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Highlights 
• This paper focuses on LSIP problem with fuzzy coefficient in objective and constraints. 

• A multi-objective programming problem is proposed for solving linear semi-infinite Problem. 

• A data envelopment analysis model is suggested as an application.  

Article Info 

 

Abstract 

As we are faced with more uncertainty problems in the real world, it is necessary to provide 

models that can provide appropriate solutions for dealing with these issues. In this study, we  

proposed a new approach to solving linear programming problem in the fuzzy environment based 

on solving a related multi-objective model. This kind of problem can be reduced to a fuzzy linear 

semi-infinite programming problem. In this way, we present a new mixed Multi-Objective Linear 

Semi-Infinite Programming (MOLSIP) model to solve the main problem, furthermore, as a 

practical case, we consider a fuzzy Data Envelopment Analysis (DEA) model which is a concern 

to an evaluation of the performance of Decision-Making Units (DMUs) in uncertainty 

environment, The new models show the advantage of our method over the previous ones in terms 

of certainty. Finally, numerical examples are included to illustrate the suggested solution 

procedure. 
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1. INTRODUCTION 

 

The main idea of fuzzy sets theory was first proposed by Zadeh [1] that is widely used in optimization 

problems. The true observation we have found the Fuzzy Linear Programming Problem (FLP) is more 

practical in the real-world [2-6]. Semi‐Infinite Programs (SIP) are optimization problems with either 

infinitely many constraints or infinitely many variables (but not both). Recently semi-infinite programming 

was used in different subjects of operation research and other branches of science [7-11]. Fang et al. [12] 

proposed a Fuzzy Linear Semi-Infinite Programming (FLSIP) problem with uncertain data on constraints 

coefficients. Furthermore, Wu and et al. have used the cutting plane method to solve LSIP problems [13]. 

Moreover, Nasseri et al. [14] extended their model to the general type, where the coefficients of the 

objective function in the LSIP problem are also considered by a kind of fuzzy numbers. In particular, they 

used linear ranking functions to reduce the mentioned problems to the common LSIP problem. Next, 

Nasseri and Zavieh presented a multi-objective model with fuzzy data in the constraints and objective 

function [15]. Especially, they used a weighted method for solving their FLSIP model. Until now, to solve 

a FLSIP problem with fuzzy cost coefficients, in the first phase, its target function to be converted to a 

definite function by ranking function, and then the achieved model is solved. But, in this study, we will 

transform the fuzzy objective function into the Multi-Objective problem and we will present a new model 

for solving the FLSIP model (MOLSIP). 
 

Semi-infinite programming problem have a lot of applications in different field of science, Uciński [16] 

extended a kind of branch and bound algorithm for sensor selection problem to achieve the maximum 

amount for objective function in traversing the branch-and-bound tree. Geng et al. [17] formulated a linear 
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semi-infinite programming (LSIP) for the selective body biasing problem and then an algorithm based on 

the novel concept of Incremental Hyper-cubic Sampling (IHCS) was proposed. Hale et al. [18] formulated 

fault detection and isolation (FDI) problem as semi-infinite program with implicit functions embedded to 

deal the maximize FDI effectiveness at the worst uncertainty condition. He et al. [19] suggested a bivariate 

interval semi-infinite linear programming (BV-ISIP) model with various uncertainties in functional 

relations and parameters. The model can be reduced the risk of system-failure because each of the 

constraints is satisfied under all possible levels of independent variables by BV-ISIP. Simić et al. [20] 

proposed a semi-infinite programming model with interval-parameter for tire management and planning, 

also uncertainty conditions are supported by the model. The model used for tire retreading industry. A 

summary of non-convex semi-infinite programming with applications can be found in [21]. Fuzzy sets have 

found applications in several contexts. One of the successful applications is related to the     Data 

Envelopment Analysis (DEA) as highlighted, for example, in [22-25]. In this paper, we will investigate the 

envelopment form of the DEA model. Hence, we can solve the envelopment form of the DEA model in 

fuzzy conditions by using the FLSIP problem. 
 

The goal of paper is propose MOLSIP model to solve the fuzzy linear programming problem. In this study 

for first time a fuzzy LP problem is changed to multi-objective problem and then solved by semi-infinite 

approach, in the real world MOLSIP can be help to solve multi-objective problems in uncertainty 

environment, Also the practical case gives us the efficiency of decision Making Unites (DMUs) under semi-

infinite constraints. For this intent, in this paper, section 2 outlines the basic fuzzy concepts required for the 

next sections.  In section 3, we propose a new Multi-Objective Linear Semi-Infinite Programming 

(MOLSIP) problem, and then we will show that such a problem can be reduced to a Linear Semi-Infinite 

Programming (LSIP) problem with three objective functions. The optimality conditions of solutions to 

FLSIP are investigated, and a numerical algorithm to solve the main problem is given. In Section 4, we 

propose a practical case, and a new method for solving the envelopment form of DEA in fuzzy conditions 

is considered. In section 5 numerical examples are presented. In section 6, the suggested model is compared 

with some other existing models and section 7 is the conclusion of the paper.  

 

2. PRELIMINARIES AND THE NECESSARY CONCEPT 

 

This section contains some basic concepts of fuzzy sets and DEA, which are directly related to our 

discussion in this paper and taken from [26-29]. 

 

2.1. Fuzzy Sets and Fuzzy Linear Programming 

 

Definition 1. Let ℝ be the real line. A fuzzy set 𝐴̃ in ℝ is defined to be a set of ordered pairs 𝐴̃ =
{(𝑥, 𝜇𝐴̃(𝑥)) ∶ 𝑥 ∈ ℝ}, where 𝜇𝐴̃(𝑥) is called the membership function for the fuzzy set. The membership 

function maps each element of ℝ to a membership value between 0 and 1. 

 

Definition 2. Assume 𝐴̃ is a fuzzy set and  𝛼 ∈ (0,1], then an 𝛼-cut of 𝐴̃ is defined as  

{𝑥| 𝑥 ∈ ℝ, 𝜇𝐴̃(𝑥)  ≥ 𝛼}, and we briefly denote it as 𝐴̃𝛼. 

 

Definition 3. A fuzzy set 𝐴̃ is convex, if  

 

𝜇𝐴̃(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≥ 𝑚𝑖𝑛{𝜇𝐴̃(𝑥1), 𝜇𝐴̃(𝑥2)}, 𝑥1, 𝑥2 ∈ 𝑋, 𝜆 ∈ [0,1]. 
 

Alternatively, a fuzzy set is convex, if and only if all 𝛼-cuts are convex, where 𝑋 is a collection of objects 

which is 𝑋 ⊆ ℝ. 

 

Definition 4. A fuzzy set 𝐴̃ is normal, if there exists at least one  𝑥0 ∈ ℝ such that 

𝜇𝐴̃(𝑥0) = 1. 

 

Definition 5. A fuzzy set 𝐴̃ is a fuzzy number, if it has both properties normality and convexity. 
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Definition 6. The number 𝐴̃ is a triangular fuzzy number, if its membership function is as follows: 

 

𝜇𝐴̃(𝑥) =

{
 
 

 
 
0,                                    𝑥 ≤ 𝑙 ,
𝑥−𝑙

𝑚−𝑙
,           𝑥 ≤ 𝑚,   𝛼 > 0,

𝑢−𝑥

𝑢−𝑚
,          𝑥 ≥ 𝑚,   𝛽 > 0,

0,                                     𝑥 ≥ 𝑢.

. 

 

It is so simple to see that a triangular fuzzy number (𝑙, 𝑚, 𝑢) can be rewritten by (𝑚, 𝛼, 𝛽), where 𝑚 − 𝛼 =
𝑙 and 𝑚+ 𝛽 = 𝑢. The following figure is given to explain this notation. 

 
Figure 1. A fuzzy number 𝐴̃ 

 

These kinds of fuzzy numbers will be named a fuzzy triangular number (Figure 1). 

In the above definition, when 𝑎 = inf 𝐴̃𝛼 and 𝑏 = sup 𝐴̃𝛼 , then 𝐴̃𝛼 = [𝑎, 𝑏]. Figure 2 shows the 𝛼-cut of 

𝐴̃𝛼, as introduced in the above definition. 

 
Figure 2. The membership function and 𝛼-cut  of a fuzzy number 𝐴̃ 

 

A triangular fuzzy number is shown as 𝐴̃ = (𝑎𝑙 , 𝑎𝑚, 𝑎𝑢), where 𝑎𝑚, 𝑎𝑙  𝑎𝑛𝑑 𝑎𝑢 are respectively, the core, 

the lower, and the upper limits of support of the triangular fuzzy number 𝐴̃. 

 

Definition 7. A fuzzy number 𝐴̃ shall be called a (fuzzy triangular) zero number, symbolized by 0̃, if it is 

written in the form 𝐴̃ = 0̃ = (0,0,0). 
We denote the set of all fuzzy triangular numbers on ℝ by 𝐹(ℝ). 
 

Remark 1. (i) If 𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛 ∈ 𝐹(ℝ), then 𝑀̃ = 𝐴̃1 + 𝐴̃2 + …+ 𝐴̃𝑛 ∈ 𝐹(ℝ) and  

 

𝑚− = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛, 
𝑚+ = 𝑏1 + 𝑏2 +⋯+ 𝑏𝑛, 

 

where the interval [𝑎𝑖, 𝑏𝑖] is the𝛼-cut of fuzzy number 𝐴̃𝑖 , for 𝑖 = 1 , … , 𝑛, and the interval [𝑚−,𝑚+] is 

the𝛼-cut of fuzzy number 𝑀̃. 
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(ii) If 𝐴̃ ∈ 𝐹(ℝ) and k is a positive real number, then 𝑀̃ = 𝑘. 𝐴̃ ∈ 𝐹(ℝ)and  

𝑚− = 𝑘. 𝑎, 
𝑚+ = 𝑘. 𝑏, 

where the interval [𝑎, 𝑏] is the 𝛼-cut of fuzzy number 𝐴̃. In fact, 𝑀̃𝛼 = 𝑘. 𝐴̃𝛼 . 
 

(iii) If 𝐴̃ ∈ 𝐹(ℝ) and k is a negative real number, then 𝑀̃ = 𝑘. 𝐴̃ ∈ 𝐹(ℝ) and 

𝑚− = 𝑘. 𝑏, 
𝑚+ = 𝑘. 𝑎, 

where the interval [𝑎, 𝑏] is the𝛼-cut of fuzzy number 𝐴̃.  

 

(iv) If 𝐴̃ ∈ 𝐹(ℝ) and 𝑘 = 0, then 𝑘. 𝐴̃ = 0̃. 

 

Here, we adopt the commonly used concept of 𝛼-preference as defined in [6,7], and provide the following 

method for fuzzy ordering. 

 

Since fuzzy ordering has a key role in solving fuzzy mathematical models, hence this study use follows the 

suggested approach by Fang et al. in [9]. 

 

Definition 8. If  𝐴̃1, 𝐴̃2 ∈ 𝐹(ℝ) and 𝛼 ∈ (0,1], then 𝐴̃1 ≥𝛼 𝐴̃2 if and only if  

 

𝐿𝐴̃1(𝑡) ≥𝛼 𝐿𝐴̃2(𝑡),  

                          𝑅𝐴̃1(𝑡) ≥𝛼 𝑅𝐴̃2(𝑡),        ∀ 𝑡 ∈ (𝛼, 1], 

 

where 𝐿 is the lower bound of 𝛼-cut, and 𝑅 is the upper bound of 𝛼-cut for fuzzy numbers. 

Under the fuzzy ranking method mentioned above, given 𝛼 ∈ (0,1], the FLP problem can be defined as 

follows: 

 

 𝑀𝑖𝑛∑ 𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 ,                                                                                                                     (1) 

    s.t:    ∑ 𝑎̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝑏̃𝑖,        𝑖 = 1,… , 𝑞 

             𝑥𝑗 ≥ 0,           𝑗 = 1,… , 𝑛, 

 

where 𝑐̃𝑗, 𝑎̃𝑖𝑗 , 𝑏̃𝑖 ∈ 𝐹(ℝ), 𝑖 = 1,… , 𝑞, 𝑗 = 1,… , 𝑛. 

 

Lemma 1. Constraints  ∑ 𝑎̃𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝑏̃𝑖, where 𝑥𝑗 ≥ 0, for all 𝑖 = 1,… , 𝑞 and 𝑗 = 1,… , 𝑛, is equivalent 

to the following constraints: 

 

 ∑ 𝐿𝑎̃𝑖𝑗(𝑡)𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝐿𝑏̃𝑖(𝑡), 

                             ∑ 𝑅𝑎̃𝑖𝑗(𝑡)𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝑅𝑏̃𝑖(𝑡),          ∀ 𝑡 ∈ [𝛼, 1]. 

 

 

Proof. The proof is straightforward by applying Definition 2.6. Since 𝑥𝑗 ≥ 0, for all 𝑗 = 1,… , 𝑛,  it is 

enough to use the ordering role which is given in Definition 2.6 for every constraint of Problem (1). ∎ 

Now using the min operator action, we are going to present a new view for achieving an equivalent problem. 

For this aim, we see that an objective function 𝑀𝑖𝑛∑  𝑐̃𝑗𝑥𝑗
𝑛
𝑗=1 , where  𝑐̃𝑗 = (𝑐𝑗

𝑙 , 𝑐𝑗
𝑚, 𝑐𝑗

𝑢),   𝑗 = 1,… , 𝑛, can 

be rewritten as follows: 

 𝑀𝑎𝑥 𝑍1 = ∑ (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙)𝑥𝑗
𝑛
𝑗=1  

 𝑀𝑖𝑛 𝑍2 = ∑ 𝑐𝑗
𝑚𝑥𝑗

𝑛
𝑗=1  

 𝑀𝑖𝑛 𝑍3 = ∑ (𝑐𝑗
𝑢 − 𝑐𝑗

𝑚)𝑥𝑗
𝑛
𝑗=1 . 

 

In fact since the left and right spread and the core of the triangular fuzzy number 𝑐̃𝑗 are (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙), 

(𝑐𝑗
𝑢 − 𝑐𝑗

𝑚) and 𝑐𝑗
𝑚 respectively. So, it is clear that the minimization of fuzzy function, 𝑍̃𝑗 = ∑  𝑐̃𝑗𝑥𝑗

𝑛
𝑗=1 , is 
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equal to minimizing the crisp functions ∑ 𝑐𝑗
𝑚𝑥𝑗

𝑛
𝑗=1  and ∑ (𝑐𝑗

𝑢 − 𝑐𝑗
𝑚)𝑥𝑗

𝑛
𝑗=1  and also maximization of crisp 

function ∑ (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙)𝑥𝑗
𝑛
𝑗=1 . So, the proof is completed. 

 

Definition 9. Semi-Infinite Programming (SIP) is an optimization model with finite variables and infinite 

constraints, or infinite variables and finite constraints. In the first case, The mathematical formulation is as 

follows: 

 

𝑀𝑖𝑛𝑥∈𝑋𝑓(𝑥)                                                                                                                        
 𝑆. 𝑡:     𝑔(𝑥, 𝑦) ≤ 0,     ∀𝑦 ∈ 𝑌, 
where 

            𝑓:ℝ𝑛 → ℝ, 
            𝑔:ℝ𝑛 ∗ ℝ𝑚 → ℝ, 
           𝑋 ⊆ ℝ𝑛, 
           𝑌 ⊆ ℝ𝑚. 
 

2.2. Data Envelopment Analysis 

 

Data envelopment analysis is a non-parametric method for evaluating decision units (DMU) that suggested 

by Charnes et al. [28] and named the CCR model, the multiplier form of the CCR model is introduced as 

follows: 

 

𝑀𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑗
𝑛
𝑗=1                                                                                                                                          (2) 

 𝑆. 𝑡:     ∑ 𝑣𝑖𝑥𝑖𝑗
𝑛
𝑗=1 = 1,     𝑖 = 1,… , 𝑞, 

             ∑ 𝑢𝑟𝑦𝑟𝑗
𝑛
𝑗=1 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑛
𝑗=1 ≤ 0,     𝑟 = 1,… , 𝑧,   

             𝑢𝑟, 𝑣𝑖 ≥ 0,    𝑖 = 1,… , 𝑞, 𝑟 = 1,… , 𝑧, 
 

where 𝑥𝑖𝑗 and 𝑦𝑟𝑗 are inputs and outputs of 𝐷𝑀𝑈𝑗 and 𝑣𝑖 , 𝑢𝑟 are weight vectors of inputs and outputs, 

respectively. The dual form of model (2) is as follows: 

 

𝑀𝑖𝑛 𝜃𝑜                                                                                                                                                         (3) 

 𝑆. 𝑡:     ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝜃𝑜𝑥𝑖𝑜,     𝑖 = 1,… , 𝑞, 

             ∑ 𝜆𝑗𝑦𝑟𝑗
𝑛
𝑗=1 ≥ 𝑦𝑟𝑜,     𝑟 = 1,… , 𝑧, 

             𝜆𝑗 ≥ 0,    𝑗 = 1,… , 𝑛, 

 

where 𝑋𝑗 = (𝑥1𝑗, 𝑥2𝑗, … , 𝑥𝑚𝑗)
𝑡
 and 𝑌𝑗 = (𝑦1𝑗,𝑦2𝑗, … , 𝑦𝑠𝑗)

𝑡
 are the input vector and the output vector of the 

𝐷𝑀𝑈𝑗, respectively. 

 

3. MULTI-OBJECTIVE LINEAR SEMI-INFINITE PROGRAMMING (MOLSIP) 

 

In this part, we propose a new approach for solving FLP problems. In the solution process, we need to solve 

the LSIP problem with several objectives. We denote this problem as MOLSIP in its abbreviated form. 

Hence, we will explain in the sequel how the FLP problem can be reduced to an LSIP model with several 

objectives. In this way, the appropriate technique and the solving approach to these well-known problems 

are presented. The above discussion can lead us to the following model 

 

𝑀𝑎𝑥 𝑍1 = ∑ (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙)𝑥𝑗
𝑛
𝑗=1                                                                                                                       (4) 

 𝑀𝑖𝑛 𝑍2 = ∑ 𝑐𝑗
𝑚𝑥𝑗

𝑛
𝑗=1  

 𝑀𝑖𝑛 𝑍3 = ∑ (𝑐𝑗
𝑢 − 𝑐𝑗

𝑚)𝑥𝑗
𝑛
𝑗=1  

         s.t:     ∑ 𝐿𝑎̃𝑖𝑗(𝑡)𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝐿𝑏̃𝑖(𝑡),           ∀ 𝑡 ∈ [á, 1],   𝑖 = 1,… , 𝑞, 

                   ∑ 𝑅𝑎̃𝑖𝑗(𝑡)𝑥𝑗
𝑛
𝑗=1 ≥𝛼 𝑅𝑏̃𝑖(𝑡),          ∀ 𝑡 ∈ [𝛼, 1],   𝑖 = 1,… , 𝑞, 

                   𝑥𝑗 ≥ 0,   𝑗 = 1,… , 𝑛. 

https://en.wikipedia.org/wiki/Optimization_problem
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Collorary 3.1. Problem (4) and the following problem are equivalent. 

 

   𝑀𝑎𝑥 𝑍1 = ∑ (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙)𝑥𝑗
𝑛
𝑗=1                                           (5) 

  𝑀𝑖𝑛 𝑍2 = ∑ 𝑐𝑗
𝑚𝑥𝑗

𝑛
𝑗=1  

  𝑀𝑖𝑛 𝑍3 = ∑ (𝑐𝑗
𝑢 − 𝑐𝑗

𝑚)𝑥𝑗
𝑛
𝑗=1  

               S.t:  (
𝑓11(𝑡1) ⋯ 𝑓1𝑛(𝑡1)
⋮ ⋱ ⋮

𝑓𝑤1(𝑡𝑤) ⋯ 𝑓𝑤𝑛(𝑡𝑤)
) (𝑥1, … , 𝑥𝑛)

𝑡 ≤ (
𝑏1(𝑡1)...
𝑏𝑤(𝑡𝑤)

),    ∀𝑡𝑖 ∈ 𝑇, 𝑖 = 1,… ,𝑤, 

                       𝑥𝑗 ≥ 0,   𝑗 = 1,… , 𝑛, 

where 𝑇 is a compact metric space, 𝑓𝑝𝑗(𝑡), 𝑏𝑝(𝑡), 𝑝 = 1,… ,𝑤, 𝑗 = 1,… , 𝑛are real-valued continuous 

functions on 𝑇. 

 

Proof. We just need to show that the constraints of both problems are the same. For this aim, we set: 

 

• 𝑓𝑖𝑗(𝑡) = 𝐿𝑎̃𝑖𝑗(𝑡), 𝑖 = 1,… , 𝑞,  𝑓𝑖𝑗(𝑡) = 𝑅𝑎̃𝑖−𝑞 𝑗(𝑡), 𝑖 = 𝑞 + 1,… ,2𝑞 and 𝑗 = 1,… , 𝑛,   

• 𝑏𝑖(𝑡) = 𝐿𝑏̃𝑖(𝑡),   𝑖 = 1,… , 𝑞, 𝑏𝑖(𝑡) = 𝑅𝑏̃𝑖−𝑞(𝑡), 𝑖 = 𝑞 + 1,… ,2𝑞 and 𝑗 = 1,… , 𝑛,   

• 𝑤 = 2𝑞, 𝑡 ∈ [𝛼, 1].  
 

where 𝛼 ∈ (0,1]. Therefore, the result is obvious. ∎ 

Problem (5) is a Multi-Objective Linear Semi-Infinite Programming (MOLSIP) problem with n variables 

and an infinite number of constraints. In the solution process, we will use the “cutting plane approach” for 

solving the LSIP problem. Problem (5) can be rewritten as follows: 

 

  𝑀𝑎𝑥 𝑍1 = ∑ (𝑐𝑗
𝑚 − 𝑐𝑗

𝑙)𝑥𝑗
𝑛
𝑗=1                                   (6) 

  𝑀𝑖𝑛 𝑍2 = ∑ 𝑐𝑗
𝑚𝑥𝑗

𝑛
𝑗=1  

 𝑀𝑖𝑛 𝑍3 = ∑ (𝑐𝑗
𝑢 − 𝑐𝑗

𝑚)𝑥𝑗
𝑛
𝑗=1  

               S.t: 

(

 
 
 
 
 
 
 

𝑓11(𝑡1
1) ⋯ 𝑓1𝑛(𝑡1

1)
⋮ ⋱ ⋮

𝑓𝑤1(𝑡𝑤
1 ) ⋯ 𝑓𝑤𝑛(𝑡𝑤

1 )
− −− − −−−−−..

.
− − − − −−−−−
𝑓11(𝑡1

𝑘) ⋯ 𝑓1𝑛(𝑡1
𝑘)

⋮ ⋱ ⋮
𝑓𝑤1(𝑡𝑤

𝑘 ) ⋯ 𝑓𝑤𝑛(𝑡𝑤
𝑘 ))

 
 
 
 
 
 
 

 (𝑥1, … , 𝑥𝑛)
𝑡 ≥

(

 
 
 
 
 
 
 

𝑏1(𝑡1
1)
...

𝑏𝑤(𝑡𝑤
1 )
  

−−−
...

− − −   
𝑏1(𝑡1

𝑘)
...

𝑏𝑤(𝑡𝑤
𝑘 ))

 
 
 
 
 
 
 

, ∀𝑡𝑖 ∈ 𝑇, 𝑖 = 1,… ,𝑤,     

                      𝑥𝑗 ≥ 0,   𝑗 = 1,… , 𝑛. 

 

Definition. Constraint violation functions: we consider each of constraint in model (6) as a function:  

 

 ∑ 𝑓𝑝𝑗(𝑡)𝑥𝑗
𝑘𝑛

𝑗=1 − 𝑏𝑝(𝑡),     ∀𝑡 ∈ 𝑇,   𝑝 = 1,… ,𝑤. 

 

We will show this constraint with 𝑣𝑝
𝑘+1(𝑡). 

Let 𝑅𝑘 be the feasible region of 𝑀𝑂𝐿𝑃 problem, which is defined in (3.3). If 𝑥𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 , … , 𝑥𝑛
𝑘) is a 

Pareto optimal solution for Problem (3.3), then consider the “constraint violation functions” as follows: 

 

 𝑣𝑝
𝑘+1(𝑡) = ∑ 𝑓𝑝𝑗(𝑡)𝑥𝑗

𝑘𝑛
𝑗=1 − 𝑏𝑝(𝑡),     ∀𝑡 ∈ 𝑇,   𝑝 = 1,… ,𝑤. 

 

In the below, we present the algorithm for the suggested method 

 

 

 



1068  Hadi ZAVIEH, Hadi NASSERI, Chefi TRIKI/ GUJ Sci, 35(3): 1062-1076 (2022) 

 
 

Algorithm 3.1. 

Assumption: Assume that Problem (1) is given to be solved. Then, we consider its equivalent problem, 

that is, Problem (5). 

For each of 𝑍1, 𝑍2and𝑍3, do the following steps: 

Step 1: Set 𝑘 =  1; choose any  𝑡𝑝
1 ∈ 𝑻; set 𝑇1 = {𝑡

1} = (𝑡1
1, … , 𝑡𝑤

1 ). 

Step 2: Solve (𝐿𝑃)𝑘 and obtain an optimal solution 𝑥𝑘. 

Step 3: Find a minimizer 𝑡𝑝
𝑘+1 for 𝑣𝑝

𝑘+1(𝑡) over 𝑻, for 𝑝 =  1, . . . , 𝑤. 

Step 4: If 𝑣𝑝
𝑘+1(𝑡𝑝

𝑘+1) ≥ 0, for 𝑝 =  1, . . . , 𝑤, then stop, with 𝑥𝑘is an optimal solution of LSIP. Otherwise, 

set 𝑇𝑘+1 = 𝑇𝑘 ∪ {𝑡
𝑘+1} and 𝑘 ⟵  𝑘 +  1; go to Step 1. 

Using three times, the above algorithm will give us three optimal values for the three above mentioned 

objective functions. Now, using these values and solving the following problem, we obtain the optimal 

value of the MOLSIP problem 

 

𝑀𝑎𝑥   𝜆                                                                                                                                                        (7) 

 𝑠. 𝑡:     𝜆 ≤ 𝜇𝑍ℎ(𝑥),     ℎ = 1,2,3  

           (
𝑓11(𝑡1) ⋯ 𝑓1𝑛(𝑡1)
⋮ ⋱ ⋮

𝑓𝑤1(𝑡𝑤) ⋯ 𝑓𝑤𝑛(𝑡𝑤)
) (𝑥1, … , 𝑥𝑛)

𝑡 ≤ (
𝑏1(𝑡1)...
𝑏𝑤(𝑡𝑤)

),    ∀𝑡𝑖 ∈ 𝑇, 𝑖 = 1,… ,𝑤, 

           𝑥𝑗 ≥ 0,   𝑗 = 1,… , 𝑛.   

 

In the above model based on the achieve optimal values of the objective functions, we defined 

 

                                                             𝑍ℎ
∗ = max𝑍ℎ(𝑥), ℎ = 1,2,3                                                          (8) 

 

which are obtained by Algorithm 3.1, where 𝑍ℎ(𝑥), is the h
th objective function(ℎ = 1,2,3), and 

 

                                                                   𝑍ℎ
− = 𝑀𝑖𝑛ℎ≠𝑗{𝑍ℎ(𝑥𝑗

∗)}, j = 1,2,3                                                   (9) 

 

where𝑥𝑗
∗ is the optimal value of each function obtained by Algorithm 4.1, for 𝑗 = 1,2,3. 

 

Now, based on relations (8) and (9), the membership function for each of the objective functions is defined 

as follows: 

                                                                        𝜇𝑍ℎ(𝑥) =
𝑍ℎ(𝑥)−𝑍ℎ

−

𝑍ℎ
∗−𝑍ℎ

−  .                                                           (10) 

Finally, by solving model (7), we obtain the optimal fuzzy value for the model (6) with 𝜆 as a membership 

function value. 

 

4. A FUZZY DATA ENVELOPMENT ANALYSIS MODEL 

 

In this section, by using Definition 2.8 we are presenting a model on the envelopment form of DEA in fuzzy 

condition. The input and output values of the model (3) are assumed to be in the form of fuzzy triangular 

numbers, and then the model can be rewritten as follows: 

 

𝑀𝑖𝑛 𝜃𝑜                     (11) 

 𝑆. 𝑡:      𝜃𝑜𝑥̃𝑖𝑜 − ∑ 𝜆𝑗𝑥̃𝑖𝑗
𝑛
𝑗=1 ≥𝛼 0̃,     𝑖 = 1,… , 𝑞 

              ∑ 𝜆𝑗𝑦̃𝑟𝑗
𝑛
𝑗=1 ≥𝛼 𝑦̃𝑟𝑜 ,     𝑟 = 1,… , 𝑧 

              𝜆𝑗 ≥ 0,    𝑗 = 1,… , 𝑛. 

 

It is clear that using Definition 2.8 and Lemma 2.1, the above problem and the following problem are 

equivalent 

 

𝑀𝑖𝑛 𝜃𝑜                                                          (12) 

 𝑆. 𝑡:      𝜃𝑜𝐿𝑥̃𝑖𝑜(𝑡) − ∑ 𝜆𝑗𝐿𝑥̃𝑖𝑗(𝑡)
𝑛
𝑗=1 ≥𝛼 0̃,     𝑖 = 1,… , 𝑞  
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              ∑ 𝜆𝑗𝐿𝑦̃𝑟𝑗(𝑡)
𝑛
𝑗=1 ≥𝛼 𝐿𝑦̃𝑟𝑜(𝑡),     𝑟 = 1,… , 𝑧  

              𝜃𝑜𝑅 𝑥̃𝑖−𝑞 𝑜(𝑡) − ∑ 𝜆𝑗𝑅 𝑥̃𝑖−𝑞 𝑗(𝑡)
𝑛
𝑗=1 ≥𝛼 0̃,     𝑖 = 1,… , 𝑞                                                

              ∑ 𝜆𝑗𝑅 𝑥̃𝑟−𝑧 𝑗(𝑡)
𝑛
𝑗=1 ≥𝛼 𝑅 𝑦̃𝑟−𝑧 𝑜(𝑡),     𝑟 = 1,… , 𝑧 

              𝜆𝑗 ≥ 0,    𝑗 = 1,… , 𝑛. 

 

By considering 𝑓𝑝𝑗(𝑡), 𝑓𝑝𝑜(𝑡), 𝑝 = 1,… ,𝑤, 𝑗 = 1,… , 𝑛 and 𝑓ℎ𝑗(𝑡), 𝑓ℎ𝑜(𝑡), ℎ = 1,… , 𝑠, 𝑗 =

1,… , 𝑛  and by using Collorary 3.1 we have:  

 

𝑓𝑖𝑜
1(𝑡) ≜ 𝐿𝑥̃𝑖𝑜(𝑡), 𝑖 = 1,… , 𝑞, 𝑓𝑖𝑜

1(𝑡) ≜ 𝑅𝑥̃𝑖−𝑞 𝑜(𝑡), 𝑖 = 𝑞 + 1,… ,2𝑞, 

𝑓𝑖𝑗
2(𝑡) ≜ 𝐿𝑥̃𝑖𝑗(𝑡), 𝑖 = 1,… , 𝑞, 𝑓𝑖𝑗

2(𝑡) ≜ 𝑅𝑥̃𝑖−𝑞 𝑗(𝑡), 𝑖 = 𝑞 + 1,… ,2𝑞, 

 

𝑗 = 1,… , 𝑛, 𝑤 ≜ 2𝑞, 𝑡 ∈ [𝛼, 1]. 
𝑓𝑟𝑗
3 (𝑡) ≜ 𝐿𝑦̃𝑟𝑗(𝑡), 𝑟 = 1,… , 𝑧, 𝑓𝑟𝑗

3 (𝑡) ≜ 𝑅 𝑥̃𝑟−𝑧 𝑗(𝑡), 𝑟 = 𝑧 + 1,… ,2𝑧, 

𝑓𝑟𝑜
4 (𝑡) ≜ 𝐿𝑦̃𝑟𝑜(𝑡), 𝑟 = 1,… , 𝑧, 𝑓𝑟𝑜

4 (𝑡) ≜ 𝑅𝑦̃𝑟−𝑧 𝑜(𝑡), 𝑟 = 𝑧 + 1,… ,2𝑧, 

 

𝑗 = 1,… , 𝑛, 𝑠 ≜ 2𝑧, 𝑡 ∈ [𝛼, 1]. 
 

where 𝐿𝑥̃𝑖𝑜, 𝐿𝑥̃𝑖𝑗, 𝐿𝑦̃𝑟𝑗, 𝐿𝑦̃𝑟𝑜 are the lower bound of 𝛼-cut for fuzzy numbers 𝑥̃𝑖𝑜, 𝑥̃𝑖𝑗, 𝑦̃𝑟𝑗 and 𝑦̃𝑟𝑜 

respectively, and 𝑅𝑥̃𝑖−𝑞 𝑜, 𝑅𝑥̃𝑖−𝑞 𝑗, 𝑅 𝑥̃𝑟−𝑧 𝑗, 𝑅𝑦̃𝑟−𝑧 𝑜 are the upper bound of 𝛼-cut for fuzzy numbers 𝑥̃𝑖−𝑞 𝑜, 

𝑥̃𝑖−𝑞 𝑗, 𝑥̃𝑟−𝑧 𝑗 and  𝑦̃𝑟−𝑧 𝑜 respectively. The new DEA model is written as follows: 
 

𝑀𝑖𝑛 𝜃𝑜                     (13) 

S.t:    

(

 
 
 
 
 
 
 

𝑓1𝑜
1 (𝑡1)

𝑓2𝑜
1 (𝑡2)
⋮

𝑓𝑤𝑜
1 (𝑡𝑤)

|
|
|

−𝑓11
2 (𝑡1) ⋯ −𝑓1𝑛

2 (𝑡1)

−𝑓21
2 (𝑡2) ⋯ −𝑓2𝑛

2 (𝑡2)
⋮

−𝑓𝑤1
2 (𝑡𝑤)

⋱
⋯

⋮
−𝑓𝑤𝑛

2 (𝑡𝑤)
_______ | ______________________

0
0
⋮
0

|
|
|

𝑓11
3 (𝑡1) ⋯ 𝑓1𝑛

3 (𝑡1)

𝑓21
3 (𝑡2) ⋯ 𝑓2𝑛

3 (𝑡2)
⋮

𝑓𝑠1
3 (𝑡𝑤)

⋱
⋯

⋮
𝑓𝑠𝑛
3 (𝑡𝑤) )

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

𝜃
___ 
𝜆1 
𝜆2     
⋮ 
 
 
𝜆𝑛  )

 
 
 
 
 
 
 

≥

(

 
 
 
 
 
 

0
0
⋮
0_______

𝑓1𝑜
4 (𝑡1)

𝑓2𝑜
4 (𝑡2)
⋮

𝑓𝑠𝑜
4 (𝑡𝑤))

 
 
 
 
 
 

, 

                     ∀𝑡𝑖 ∈ 𝑇, 𝑖 = 1,… ,𝑤, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. 

 

By solving the above model, we obtain the efficiency level of Decision Making Unit O (𝐷𝑀𝑈𝑜). 

 

5. NUMERICAL EXAMPLES 

 

Here, we are going to explore solving procedure of the FLP problem based on the presented approaches. 

 

Example 5.1. (Case Study)  

In a production factory two machines 𝑀1 and 𝑀2 working on two products 𝑃1and 𝑃2. The uncertain daily 

time required and the capacity of each machine for the production of each product comes in Table 1: 

 

Table 1. The time required per units and machine capacity 

Machines Time per unit (minute) Machine capacity 

(hour/day) 
𝑃1                                  𝑃2 

𝑀1 

𝑀2 

(0.5, 1.5, 1.7)             (1.5, 2, 2.5) 

(1.2, 2, 2.3)                 (0.5, 1, 1.2) 

(3, 5, 9) 

(4, 5, 8) 
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Since the price of each product can vary because of market fluctuations, the factory considered the profit 

of 𝑃1 close to 8 and for 𝑃2 close to 4. The factory wants to determine the number of products it must produce 

per day to achieve maximum profits. 

 

Since the profit and time are ambiguous, so the number of units will also be inaccurate. The problem can 

be written as an FLP problem. Fuzzy triangular numbers for each inaccurate value are considered. 

 

Since we suppose the profit of 𝑃1 is close to 8 so it can be modeled as (6, 8, 9), and 𝑃2 can be modeled as 

(3,4,7). Therefore, we formulae the FLP problem as follows: 

 

𝑀𝑎𝑥𝑍 = (6,8,9)𝑥1 + (3,4,7)𝑥2 
 𝑠. 𝑡:      (0.5,1.5,1.7)𝑥1 + (1.5,2,2.5)𝑥2 ≤𝛼 (3,5,9), 
            (1.2,2,2.3)𝑥1 + (0.5,1,1.2)𝑥2 ≤𝛼 (4,5,8), 
             𝑥1, 𝑥2 ≥ 0. 

 

Now, by Theorem 3.1 and Corollary 3.1, the model can be reduced as follows: 

 

 𝑀𝑖𝑛 𝑍1 = 2𝑥1 + 𝑥2 
𝑀𝑎𝑥 𝑍2 = 8𝑥1 + 4𝑥2 
𝑀𝑎𝑥 𝑍3 = 𝑥1 + 3𝑥2 

S.t: (

𝑡1 + 0.5  0.5𝑡1 + 1.5
0.8𝑡2 + 1.2  0.5𝑡2 + 0.5
−0.2𝑡3 + 1.7  −0.5𝑡3 + 2.5
−0.3𝑡4 + 2.3        − 0.2𝑡4 + 1.2

)

(

 

   
𝑥1         
𝑥2
)

 ≤ (

2𝑡1+3
𝑡2+4 
−4𝑡3+9
−3𝑡4+8

),    ∀𝑡𝑖 ∈ [𝛼, 1], 

                  𝑥1, 𝑥2 ≥ 0. 
 

In this example, we assume that 𝛼 = 0.6 and  𝑡1 = (𝑡1
1, 𝑡2

1, 𝑡3
1, 𝑡4

1) = (0.7,0.8,0.7,0.8) as an optional point, 

then we have the regular multi-objective linear program, 

 

𝑀𝑖𝑛 𝑍1 = 2𝑥1 + 𝑥2 
𝑀𝑎𝑥 𝑍2 = 8𝑥1 + 4𝑥2 
𝑀𝑎𝑥 𝑍3 = 𝑥1 + 3𝑥2 

S.t: 

(

 
 

𝑡1
1 + 0.5  0.5𝑡1

1 + 1.5

0.8𝑡2
1 + 1.2  0.5𝑡2

1 + 0.5

−0.2𝑡3
1 + 1.7  −0.5𝑡3

1 + 2.5

−0.3𝑡4
1 + 2.3        − 0.2𝑡4

1 + 1.2)

 
 

(

 
 

   
𝑥1            
𝑥2

)

 
 
≤

(

 
 

2𝑡1
1+3

𝑡2
1+4
 

−4𝑡3
1+9

−3𝑡4
1+8

)

 
 
,    ∀𝑡𝑖 ∈ [𝛼, 1], 

                  𝑥1, 𝑥2 ≥ 0. 
 

By solving the current MOLP problem, for every objective function, we have: 

 

𝑍1
∗ = 0 𝑎𝑛𝑑 𝑥1 = (𝑥1

1, 𝑥2
1) = (0,0) 

𝑍2
∗ = 20.957 𝑎𝑛𝑑 𝑥1 = (𝑥1

1, 𝑥2
1) = (2.117,1.005) 

𝑍3
∗ = 7.135 𝑎𝑛𝑑 𝑥1 = (𝑥1

1, 𝑥2
1) = (0,2.378). 

 

Define 

 

𝑣1
2(𝑡1) = (−𝑡1 − 0.5)𝑥1

1 + (−0.5𝑡1 − 1.5)𝑥2
1 − (−2𝑡1 − 3) 

𝑣2
2(𝑡2) = (−0.8𝑡2 − 1.2)𝑥1

1 + (−0.5𝑡2 − 0.5)𝑥2
1 − (−𝑡2 − 4) 

𝑣3
2(𝑡3) = (0.2𝑡3 − 1.7)𝑥1

1 + (0.5𝑡3 − 2.5)𝑥2
1 − (4𝑡3 − 9) 

𝑣4
2(𝑡4) = (0.3𝑡4 − 2.3)𝑥1

1 + (0.2𝑡4 − 1.2)𝑥2
1 − (3𝑡4 − 8) 

 

• For problem 𝑍1with 𝑥1 = (𝑥1
1, 𝑥2

1) = (0,0) : 
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𝑣1
2(𝑡1) = 2𝑡1 + 3, 𝑣2

2(𝑡2) = 𝑡2 + 4, 𝑣3
2(𝑡3) = −4𝑡3 + 9 and 𝑣4

2(𝑡4) = −3𝑡4 + 8. 

The minimizers of 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) over [𝛼, 1] are (0.6,0.6,1,1), respectively. 

Hence, we choose 𝑡2 = (𝑡1
2, 𝑡2

2, 𝑡3
2, 𝑡4

2) = (0.6,0.6,1,1). Since 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) ≥ 0, the 

algorithm stops, and it concludes that the optimal solution is𝑥∗ = 𝑥1 = (0,0) with 𝛼 = 0.6. 

 

• For problem 𝑍2 with 𝑥1 = (𝑥1
1, 𝑥2

1) = (2.117,1.005) : 
 

𝑣1
2(𝑡1) = −0.619𝑡1 + 0.434, 𝑣2

2(𝑡2) = −1.119𝑡2 + 0.958, 𝑣3
2(𝑡3) = −3.075𝑡3 + 2.888 and 𝑣4

2(𝑡4) =
−2.164𝑡4 + 1.924. 

 

The minimizers of 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) over [𝛼, 1] are (1,1,1,1), respectively. 

 

Hence, we choose 𝑡2 = (𝑡1
2, 𝑡2

2, 𝑡3
2, 𝑡4

2) = (1,1,1,1). Since 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) ≱ 0, the 

algorithm iterates with a new linear program, 

 

𝑀𝑎𝑥 𝑍2 = 8𝑥1 + 4𝑥2 

S.t: 

(

 
 
 
 
 
 
 

𝑡1
1 + 0.5  0.5𝑡1

1 + 1.5

0.8𝑡2
1 + 1.2  0.5𝑡2

1 + 0.5

−0.2𝑡3
1 + 1.7  −0.5𝑡3

1 + 2.5

−0.3𝑡4
1 + 2.3        − 0.2𝑡4

1 + 1.2
    ………                         ………
𝑡1
2 + 0.5  0.5𝑡1

2 + 1.5

0.8𝑡2
2 + 1.2  0.5𝑡2

2 + 0.5

−0.2𝑡3
2 + 1.7  −0.5𝑡3

2 + 2.5

−0.3𝑡4
2 + 2.3        − 0.2𝑡4

2 + 1.2)

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

       
𝑥1                               
𝑥2       )

 
 
 
 
 
 
 

≤

(

 
 
 
 
 

2𝑡1
1+3

𝑡2
1+4
 

−4𝑡3
1+9

−3𝑡4
1+8

………
2𝑡1
2+3

𝑡2
2+4
 

−4𝑡3
2+9

−3𝑡4
2+8)

 
 
 
 
 

    , 

                  𝑥1, 𝑥2 ≥ 0. 
 

Solving (𝐿𝑃2) in the optimal solution 

 

𝑍2
∗ = 20 𝑎𝑛𝑑 𝑥2 = (𝑥1

2, 𝑥2
2) = (2.5,0). 

 

Define 

𝑣1
3(𝑡1) = (−𝑡1 − 0.5)𝑥1

2 + (−0.5𝑡1 − 1.5)𝑥2
2 − (−2𝑡1 − 3) = −0.5𝑡1 + 1.75 

𝑣2
3(𝑡2) = (−0.8𝑡2 − 1.2)𝑥1

2 + (−0.5𝑡2 − 0.5)𝑥2
2 − (−𝑡2 − 4) = −𝑡2 + 1 

𝑣3
3(𝑡3) = (0.2𝑡3 − 1.7)𝑥1

2 + (0.5𝑡3 − 2.5)𝑥2
2 − (4𝑡3 − 9) = −3.5𝑡3 + 4.75 

𝑣4
3(𝑡4) = (0.3𝑡4 − 2.3)𝑥1

2 + (0.2𝑡4 − 1.2)𝑥2
2 − (3𝑡4 − 8) = −2.25𝑡4 + 2.25. 

 

The minimizers of 𝑣1
3(𝑡1), 𝑣2

3(𝑡2),𝑣3
3(𝑡3), 𝑣4

3(𝑡4) over [𝛼, 1] are (1,1,1,1), respectively. 

 

Hence, we choose 𝑡 = (𝑡1
3, 𝑡2

3, 𝑡3
3, 𝑡4

3) = (1,1,1,1). Since 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) ≥ 0, the algorithm 

stops and 𝑥∗ = 𝑥2 = (2.5,0)is the optimal solution with 𝛼 = 0.6. 

 

• For problem 𝑍3 with 𝑥1 = (𝑥1
1, 𝑥2

1) = (0,2.378) : 
𝑣1
2(𝑡1) = 0.811𝑡1 − 0.567, 𝑣2

2(𝑡2) = −0.189𝑡2 + 2.811, 𝑣3
2(𝑡3) = −2.811𝑡3 + 3.055 and 𝑣4

2(𝑡4) =
−2.524𝑡4 + 5.149. 

 

The minimizers of 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) over [𝛼, 1] are (0.6,1,1,1), respectively. 

 

Hence, we choose 𝑡2 = (𝑡1
2, 𝑡2

2, 𝑡3
2, 𝑡4

2) = (0.6,1,1,1). Since 𝑣1
2(𝑡1) ≱ 0 and 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) ≥ 0, the 

algorithm should iterate with a new linear program, 

 

𝑀𝑎𝑥 𝑍3 = 𝑥1 + 3𝑥2 
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S.t: 

(

 
 
 
 
 
 
 

𝑡1
1 + 0.5  0.5𝑡1

1 + 1.5

0.8𝑡2
1 + 1.2  0.5𝑡2

1 + 0.5

−0.2𝑡3
1 + 1.7  −0.5𝑡3

1 + 2.5

−0.3𝑡4
1 + 2.3        − 0.2𝑡4

1 + 1.2
    ………                         ………
𝑡1
2 + 0.5  0.5𝑡1

2 + 1.5

0.8𝑡2
2 + 1.2  0.5𝑡2

2 + 0.5

−0.2𝑡3
2 + 1.7  −0.5𝑡3

2 + 2.5

−0.3𝑡4
2 + 2.3        − 0.2𝑡4

2 + 1.2)

 
 
 
 
 
 
 

(

 
 
 
 
 
 
 

       
𝑥1                               
𝑥2       )

 
 
 
 
 
 
 

≤

(

 
 
 
 
 
 
 

   
2𝑡1
1+3

𝑡2
1+4
 

−4𝑡3
1+9

−3𝑡4
1+8
 ……… 

2𝑡1
2+3

𝑡2
2+4
 

−4𝑡3
2+9

−3𝑡4
2+8
     )

 
 
 
 
 
 
 

, 

                  𝑥1, 𝑥2 ≥ 0. 
 

Solving (𝐿𝑃2) concludes the optimal solution as follows: 

 

𝑍3
∗ = 7 𝑎𝑛𝑑 𝑥2 = (𝑥1

2, 𝑥2
2) = (0,2.333). 

 

Define, 

𝑣1
3(𝑡1) = (−𝑡1 − 0.5)𝑥1

2 + (−0.5𝑡1 − 1.5)𝑥2
2 − (−2𝑡1 − 3) = −0.834𝑡1 − 0.5 

𝑣2
3(𝑡2) = (−0.8𝑡2 − 1.2)𝑥1

2 + (−0.5𝑡2 − 0.5)𝑥2
2 − (−𝑡2 − 4) = −0.166𝑡2 + 2.834 

𝑣3
3(𝑡3) = (0.2𝑡3 − 1.7)𝑥1

2 + (0.5𝑡3 − 2.5)𝑥2
2 − (4𝑡3 − 9) = −2.834𝑡3 + 3.168 

𝑣4
3(𝑡4) = (0.3𝑡4 − 2.3)𝑥1

2 + (0.2𝑡4 − 1.2)𝑥2
2 − (3𝑡4 − 8) = −2.533𝑡4 + 5.204. 

 

The minimizers of 𝑣1
3(𝑡1), 𝑣2

3(𝑡2),𝑣3
3(𝑡3), 𝑣4

3(𝑡4) over [𝛼, 1] are (0.6,1,1,1) respectively. 

 

Hence, we choose 𝑡 = (𝑡1
3, 𝑡2

3, 𝑡3
3, 𝑡4

3) = (0.6,1,1,1). Since 𝑣1
2(𝑡1), 𝑣2

2(𝑡2),𝑣3
2(𝑡3), 𝑣4

2(𝑡4) ≥ 0, the 

algorithm stops, and we obtain the optimal solution as𝑥∗ = 𝑥2 = (0,2.333) with 𝛼 = 0.6. 

 

Now, we have the optimal values of the three objective functions: 

 

𝑍1
∗ = 0 𝑎𝑛𝑑 𝑥∗ = (𝑥1

∗, 𝑥2
∗) = (0,0) 

𝑍2
∗ = 20 𝑎𝑛𝑑 𝑥∗ = (𝑥1

∗, 𝑥2
∗) = (2.5,0) 

𝑍3
∗ = 7 𝑎𝑛𝑑 𝑥∗ = (𝑥1

∗, 𝑥2
∗) = (0,2.333). 

 

And we can calculate the amount of each function while using the optimal value of other functions 

 

𝑍1(𝑥2
∗) = 5, 𝑍1(𝑥3

∗) = 2.333, 𝑍2(𝑥1
∗) = 0, 𝑍2(𝑥3

∗) = 9.332, 𝑍3(𝑥1
∗) = 0, 𝑍3(𝑥2

∗) = 2.5 

 

Calculate 𝑍𝑖
− = 𝑀𝑖𝑛𝑖≠𝑗{𝑓𝑖(𝑥𝑗

∗)} : 

 

𝑍1
− = 5,     𝑍2

− = 0,     𝑍3
− = 0. 

 

Write a membership function for three functions as follow: 

 

𝜇𝑍1(𝑥) =
𝑍1(𝑥) − 5

−5
,   𝜇𝑍2(𝑥) =

𝑍2(𝑥)

20
,   𝜇𝑍3(𝑥) =

𝑍3(𝑥)

7
. 

 

Then, problem (7) is defined here as: 

 

𝑀𝑎𝑥  𝜆 

𝑠. 𝑡:     𝜆 ≤
2𝑥1 + 𝑥2 − 5

−5
, 

           𝜆 ≤
8𝑥1 + 4𝑥2

20
, 
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           𝜆 ≤
𝑥1 + 3𝑥2

7
, 

           1.2𝑥1 + 1.85𝑥2 ≤ 4.4, 
           1.84𝑥1 + 0.9𝑥2 ≤ 4.8, 
           1.56𝑥1 + 2.15𝑥2 ≤ 6.2, 
           2.06𝑥1 + 1.04𝑥2 ≤ 5.6, 
           1.5𝑥1 + 2𝑥2 ≤ 5, 
           2𝑥1 + 𝑥2 ≤ 5, 
           1.1𝑥1 + 1.8𝑥2 ≤ 4.2, 
           𝑥1, 𝑥2 ≥ 0. 

 

Finally, we obtain the following solution with λ membership function value for the original problem: 

 

𝑥1
∗ = 0.8,    𝑥2

∗ = 0.9,   𝜆 = 0.5 . 
 

Example 5.2.  

 

Assume that four production units use two inputs to produce an output. The fuzzy inputs and output of each 

production unit are listed in Table 2: 

 

Table 2. Decision-Making Units with fuzzy inputs and output 
inputs & output 

Units 

 

𝑋̃1 

 

𝑋̃2 

 

𝑦̃ 

𝐷1 (1,2,3) (12,13,15) (69,72,73) 

𝐷2 (8,10,13) (21,22,24) (81,85,88) 

𝐷3 (6,7,9) (18,19,20) (72,74,75) 

𝐷4 (15,17,18) (33,34,36) (97,99,100) 

 

We would like to achieve the efficiency level of each production unit. For this purpose, we define the 

following problem: 

 

  𝑀𝑖𝑛 𝜃𝑜 

  S.t:

(

 
 
 
 
 
 

𝑡1
1 + 1

𝑡2
1 + 12

−𝑡3
1 + 3

−2𝑡4
1 + 15

|
|
|

−𝑡1
1 − 1 −2𝑡1

1 − 8     − 𝑡1
1 − 6 −2𝑡1

1 − 15

−𝑡2
1 − 12 −𝑡2

1 − 21    − 𝑡2
1 − 18 −𝑡2

1 − 33

𝑡3
1 − 3

2𝑡4
1 − 15

3𝑡3
1 − 13     2𝑡3

1 − 9

2𝑡4
1 − 24     𝑡4

1 − 20

𝑡3
1 − 18

2𝑡4
1 − 36

__________ | ________________________________________________

0
 
0

|
|
|

3𝑡5
1 + 69 4𝑡5

1 + 81 2𝑡5
1 + 72 2𝑡5

1 + 97

−𝑡6
1 + 73 −3𝑡6

1 + 88 −𝑡6
1 + 75 −𝑡6

1 + 100)

 
 
 
 
 
 

(

 
 
 
 
 
 

𝜃
___ 
𝜆1     
𝜆2   
𝜆3  
𝜆4       )

 
 
 
 
 
 

≥

(

 
 
 

0
0
0
0_______

3𝑡 + 69
−𝑡 + 73)

 
 
 

 

     𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. 

 

Let 𝑡1 = (𝑡1
1, 𝑡2

1, 𝑡3
1, 𝑡4

1, 𝑡5
1, 𝑡6

1) = (0.7, 0.8, 0.7, 0.8, 0.7, 0.8) an arbitrary point, the results of the proposed 

method are as follows: 
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Table 3. The efficiency of Decision Making Units 

Units Efficiency Lambdas 

𝐷1 𝜃1 = 1 𝜆1 = 1 

𝐷2 𝜃2 = 0.71 𝜆1 = 1.19 

𝐷3 𝜃3 = 0.72 𝜆1 = 1.04 

𝐷4 𝜃4 = 0.54 𝜆1 = 1.38 

 

The results show that 𝑣𝑠
2(𝑡𝑠) ≥ 0, 𝑠 = 1,… ,6, based on the proposed method, the first decision-making unit 

(𝐷𝑀𝑈1) is the efficient unit (𝜃1 = 1) between the decision units. The performance of units is as follows:  

 

𝐷𝑀𝑈1 > 𝐷𝑀𝑈3 > 𝐷𝑀𝑈2 > 𝐷𝑀𝑈4. (Table 3) 

 

6. COMPARISONS ANALYSIS 

 

By comparing our model with Fang et al in [12] we are noted that: 

 

1. Our proposed model considers the LSIP with fuzzy data in the objective function and constraints, 

and a solution is proposed for it. In contrast, the model presented by Fang et al. has not proposed a 

solution to the problem with fuzzy cast objective. 

2. The model presented by Fang et al. for the semi-infinite problem with one-objective is presented, 

while our proposed model can handle multi-objective linear semi-infinite programming problem 

which is more realistic and complete. 

 

Also by comparing our suggested model with Nasseri et al. [14] we founded that: 

 

Nasseri et al. have used the ranking functions method to solve a semi-infinite problem with a fuzzy 

objective function, while the proposed method converts a fuzzy problem into a multi-objective linear 

semi-infinite programming problem, which is more practical, and then solve it. 

 

7. CONCLUSION 

 

In this study, we considered an LP problem with fuzzy data in objective and constraints. We presented a 

new model denoted as the "Multi-objective linear Semi-Infinite Programming (MOLSIP)" problem. By 

using 𝛼-preference, we have shown that such a problem can be reduced to three linear semi-infinite 

programming problems. Then, we used the cutting plane algorithm for solving these three LP problems. 

Finally, from the MOLSIP problem, we obtained the values of the three objective functions that have been 

sub sequentially used to determine the optimal solution of the original problem. Furthermore, we emphasize 

that the proposed model and the described approach can be useful to solve some real applications such as 

the performance evaluation of the decision-making units within the DEA approach; this method can be 

extended for other models of DEA for future works. 
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