Modeling right-censored data has critical importance when it comes from clinical trials, surgery, 

cancer researches or organ transplantation. Due to sensitivity of analysis, an estimation technique is 

needed that assures the correct  

 

In this paper, censored survival times are considered in medical studies and our aim is to estimate right-

censored data via nonparametric regression model. As known, censored data cannot be analyzed directly 

because of effects of censorship. To overcome this issue, there are three major techniques that attract 

attention in the literature. The first is the proportional hazards model proposed by Cox [1] that earned 

very much popularity in censored data cases because of its easy usability and flexible nature. There are 

some inferential studies about Proportional hazards model such as Cox [2], Tsiatis [3], Andersen and 

Gill [4] and so on. The second is the Kaplan-Meier weights (KMW) based regression model which is 

proposed by [5]. Then, [6-8] give some improvement and asymptotic of this model in the parametric 

context. Also, [9] and [10] used KMW for estimating the censored regression models. The third one is 

Synthetic data transformation based on a distribution estimation of the censoring variable which is the 

topic of this paper. There is a number of data transformation techniques proposed by authors such as 

[11-13] and their derivatives. In this study, synthetic data transformation defined by [12] is used. In this 

technique, magnitude of uncensored observation is increased according to Kaplan-Meier estimation of 

the distribution of censoring variable and it given zero to each censored data points. Thus, it provides 

an equality between expected values of completely observed and incomplete response values (see [12]). 

Details are indicated in Section 2.  
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Nonparametric regression model is widely used in censored data context because censored cases do not 

ensure the assumptions of the classical parametric methods. Some of important studies in the literature 

can be ordered as follows. [14] used Kernel and nearest neighbour methods to estimate the right-

censored model, [15] studied the estimation of the regression model with nonparametric M-estimator 

and it support its study with bias correction and bootstrap procedure. [16] estimates the censored survival 

data by local linear smoothers (LOESS) and they make a detailed applications on that. In addition, [17-

18] used nonparametric estimators to model the right-censored data. The distinguishable point of this 

paper among all of the mentioned studies is a using completely different smoothing method Padé based 

on truncated total least squares (P-TTLS). There are some important studies that used Pade 

approximation in numerical modeling under uncensored data such as [19]. The major reason for using 

P-TTLS is it can achieve the modeling of data that has a high variation structure (see [20]). It is known 

from the synthetic data transformation technique, there will be a huge difference between uncensored 

and censored data points which caused a high level of variation. Our expectation is that the P-TTLS 

method successfully estimates the non-parametric regression model under randomly right-censored data. 

Then, P-TTLS is compared with benchmark Kernel smoothing method to observe its behaviors and to 

evaluate its performance.   

 

Rest of the paper is designed as follows. In section 2, randomly right-censored data and corresponding 

nonparametric regression model is introduced. Then synthetic data transformation technique is 

expressed. Sections 2.1-2.2 include estimation procedures of P-TTLS and Kernel smoothing methods 

based on a synthetic response variable. In section 3, some measurement tools are defined to evaluate the 

performances of mentioned methods. A Monte Carlo simulation study and its comparative outcomes are 

presented in Section 4. Discussion is given in Section 5.  

 

2. MATERIAL AND METHODS 

 

Suppose that {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑛  be the completely observed pair of data where 𝑥𝑖’s are the values of covariate 

that and 𝑦𝑖’s are the response values. Let 𝑦𝑖’s are censored by values of censoring variable 𝑐𝑖’s that are 

independent from 𝑦𝑖’s. In this case, incomplete observations can be written as follows 

𝑧𝑖 = {
𝑦𝑖 𝑖𝑓 𝑦𝑖 ≤ 𝑐𝑖

𝑐𝑖 𝑖𝑓 𝑦𝑖 > 𝑐𝑖
 ,    𝛿𝑖 = {

1 𝑖𝑓 𝑦𝑖 ≤ 𝑐𝑖

0 𝑖𝑓 𝑦𝑖 > 𝑐𝑖
           (1) 

where 𝑧𝑖’s are the new response values that updated accordingly censorship and 𝛿𝑖’s involve information 

about existence of the censorship. Now, nonparametric regression model under randomly right-censored 

data can be written as follows   

𝑧𝑖 = 𝑔(𝑥𝑗) + 𝜀𝑗 , 1 ≤ 𝑗 ≤ 𝑛      (2) 

where  𝑔(. ) is an unknown smooth function and 𝜀𝑖’s denote the random error terms that distribute 

normally with zero mean and constant variance as 𝜀𝑖~𝑁(0, 𝜎𝜀
2). As mentioned in Section 1, modelling 

techniques cannot be applied to model (2) directly because of censorship. To overcome this issue, 

response values  𝑧𝑖’s are transformed to synthetic data points that include the effect of censorship via 

Kaplan-Meier estimator of 𝑐𝑖’s distribution function 𝐺(. ). One of the most important causes for using 

synthetic data is incomplete response variable 𝑧 and true response variable 𝑦 have different expected 

values. Theoretically, synthetic data transformation provides equal expected values for both variables 

(see [21] for details). In this case, acquisition of synthetic data is given by 

𝑧𝑗𝐺 =
𝛿𝑖𝑧𝑗

1−𝐺(𝑧𝑗)
              (3) 

where 𝐺(𝑙𝑖|𝑥𝑖) = 𝑃(𝑐𝑖 ≤ 𝑙𝑖|𝑥𝑖), (𝑙𝑖 ∈ 𝑅).  Here, instead of unknown 𝐺(. ), its Kaplan-Meier estimator 

𝐺(. ) is used. Thus, model (2) is rewritten for the synthetic responses 
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𝑧𝑗𝐺 = 𝑔(𝑥𝑗) + 𝜀𝑗𝐺 , 𝜀𝑗𝐺 = 𝑧𝑗𝐺 − 𝑔(𝑥𝑗), 1 ≤ 𝑗 ≤ 𝑛                 (4) 

Here, 𝜀𝑗𝐺  value(s) has the same assumption that given right after model (2) but for given distribution 𝐺. 

There are two common assumptions of distribution 𝐺 for the validation of equation (4): 

i) 𝑦𝑖′𝑠 and 𝑐𝑖’s have to be independent  

ii) 𝑃(𝑦𝑖 ≤ 𝑐𝑖|𝑦𝑖 , 𝑥𝑖) = 𝑃(𝑦𝑖 ≤ 𝑐𝑖|𝑦𝑖) 

Note that assumption (i) is a standard assumption for the meaningful right-censored data analysis. 

Assumption (ii) means that covariate 𝑥𝑖 does not give any more information for given failure time 

whether data point censored or not. Due to given assumptions, it can be assured that 𝐸(𝑧𝑗𝐺|𝑥𝑗) =

𝐸(𝑦𝑗|𝑥𝑗) = 𝑓(𝑥𝑗).  

Since the problem of censorship is handled by (3), model (4) can be estimated. To achieve this objective 

𝑃 − 𝑇𝑇𝐿𝑆 smoothing method is used which is the main concern of this paper. Also, Kernel smoothing 

method is introduced in Section 2.2 as a benchmark method.  

 

2.1. P-TTLS Smoothing 
 

As mentioned above, P-TTLS is used for the first time for modeling right-censored data via 

nonparametric model when response variable is transformed to synthetic data. In order to estimate 

nonparametric function 𝑔(. ) In model (4), procedure of P-TTLS is expressed in this section.  

Let 𝑔(𝑥𝑗) is written by the form 𝑔(𝑥𝑗)[𝑝,𝑞]
= 𝑅(𝑥𝑗)/𝑄(𝑥𝑗) as follows  

𝑔(𝑥𝑗)[𝑝,𝑞]
=

𝑅(𝑥𝑗)

𝑆(𝑥𝑗)
=

𝑟0+𝑟1𝑥𝑗+𝑟2𝑥𝑗
2+⋯+𝑟𝑝𝑥𝑗

𝑝

𝑠0+𝑠1𝑥𝑗+𝑠2𝑥𝑗
2+⋯+𝑠𝑞𝑥𝑗

𝑞 , 𝑝 ≤ 𝑞, 𝑗 = 1,… , 𝑛   (5) 

It can be clearly seen that equation (1) is a rational function to be estimated that has (𝑝 + 𝑞 + 1) terms. 

In this case, estimation of (𝑝 + 𝑞 + 1) coefficients are needed to obtain estimate continuous function 

𝑔(𝑥𝑗). A major issue is find the coefficients of the 𝑅(𝑥𝑗) and 𝑆(𝑥𝑗)  for determined degrees of 

nominator and denominator p and q. Thus, making minimum the absolute difference between 

𝑔(𝑥𝑗)[𝑝,𝑞]
 and 𝑔(𝑥) which can be shown as {|𝑔(𝑥) − 𝑔[𝑝,𝑞](𝑥)| ≤ 𝜔, 𝜔 > 0}. In this case, 

equation (5) can be rewritten as 

𝑧𝑗𝐺 = 𝑔(𝑥𝑗) ≅
𝑅(𝑥𝑗)

𝑆(𝑥𝑗)
=

𝑟0+𝑟1𝑥𝑗+𝑟2𝑥𝑗
2+⋯+𝑟𝑝𝑥𝑗

𝑝

𝑠0+𝑠1𝑥𝑗+𝑠2𝑥𝑗
2+⋯+𝑠𝑞𝑥𝑗

𝑞 = 𝑔(𝑥𝑗)[𝑝,𝑞]
, 𝑝 ≤ 𝑞, 𝑗 = 1,… , 𝑛  (6) 

From (6), model coefficients to be estimated can be expressed as {𝑟𝑎}𝑎=1
𝑝

 and {𝑠𝑏}𝑏=1
𝑞

. Note that 𝑠0 =

1 is decided to avoid indefinability of 𝑔(𝑥𝑗)[𝑝,𝑞]
. To reach our goal, equation (6) is turned into the form 

that given by 

[𝑟0 + 𝑟1𝑥𝑗 + 𝑟2𝑥𝑗
2 + ⋯+ 𝑟𝑝𝑥𝑗

𝑝
− 𝑠1𝑧𝑗𝐺𝑥𝑗 − 𝑠2𝑧𝑖𝐺𝑥𝑗

2 − ⋯− 𝑠𝑞𝑧𝑗𝐺𝑥𝑗
𝑞
] ≅ 𝑧𝑗𝐺 , 1 ≤ 𝑗 ≤ 𝑛         (7) 

In order to simplify the understanding equation (7), its matrix and vector form can be shown as follows 

{𝐠[𝑝,𝑞] = 𝐗𝛂} =

[
 
 
 
 
1 𝑥1 … 𝑥1

𝑝
−𝑧1𝐺𝑥1 −𝑧1𝐺𝑥1

2 … −𝑧1𝐺𝑥1
𝑞

1 𝑥2 … 𝑥2
𝑝

−𝑧2𝐺𝑥2 −𝑧2𝐺𝑥2
2 … −𝑧2𝐺𝑥2

𝑞

⋮  ⋮  ⋮    ⋮         ⋮          ⋮       ⋮        ⋮  
1 𝑥𝑛 … 𝑥𝑛

𝑝
−𝑧𝑛𝐺𝑥𝑛 −𝑧𝑛𝐺𝑥𝑛

2 … −𝑧𝑛𝐺𝑥𝑛
𝑞
]
 
 
 
 

(𝑛𝑥𝑚) [
 
 
 
 
 
𝑟0
⋮
𝑟𝑝
𝑠1

⋮
𝑠𝑞]

 
 
 
 
 

(𝑚×1)

= [

𝑧1𝐺

𝑧2𝐺

⋮
𝑧𝑛𝐺

]

(𝑛𝑥1)

≅ 𝐙𝐆

  (8) 
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where  𝐗 is a (𝑛 × 𝑚) matrix that includes elements of both polynomials 𝑅(𝑥𝑗) and 𝑄(𝑥𝑗) and (𝑚 =

𝑝 + 𝑞 + 1) under condition 𝑛 > 𝑚. Vector of coefficients is 𝛂 = (𝑟𝑎 , 𝑠𝑏)
𝑇. It can be clearly realize that 

columns of 𝐗 seem almost linearly dependent which is caused singularity in estimation process. So, one 

can say that 𝐗 has an ill-posed problem that makes impossible to modelling. Also note that, data matrix 

𝐗 includes the terms with response values. Therefore, error contaminates both side of nonparametric 

model. In order to solve this problem, truncated total least squares (𝑇𝑇𝐿𝑆), which is a regularization 

method proposed by Golub and Van Loan (1980), is merged with Padé approximation and thus, model 

estimation can be made by 𝑃 − 𝑇𝑇𝐿𝑆 smoothing method. From information given so far, it is clear that 

𝑃 − 𝑇𝑇𝐿𝑆 estimate of 𝐠[𝑝,𝑞] is obtained via estimation of the coefficient vector 𝛂 = (𝑟𝑎 , 𝑠𝑏)
𝑇.  

The main idea of the 𝑇𝑇𝐿𝑆 is that it gets rid of the smaller singular values of the augmented matrix 
[𝐗, 𝐳𝐺] (see [22-23] for details). In summary, purpose of the 𝑇𝑇𝐿𝑆 is to diminish the effect of errors by 

truncating the singular values in the singular value decomposition (SVD) of the [𝐗, 𝐳𝐺]. In order to 

estimate the vector of Padé coefficients 𝛂 by using 𝑃 − 𝑇𝑇𝐿𝑆, an algorithm is given below. 

Algorithm for P-TTLS smoothing 

Step 1. Calculate the SVD of [𝐗, 𝐳𝐺], which can be expressed as follows 

[𝐗, 𝐲] = 𝐔𝚺𝐕′        (9) 

where elements of diagonal matrix 𝚺 are  𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚+1 ≥ 0  
Step 2. Determine a suitable truncation parameter 𝑡 ≤ min(𝑚, 𝑟𝑎𝑛𝑘{[𝐗, 𝐲]}). 

Step 3. Block-partition the (𝑚 + 1) × (𝑚 + 1) matrix 𝐕 as given below  

𝐕 = (
𝐕11 𝐕12

𝐕21 𝐕22
), where 𝐕11 ∈ 𝑅𝑚×𝑡 and {𝐕22 ≡ [𝑣𝑚+1,𝑡+1, … , 𝑣𝑚+1,𝑚+1] ≠ 0} ∈ 𝑅1×(𝑚+1−𝑡) 

Step 4. Compute the Padé coefficients vector by  

�̂� = −𝐕12(𝐕22)
+ = −𝐕12

𝐕22
′

‖𝐕22‖2
2      (10) 

where (𝐕22)
+denotes the pseudoinverse of 𝐕22 and �̂�𝑃−𝑇𝑇𝐿𝑆

𝑡  shows the estimates of Padé 

coefficients. 

Step 5. Estimate the 𝐠[𝑝,𝑞]  and fitted values �̂�𝑃−𝑇𝑇𝐿𝑆 using with estimated vector of coefficients 

�̂�𝑃−𝑇𝑇𝐿𝑆 = �̂�[𝑝,𝑞] = 𝐗�̂� = 𝐗(𝐏𝑡𝐗)+𝐏𝑡𝐳𝐺 = 𝐇𝑡𝐳𝐺    (11), 

where 𝐇𝑡 = 𝐗(𝐏𝑡𝐗)+𝐏𝑡 is the hat matrix for 𝑃 − 𝑇𝑇𝐿𝑆. Because of 𝐇𝑡 calculates the orthogonal 

projection, it is also denoted as a projection matrix. 

 

2.2. Kernel Smoothing 

 

Kernel smoothing is very common nonparametric method that works with weighted average of the data. 

As indicated above kernel smoothing method (𝐾𝑆) used as a benchmark method for estimation of right-

censored data based on a synthetic data transformation. Note that 𝐾𝑆 is used before for the same purpose 

in study [9] which can be inspected for the more details, and it has seen that 𝐾𝑆 has reasonable results 

on right-censored modelling. In this study, it used for testing the performance of proposed method 𝑃 −
𝑇𝑇𝐿𝑆. Suppose that �̂�𝐾𝑆 be a kernel estimate of the 𝑖𝑡ℎ censored-response value. Thus, a kernel smoother 

can be estimated as follows 

�̂�𝐾𝑆 = �̂�𝐾𝑆 = 𝐖𝐳𝐺 = ∑ 𝑤𝑖𝑗𝑧𝑗𝐺
𝑛
𝑗=1         (12) 
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where �̂�𝐾𝑆 is a vector of fitted values obtained by kernel smoothing, 𝐖 is a positive, semi-definite and 

symmetric smoother matrix formed by kernel weights 𝑤𝑖𝑗 given by [24] and [25], 𝑀 is a number of 

kernels for each data point 𝑧𝑖𝐺  which is determined by researcher accordingly shape of data. Elements 

of smoother matrix 𝐖 can be given by  

𝑤𝑖𝑗 =
𝐾𝑏(

𝑥−𝑥𝑗

𝑏
)

∑ 𝐾𝑏(
𝑥−𝑥𝑗

𝑏
)𝑛

𝑗=1

=
𝐾𝑏(𝑢)

∑ 𝐾𝑏(𝑢)𝑗
                    (13) 

where 𝑏 represents the bandwidth parameter, 𝐾𝑏(. ) is a kernel function which determines the shape of 

the estimated curve and bandwidth parameter 𝑏 controls the amount of avereging and finally, 

∑ 𝑤𝑖𝑗 = 1𝑗 . Note that there are some basic propoerties of kernel function 𝐾𝑏(. )that are given by 

∫ 𝐾𝑏(𝑢)
+∞

−∞
𝑑𝑢 = 1, 𝐾𝑏(𝑢) ≥ 0 for all 𝑢, and 𝐾𝑏(𝑢) = 𝐾𝑏(𝑢 −)   (14) 

If Epanechnikov kernel function is inspected which is used in the simulation study of this paper,  

𝐾𝑏(𝑢) =
3

4
(1 − 𝑢2), 𝑖𝑓  |𝑢| ≤ 1 

It can be seen that, it ensures the properties of the kernel weight function given in (14). In addtion, the 

consistency of the kernel function can be provided by consideration given below 

 

i. If |𝑢| → ∞ and 𝐸(𝑧𝐺
2) < ∞ then ∫ |𝐾𝑏(𝑢)|𝑑𝑢 < ∞, 𝑢𝐾𝑏(𝑢) → 0

+∞

−∞
 

ii. Under assumptions of 𝑏 → 0, 𝑛𝑏 → ∞ it can be shown that 

1

𝑛
(∑ 𝑤𝑖𝑗𝑧𝑖𝐺

𝑛
𝑖=1 ) = ĝ𝐾𝑆(𝑥𝑖)

𝑝
→ g(𝑥𝑖)              (15) 

The expression 
𝑝
→ represents the “convergence in probability”. From the information given so far, 𝐾𝑆 

estimation of 𝐠  based on synthetic responses can be written as in matrix and vector form 

    �̂�𝐾𝑆 = �̂�𝐾𝑆 = 𝐖𝐳𝐺           (16) 

 Thus, 𝐾𝑆 estimation of right-censored nonparametric regression model is obtained by (16). 

 

3. EVALUATION CRITERIA 

 

In this section, two measurement tools are introduced to evaluate the performances of 𝑃 − 𝑇𝑇𝐿𝑆 and 

benchmarked 𝐾𝑆 methods on modelling right-censored data in a nonparametric context. This paper 

considers the “Mean Square Errors (MSE)”, which is the most common performance measure in the 

literature, and the “Relative Efficiency based on MSE (RE)” as evaluation metrics. Calculation of them 

are given below 

𝑀𝑆𝐸(�̂�𝑀) = 𝑛−1[∑ (𝐳𝑖𝐺 − ĝ𝑀(𝑥𝑖))
2𝑛

𝑖=1 ] = 𝑛−1[(𝐳𝐺 − 𝐠𝑀)2]   (17) 

where �̂�𝑀 is a estimated nonparametric function for one of the mentioned methods. It replaces 

�̂�𝑃−𝑇𝑇𝐿𝑆 for 𝑃 − 𝑇𝑇𝐿𝑆 estimation and �̂�𝐾𝑆 for 𝐾𝑆 estimation. Using the same notation, 𝑅𝐸 can be 

written as follows 

𝑅𝐸(�̂�𝑀1, �̂�𝑀2) =
𝑀𝑆𝐸(�̂�𝑀1)

𝑀𝑆𝐸(�̂�𝑀2)
        (18) 
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where “𝑀1” and "𝑀2" denote the methods that should be compared. 𝑅𝐸 metric provides a relative 

comparison between two methods. Here, if 𝑅𝐸(�̂�𝑀1, �̂�𝑀2) < 1, then it can be said that �̂�𝑀1 is better 

estimator than �̂�𝑀2.  

4. SIMULATION STUDY 

A nonparametric regression model is generated as follows for the simulation experiment: 

 Sample size 𝑛 = (35, 100,300), and censoring level 𝐶𝐿 = (0.04, 0.15, 0.40) 
 𝜀𝑖~𝑁(0, 𝜎2 = 1), 𝑖 = 1,… , 𝑛 

 𝑥𝑖 = 4 (𝑖 − 0.5) 𝑛⁄ , 
 g(𝑥𝑖) = sin(−4.8𝑥𝑖) sin(1.4𝑥𝑖) 

 𝑦𝑖 = 𝑔(𝑥𝑖) + 𝜀𝑖, 
 𝛿𝑖~𝐵𝑒𝑟(1 − 𝐶𝐿)  

 𝑐𝑖~𝑁(𝜇𝑦, 𝜎𝑦
2)

[𝛿𝑖=0]
 until 𝑐𝑖 > 𝑦𝑖 otherwise 𝑐𝑖~𝑁(𝜇𝑦, 𝜎𝑦

2)
[𝛿𝑖=1]

 until 𝑐𝑖 ≤ 𝑦𝑖 

Then, incomplete observations 𝑧𝑖′𝑠 are obtained by equation (1) and they are transformed to synthetic 

data points 𝑧𝑖𝐺 ′𝑠 by equation (3). As mentioned above, there are three sample sizes and three censoring 

levels are determined which means 9 different configurations for both 𝑃 − 𝑇𝑇𝐿𝑆 and 𝐾𝑆 methods. Note 

that each configuration is repeated 1000 times. Outcomes are given in following tables and figures.  

 

Figure 1. Completely observed (𝑦𝑖), incompletely observed (𝑧𝑖) & synthetic data points (𝑧𝑖𝐺) 

Figure 1 includes three kind of data used in this simulation experiment that are completely observed 

𝑦𝑖’s, right-censored 𝑧𝑖’s and synthetic 𝑧𝑖𝐺’s. These datasets are shown for four combinations because it 

is hard to show all of them. From Figure 1, the effect of synthetic data transformation can be clearly 

seen for three sample sizes and three censoring levels. One can realize that when CL is getting higher, 

because keeping expected values of synthetic data and actual data in balance as 𝐸(𝑧𝐺) ≅ 𝐸(𝑦) the 

uncensored ones are increased according to estimated Kaplan-Meier distribution of 𝐺.  

Table 1 involves scores of MSE and RE for all simulation combinations and the best scores are indicated 

with the bold colors. It can be said that for this simulation design, 𝑃 − 𝑇𝑇𝐿𝑆 gives a superior 𝑀𝑆𝐸 values 
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and it dominates the 𝐾𝑆 smoothly. The reason for that can be claimed as 𝑃 − 𝑇𝑇𝐿𝑆 has a great 

performance between zeros (censored point in synthetic data context) and increased data points which 

are mentioned before.  Note that, except one, all of 𝑅𝐸 values are smaller than one which means 𝑃 −
𝑇𝑇𝐿𝑆 relative efficiency is better than 𝐾𝑆 also. 

Table 1. Performance scores for all configurations in terms of 𝑀𝑆𝐸 and 𝑅𝐸 metrics 

    𝑴𝑺𝑬 
𝑅𝐸(�̂�𝑃−𝑇𝑇𝐿𝑆, �̂�𝐾𝑆) 

𝒏 CL(%) 𝑷 − 𝑻𝑻𝑳𝑺 𝑲𝑺 

35 

4 0.464 0.8001 0.5799 

15 2.982 4.6184 0.6457 

40 8.6743 8.9112 0.9734 

100 

4 0.3523 0.5965 0.5906 

15 1.1441 1.4703 0.7782 

40 5.5376 7.6165 0.727 

300 

4 0.1204 0.2428 0.4959 

15 0.363 0.414 0.8767 

40 2.4667 2.2659 1.0886 

Bold colored scores indicate the best performance. 

However, 𝑃 − 𝑇𝑇𝐿𝑆 has some reasonable results, if outcomes of Table 1 and Figure 2 are inspected in 

detail, it can be seen that performance of 𝑃 − 𝑇𝑇𝐿𝑆 is getting worse for higher CLs which can be 

interpreted as P-TTLS has weaker than 𝐾𝑆 across the censorship. Of course, to test this hypothesis, a 

wider numerical experiments are needed that is a subject of future works associated with this paper.  

In Figure 2, the boxplots of MSE values are presented with three panels. Each panel is formed for one 

sample size. In x-axis of panels, “P1” and “K1” denote boxplots of 𝑃 − 𝑇𝑇𝐿𝑆 and 𝐾𝑆 for CL=4% 

respectively. In a similar manner “P2” and “K2” represent the boxplots for CL=15%, “P3” and “K3” 

show boxplots for CL=40%. As can be seen in each panel, under heavy censorship boxplots are getting 

larger for both methods. Note also that, for each censoring level and sample sizes, 𝑃 − 𝑇𝑇𝐿𝑆 gives 

narrower boxplots than 𝐾𝑆 and it should be emphasize that 𝑃 − 𝑇𝑇𝐿𝑆 has less outlier 𝑀𝑆𝐸 values. It 

can be interpreted as 𝑃 − 𝑇𝑇𝐿𝑆 provides more stable estimates in censoring case.      

 

Figure 2. Boxplots for 𝑅𝐸(�̂�𝑃−𝑇𝑇𝐿𝑆, �̂�𝐾𝑆) values for different combinations 

In Figure 3, estimated curves are seen with actual (completely observed) data points. At first, it should 

be indicated that estimates of P-TTLS and KS are closer to each other that is assured by MSEs in Table 

1. Especially in low CL (4%) it is clear that both methods give their best and estimate the data very well. 

The important point is to see the performance of the methods under medium and heavy CLs. To achieve 

that three panels of Figure 3 are formed by CL=15% and CL=40%. Also, a plot for 𝑛 = 300 is not 

drawn because data points are too much and it cannot be available for visual analysis. Here, the reason 

for the wellness of the 𝑃 − 𝑇𝑇𝐿𝑆 can be explained as it tries to catch almost every data point. For the 
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same reason, its performance decreases when censoring level increases. Note that the sensitivity of 𝐾𝑆 to 

censorship is less than 𝑃 − 𝑇𝑇𝐿𝑆. But in a general frame, 𝑃 − 𝑇𝑇𝐿𝑆 has better results.     

 
Figure 3. Estimated curves for (𝑛 = 35, 𝐶𝐿 = 4% − 40%) and  (𝑛 = 100 − 300, 𝐶𝐿 = 15%). 

 

5. DISCUSSION 

 

In this paper, we introduce a new modified smoothing method 𝑃 − 𝑇𝑇𝐿𝑆 using with synthetic data for 

estimation of the nonparametric regression model. Also, to evaluate its performance, 𝐾𝑆 method is used 

as a benchmark method. This main aim of this study is modelling randomly right-censored data 

optimally and see behaviors of P-TTLS in this context.  

 

To realize the aim of this paper, a simulation study is made and results are presented in Section 4. In 

order to evaluate the performance of the methods, MSE and relative efficiency (RE) metrics are used. 

The outcomes of simulation study prove that 𝑃 − 𝑇𝑇𝐿𝑆 has ability for modelling randomly- right-

censored data and it does better than 𝐾𝑆. Also note that Figure 2-3 indicate that although P-TTLS has 

satisfying results, because of it tries to estimate every data point in the dataset, it is a sensitive method 

across the censorship. In this case, it can be said that KS is a more enduring method.  

 

As a result, when all figures and tables are inspected, for prepared simulation study, 𝑃 − 𝑇𝑇𝐿𝑆 gives the 

best scores almost for all combinations. However, it should be said that making a real world data 

example provides a more reliable inferences on introduced method.  
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