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Abstract 

In the present paper, the problem of finite dimensional rectangular parallelepiped in isotropic thermoelastic 

medium with convective type heating is considered. The heat conduction equation (HCE) of the region is 

described by time HC of fractional order with Caputo derivative form. The non-linear form of heat conduction 

equation is converted to linear form with Kirchhoff’s transformation. Integral transform technique is used to 

deal with the spatial variables and Laplace transform technique is used to deal with Caputo type time 

fractional derivative. Inverse Laplace transform and inverse finite Fourier transform are employed to expose 

the solution in the transformed domain. Numerical results are obtained for temperature distribution, 

deflection, stress resultants and thermal stress distribution for different values of time fractional order 

parameter. These results are presented graphically and discussed for various values of time fractional 

parameters. The obtained results show significant influence of the time fractional order derivative on the 

temperature as well as stress distribution. Thermosensitivity plays a vital role in the analysis of any real 

thermoelastic problems and one should consider their effect while dealing with materials in high temperature 

environment. 
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1. Introduction 

    In the classical Fourier law, the heat conduction 

represents the relation between heat flow and change 

in temperature of a solid material. In the field of 

thermoelasticity the heat diffusion process in 

heterogeneous and non-regular materials like 

amorphous, glassy, dielectric, polymers, etc; the law 

of mechanics are not applicable and hence it becomes 

necessary to adopt the heat conduction equation with 

fractional order. The fractional calculus is the 

generalization of the derivative and integration of non-

integer order. Many researchers worked in developing 

the theory of thermoelasticity in the field of science, 

where fractional calculus is applied and successful 

results have been obtained.  

    Caputo et al. [1-2] introduced time fractional 

derivative to stress-strain relation to obtain the analytic 

solution for a linear dissipative mechanism over large 

frequency ranges and discussed various applications. 

The non-local theory of thermodynamics with 

constitutive equations is established for non-local 

thermoelastic solids by Eringen [3]. Noda [4] 

discussed thermal stresses in materials dependent on 

temperature. The theory of fractional calculus and its 

application is investigated by many researchers [5-8]. 

Heat conduction problems and their thermoelastic 

effect in thermosensitive bodies was discussed by [9-

10]. Luchko and Gorenflo [11] introduced the 

operational method to obtain an exact solution of 

fractional differential equation of initial value 

problem. The proposed solutions are represented in 

Mittag-Leffler function. Gorenflo et al. [12] 

investigated a mapping of linear operator for various 

fractional parameters and also analyzed the exact 

solution for Green’s function of the Cauchy problem. 

Hilfer [13] obtained the exact 

solution of fractional diffusion equation based on 

Riemann−Liouville fractional derivatives in terms 

of H-functions and found that it admits a probabilistic 

interpretation in contrast with fractional diffusion 

based on fractional integrals. Gorenflo et al. [14-15] 

used Laplace transform for evaluating the linear 
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operators of fractional integration and fractional 

differentiation. The results for fractional time order 

0.5, shows slow diffusion and for order 1.5, exhibit 

mixed diffusion-wave behaviour as per [16].  

    Povstenko et al. [17-24] also solved the problem for 

time fractional heat diffusion equation with different 

approach. Deshmukh et al. [25] obtained thermal 

bending moments in a simply supported plate. Chain 

rule for fractional derivatives was discussed by 

Tarasov [26]. Manthena et al. [27] studied thermal 

stresses in a functionally graded (FG) plate. Popovych 

and Kalynyak [28] designed a mathematical model for 

thermally sensitive cylinders. Tripathi et al. [29] 

analyzed the fractional order thermoelastic problem 

with finite wave speeds. The thermoelastic 

displacement, stress and temperature are investigated 

in the thick circular plate of finite thickness and 

infinite extent, upper and lower surfaces are traction 

free. The thermal shock problem of an elastic half 

space in a fractional thermoelasticity is solved by [30]. 

Laplace transform and Hankel transform are applied to 

evaluate an initial-boundary value problem of 

fractional heat conduction. Warbhe et al. [31] analyzed 

fractional heat conduction and thermal deflection in a 

circular disk. The effect of thermosensitivity on a FG 

plate was studied by Manthena et al. [32-33].  

    Sherief and Raslan [34] proposed Caputo Fabrizio 

fractional differential operator to deal with theory of 

fractional thermoelasticity based on infinite elastic 

space subjected to continuous line source of heat. 

Zullo and Sciubba [35] shown that a system in an 

initial non-equilibrium state relaxes to equilibrium 

releasing (or absorbing) an additional amount of 

exergy, called non-equilibrium exergy, which is 

fundamentally different from Gibbs’ Available Energy 

and depends on both the initial state and the imposed 

boundary conditions. Lazzaretto and Toffolo [36] 

developed a practical tool that is based on a new 

methodology, named SYNTHSEP, to generate new 

energy system configurations. Varghese et al. [37] 

determined the thermoelastic stresses in a thin 

elliptical plate made up of non-simple elastic material 

subjected to point impulsive time-dependent source of 

heat. Rajabi et al. [38] examined forced vibration 

behaviors for nonlocal strain gradient nanobeams with 

surface effects subjected to a moving harmonic load. 

Arani et al. [39] discussed static and dynamic response 

of nanoplate resting on an orthotropic visco-Pasternak 

foundation based on Eringen’s nonlocal theory. 

Povstenko and Kyrylych [40] investigated a problem 

for an infinite solid containing penny-shaped crack 

with its surface loaded at prescribed heat flux. Peng et 

al. [41] investigated the dynamic response of an 

infinite thermoelastic medium with a spherical cavity 

with fractional order derivative. Sherief and Hussein 

[42] analyzed two-dimensional axisymmetric 

problems in context with fractional order 

thermoelasticity. Köbler [43] shown that the 

temperature dependence of the heat capacity of the 

magnetic solids can completely be described by a 

sequence of universal power functions of temperature. 

Thakare et al. [44] studied thermoelastic problem of 

nonhomogeneous thick hollow cylinder within the 

context of fractional order derivative. Niezgoda-

Żelasko [45] studied entropy generation rate 

minimization during the flow of ethanol-based ice 

slurry through straight pipes with a circular and 

rectangular cross-section. Çoban and Kavas [46] 

solved Peng-Robinson cubic equation of states (EoS) 

for dry air. Mohammadi and Rahmani [47] 

investigated buckling analysis of a sandwich 

cylindrical shell with functionally graded face sheets 

and homogenous core. Molla-Alipour [48] developed 

a unified formulation for free vibration analysis of the 

bidirectional functionally graded conical and 

cylindrical shells and annular plates on elastic 

foundations. Sarvandi et al. [49] investigated the 

critical torsional load of a composite tube made of 

Polyvinylidene fluoride reinforced with double-walled 

boron nitride nanotubes. Shekarzadeh et al. [50] 

studied the free vibration analysis of a multi-layer 

rectangular plate with two magneto-rheological (MR) 

fluid layers and a flexible core. Pawar et al. [51] 

discussed the radially varying transient temperature 

distribution in a multilayer composite hollow sphere 

subjected to the time independent volumetric 

generation of heat in each layer. The theory and 

applications of thermoelasticity and fractional calculus 

was explained by [52-56].  

    In the present fractional thermoelastic problem, we 

considered linear integral and differential equations of 

fractional order under processes of some physical 

interest. The solutions are obtained for these problems 

are represented in Mittag-Leffler function form. 

Mainardi et al. [14-15] reviewed such problems and 

the governed equation of fractional order in which the 

solution is expressed in the form of Mittag-Leffler 

function. The properties of Mittag-Leffler function 

were discussed and the solution in Mittag-Leffler form 

including Abel integral equations of the second kind 

are obtained over generalized relaxation 

and oscillation phenomena. Bhaskar et al. [7] analyzed 

the problem of linear uncoupled thermoelasticity and 

obtained the results for orthotropic and anisotropic 

composite laminates. Evaluated results are used to 

check the accuracy of classical lamination theory 

based on Kirchhoff’s hypothesis. It is concluded from 

a careful review of literature that the study of 



 

uncoupled problem in finite field is needed in 

fractional theory of thermoelasticity. 

    In the present investigation, we considered an 

isotropic thermoelastic rectangular parallelopiped in 

finite domain with time dependent fractional order 

derivative. The fractional heat conduction is subjected 

to convective heating along x-direction, while the 

other sides are thermally insulated. Integral transform 

technique is applied to find the expression for 

temperature distribution. The obtained solution in 

transformed domain is expressed in terms of Mittag-

Leffler function. The effects of time fractional order 

parameter r on temperature, deflection and thermal 

stresses are analyzed graphically. In this work, we 

have developed a mathematical model to study 

thermoelastic response of a rectangular parallelopiped 

using time fractional heat conduction equation. In the 

literature, we rarely found such kind of problems and 

hence it is innovative addition to the field of 

thermoelasticity.  

 
2. Formulation and solution of the heat conduction 

equation 
 

    Consider a rectangular parallelopiped occupying the 

space defined as ,0 ax   czby  0,0 . A 

mathematical model is prepared for non-local Caputo 

type time fractional heat conduction equation (FHCE) 

of order r . 

    The definition of Caputo type fractional derivative 

is given by [1-2] 
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    To find the Laplace transform, the Caputo 

derivative requires the initial values of the function 

)(tF  and its integral derivatives of the order 
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Here s  is the Laplace transform parameter. 

    The governing FHCE of a simply supported 

rectangular parallelopiped satisfies the differential 

equation [46, 47] 
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with boundary conditions 
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and initial conditions 
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where )(Tk and )(TC  are respectively, the 

temperature dependent thermal conductivity and 

specific heat capacity of the plate,   is the density, 

and 21,   are the heat transfer coefficients. 

 
Fig. (1) Geometry of the problem 
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where 0T  is the temperature of the surrounding 

environment, ),/( 000  Ck  is the thermal 

diffusivity, 0  is the reference value of density, 

1010 ,,, EE  are the reference values of  Young’s  

 

modulus and coefficient of linear thermal expansion,

21,  are the frequency. 

     The temperature dependent material properties 

)(),( TCTk , and heat flow ),,( tzyf  are taken as [9, 

10, 28] 
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where 010 ,, Ckk  are the reference values of thermal 

conductivity, specific heat capacity having 

dimensions, 0f  is the strength of the heat flow having 

relevant dimensions, and *)(**),(* TCTk  are the 

dimensionless quantities, which are functions that 

describe the dependence of these characteristics on 

dimensionless temperature, *)*,*,(* tzyf is the 

dimensionless function which describes the space 

distribution of the heat flow. 

    Using equations (6-7), equations (3-5) reduces to 

the following dimensionless form (ignoring asterisks 

for convenience). 
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initial conditions 
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where )/()( 000 TkafKi   is the dimensionless 

Kirpichev reference number, 

,2,1,)/()( 0  jkaBi jj   is the Biot criteria. 

   Introducing the Kirchhoff’s variable transformation 

TdTkT T
 0 )()(                                                 (11)                                                                       

in equation (8) and taking into account that the 

material with simple thermal nonlinearity is 

considered, we obtain 
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The boundary conditions (9) become 
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The initial conditions (10) become 
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For the sake of brevity, we take 

).()()(),,( 00 tzzyytzyf                       (15) 

    This represents an instantaneous heat flow at the 

point ),,,( 00 zya 00 , zy  being dimensionless 

constants. 

    To solve the heat conduction equation (12) 

subjected to convective boundary conditions defined 

in equation (13) over the space variable x in ,0 ax 

first we define the integral transform and its inversion 

formula for the temperature function ),,,( tzyx  as 

[47] 

),,,(),(

),,,(
Formula

Inversion

),,,(),(

),,,(
Transform

Integral

1

0

tzyxR

tzyx

xdtzyxxR

tzy

mm
m

m

a

x

m





































     (16) 

Here ),( xR m  is the kernel of the transform given by 
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Here s'm  are the positive roots of the transcendental 

equation 
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    Implementing integral transform defined in 

equation (16), Finite Fourier cosine transform, and 

Laplace transform on equation (12), we arrive at 
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where czlbyn ln /,/    and 

),/cos(),/cos( czlbyn   being the kernels of finite 

Fourier cosine transform. 

The value of the kernel ),( xR m  at ax   and 0x  

is obtained as follows 
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On simplification equation (19) leads to  

))/)((( 102
222  BiPBiPs

fKiP

alnm
r

a


      

                                                      (21) 

Taking inverse Laplace transform, eqn. (21) becomes 
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    Applying inverse integral transform defined in 

equation (16) over the variable x, and inverse Fourier 

cosine transform over the variables y, z, equation (22) 

leads to 
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is the Mittag-Leffler function and in summation form 

it is represented as 
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    Applying inverse Kirchhoff’s variable transform on 

equation (23) [Refer Appendix A], the solution of 

temperature distribution is obtained as 
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3. Thermoelastic analysis 

    We consider a simply supported thin rectangular 

parallelopiped subjected to thermal load. The 

fundamental equation and the corresponding boundary 

conditions in the Cartesian coordinate system are [46] 
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where w  is the deflection, TM  is the thermally 

induced resultant moment, )(),(),( TTETD   are 

respectively, the temperature dependent bending 

rigidity, Young’s modulus and Poisson’s ratio.  

Considering the equilibrium state in the in-plate 

directions of x and y, the in-plate resultant forces are 

0 xyyx NNN                                              (30) 

    The stress resultants per unit length of the 

rectangular parallelopiped are given as
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The stress components in terms of stress resultants are 

[46] 
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Here )(T  is the temperature dependent coefficient of 

linear thermal expansion. 

    To find the moments TM  and  TN , we take  
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    Using equations (34) and (26) in equation (33), we 

obtain  
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where                            
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    Using equation (35), the deflection w  from 

equation (27), the stress resultants and the 

corresponding stress components from equations (31) 

and (32), using deflection and thermally induced 

resultant moments, are obtained using Mathematica 

Software. 

 

4. Numerical results and discussion 

    For numerical computations, we consider a 

mathematical model with Copper material having the 

following thermo-mechanical parameters. 
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    The following figures (2 to 9) show the variations 

of dimensionless temperature, deflection, stress 

resultants and thermal stresses. The figures (3 to 9) on 

the left are plotted for the homogeneous case (i.e. 

taking 021  , so that the material properties 

become independent of temperature), whereas that on 

the right are plotted for the nonhomogeneous case (i.e. 

taking 0, 21  , so that the material properties 

become dependent of temperature). All the graphs are 

plotted for fractional order parameter 2,5.1,1,5.0r  

depicting weak, normal and strong conductivity.  

    Fig. (2) represents the temperature distribution 

along x–axis. It is seen that, the temperature follows a 

uniform pattern for different values of fractional order 

parameter with respect to x-coordinate. The 

temperature takes non-zero value at both the ends. The 

speed of propagation of thermal signals is directly 

proportional to the values of fractional order parameter 

r. The magnitude of temperature increases from the 
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outer end and becomes peak in the middle region and 

decreases towards the origin.     

    Fig. (3) represents the thermal deflection along x–

axis. It is observed that, in both the homogeneous and 

nonhomogeneous cases, the deflection is positive at 

both the ends while negative in the middle region.    

    Figs. (4-6) represent the variation of dimensionless 

stress resultants along x–axis.  The stress resultants 

yx MM ,  are tensile in the middle region, while 

compressive at the both ends, while the stress resultant 

xyM  exhibits a different nature. It is compressive in 

nature in the range 5.00  x , while tensile in 

15.0  x . 

    Figs. (7-9) represent the variation of dimensionless 

stresses along x–axis.  In the homogeneous case, the 

stress components yyxx  ,  are compressive at the 

outer end and tensile in the middle region. The stress 

component xy  is tensile in 5.00  x , while 

compressive in the remaining region. In the 

nonhomogeneous case, the stress components 

yyxx  ,  are tensile in 3.00  x , while 

compressive in the remaining region, while xy  

assumes nearly zero value in the region is 5.00  x  

and becomes compressive till 95.0x and suddenly 

rises at the outer end. 

 

 
Fig. (2) Plot of dimensionless temperature along x-axis  

 
Fig. (3) Plot of dimensionless deflection along x-axis 

 



 

 

Fig. (4) Plot of dimensionless stress resultant xM  along x-axis 

 

Fig. (5) Plot of dimensionless stress resultant yM  along x-axis 

 

Fig. (6) Plot of dimensionless stress resultant xyM  along x-axis 

 

Fig. (7) Plot of dimensionless stress xx  along x-axis

 



 

 

Fig. (8) Plot of dimensionless stress yy  along x-axis 

 

Fig. (9) Plot of dimensionless stress xy  along x-axis 

 

5. Validation of the results 

In this paper, an analytical mathematical 

model has been prepared for a thermally sensitive 

rectangular parallelopiped and its temperature and 

stress profile is studied. As a limiting case, if we 

take ,0),,,( tzyxg 1r , the results agree with 

[27].   

 

 

6. Conclusion 

    In this paper, we have obtained solution of 

time-fractional heat conduction equation with the 

nonlocal type Caputo time-fractional derivative 

for a thermally sensitive rectangular 

parallelopiped. The obtained solutions reduce to 

the solutions of classical HCE for 1r . For 

10  r , the considered equation interpolates the 

elliptic Helmholtz equation ( 0r ) and parabolic 

HCE. For 21  r , the HCE interpolates the 

parabolic HCE and the hyperbolic wave equation, 

and the proposed theory of thermal stresses 

interpolates the classical thermoelasticity ( 1r ) 

and that without energy dissipation ( 2r ).The 

numerical results demonstrate significant 

influence of the fractional order of time derivative 

on the temperature as well as stress distribution. 

The fractional order parameter 10  r  

corresponds to weak conductivity, while 

21  r  corresponds to strong conductivity and 

1r  corresponds to normal conductivity. The 

fractional order theory predicts a lagging response 

to physical stimuli, as observed in nature. The 

temperature-dependent material properties 

significantly affect the variations of the 

considered variables. The results indicate that, 

one needs to consider the effect of temperature 

dependent material properties in the analysis of 

any real thermoelastic problem. The presented 

results may be useful for designing of new 

materials, researchers in material sciences, 

researchers in high-temperature physics, and 

those working to further develop the theory of 

thermoelasticity with fractional calculus. 
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Appendix A 

    Following Noda [4], we express the thermal 

conductivity )(Tk  in terms of exponential law as 

0),exp()( 110   TkTk                         (A1) 

Using equation (A1), equation (11) becomes 

]1)[exp()/( 110  Tk                            (A2) 

Using equation (A2) in equation (24), we obtain 
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    We use the following logarithmic expansion 
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         (A5) 

We observe that Ltzyx )],,,([ given in equation 

(A5) converges to zero as L tends to infinity.      

Also the truncation error in equation (A5) is 

observed as .1013.5 5  

    Hence, for the sake of brevity, neglecting the 

terms with order more than one, we obtain 

),,,(]1),,,([log tzyxtzyxe    

Hence equation (A3) becomes 
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