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Abstract 

Today’s manufacturing vision necessitates extracting insights from the data collected in real-time from manufacturing processes. 

Predicting failures with the predictive analysis of the collected process data and preventing these failures by taking necessary actions 

before they occur is a key factor in ensuring quality at the desired level, increasing productivity, and reducing costs in production 

systems. In the literature on predictive analysis of process data, machine learning and deep learning methods have attracted 

considerable attention, especially in recent years. This study has addressed a multi-class failure classification problem in the plastic 

extrusion process with a real case study. Classification models have been developed based on Long Short-term Memory (LSTM) as a 

deep learning method and Multilayer Perceptron (MLP) and Logistic Regression (LR) as machine learning methods to predict the 

failure categories. In the case study, real data taken from the extrusion process of one of the leading insulation companies operated in 

Izmir has been used. The final dataset includes actual measurements of seven parameters related to temperature and pressure and 

failure categories as the target variable. Three failure categories have been identified to define Category 0 (No failure), Category 1 

(Filter change), and Category 2 (Feeding failures) states, and coded as 0,1 and 2 in the models, respectively. LSTM, MLP, and LR’s 

performance to predict the failure categories have been evaluated and compared based on accuracy, precision, recall, and F1 Score 

measures. LSTM is the highest performing among the three methods, with 100% prediction accuracy for each failure category. On 

the other hand, LR and MLP have achieved considerable and close results except for Category 1. 

Keywords: Deep learning, failure prediction, machine learning, plastic extrusion process. 

Plastik Ekstrüzyon Sürecinde Derin Öğrenme İle Hata Kategorilerinin Tahmini 

Öz 

Günümüz üretim anlayışı, imalat süreçlerinden gerçek zamanlı olarak toplanan süreç verisinden kestirim yapabilmeyi 

gerektirmektedir. Toplanan süreç verilerinin kestirimci analizi ile hataların tahmin edilmesi ve gerekli aksiyonların alınmasıyla 

hataların ortaya çıkmadan önlenmesi, üretim sistemlerinde kalitenin istenilen seviyede sağlanması, verimliliğin artırılması ve 

maliyetlerin azaltılmasında kilit bir faktördür. Makine öğrenmesi ve derin öğrenme yöntemleri, süreç verilerinin kestirimci 

analizinde, özellikle son dönemlerde büyük ilgi görmektedir. Bu çalışmada plastik ekstrüzyon sürecinde çok sınıflı hata sınıflandırma 

problemi bir gerçek hayat örneğiyle ele alınmıştır. Problemin çözümü için derin öğrenme yöntemlerinden Uzun-Kısa Süreli Bellek 

(LSTM) ve makine öğrenmesi yöntemlerinden Çok Katmanlı Algılayıcı (MLP) ve Lojistik Regresyon (LR) kullanılmıştır. 

Çalışmanın uygulama kısmında, İzmir'de faaliyet gösteren Türkiye'nin önde gelen yalıtım firmalarından birinin plastik ekstrüzyon 

sürecinden alınan gerçek veriler kullanılmıştır. Nihai veri seti, süreçten alınan sıcaklık ve basınçla ilişkili yedi parametrenin gerçek 

ölçümlerini ve hedef değişken olarak hata kategorilerini içermektedir. Modellerde Kategori 0 (Hata yok), Kategori 1 (Filtre değişimi) 

ve Kategori 2 (Besleme hataları) durumlarını tanımlamak için üç hata kategorisi belirlenmiş ve sırasıyla 0,1 ve 2 olarak kodlanmıştır. 

LSTM, MLP ve LR'nin hata kategorilerini tahmin etme performansı, tahmin doğruluğu, kesinlik, duyarlılık ve F1 skoru metriklerine 

göre değerlendirilmiş ve karşılaştırılmıştır. LSTM, her hata kategorisi için %100 tahmin doğruluğu ile en yüksek performansa sahip 

olmuştur. LR ve MLP, Kategori 1 dışındaki hata kategorileri tahminlerinde başarılı ve birbirine yakın sonuçlar elde etmiştir. 

Anahtar Kelimeler: Derin öğrenme, hata tahmini, makine öğrenmesi, plastik ekstrüzyon süreci
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1. Introduction 

Rapid developments in digital technologies have 

had transformative effects on manufacturing systems 

and turned them into smart systems. The current 

industrial vision, Industry 4.0, has structured an 

interconnected manufacturing environment and forced 

companies to reconsider their processes. One of the 

critical cornerstones of Industry 4.0 and smart 

manufacturing is collecting real-time data from the 

plant via sensors and networks and providing value by 

conducting a data-driven predictive analysis. 

Failures may occur in the manufacturing 

environment due to many causes. Therefore, in smart 

manufacturing systems, it is critical to monitor 

manufacturing processes in real-time, predict failures, 

and take appropriate actions to prevent them from 

happening to ensure product quality (Tao et al., 2018).  

Fault detection and prediction problems in the 

manufacturing environment have been extensively 

addressed through machine learning methods (Konar 

and Chattopadhyay, 2011; Jing and Hou, 2015) and, in 

particular, deep learning methods with increasing 

interest recently (Jing et al., 2017; Shao et al., 2017; 

Zhang et al., 2017a).  

Neural networks (Hou, Liu, and Lin, 2003; 

Quintana et al., 2011) and LR (De Menezes et al., 

2017) are among the most widely applied supervised 

machine learning methods for failure classification and 

prediction problems using process data. 

LR is a supervised machine learning method with a 

wide range of application areas for prediction problems 

containing a categorical dependent variable and a set of 

independent variables (Caesarendra et al., 2010).  

When the dependent variable has multi-class, like the 

problem addressed in this study, multi-class LR needs 

to be employed. The conditional probability P(Y = y | 

X = x) in multi-class LR is calculated by using 

Equation (1) (Le Thi et al., 2020): 

 

P(Y =  y | X =  x) =
exp (𝑏𝑦+𝑊

:,𝑦𝑋
𝑇 ) 

∑ exp (𝑏𝑦+𝑊
:,𝑦𝑋
𝑇 )

𝑄
𝑘=1

               (1) 

 

where {(𝑥𝑖 , 𝑦𝑖): 𝑖 = 1, … , 𝑛} is a training set that 

includes observation vectors 𝑥𝑖 ∈ ℝ𝑑 and labels 𝑦𝑖 ∈
{1, … , 𝑄}, Q denotes the number of classes, W is the 

dxQ matrix and 𝑏 = (𝑏1, … , 𝑏𝑄)  ∈ ℝ𝑄. It is aimed to 

find a (W,b) pair that maximizes the total probability of 

the correct class y to which 𝑥𝑖 belongs. The negative 

log-likelihood function needs to be minimized to obtain 

(W,b) estimation  (Le Thi et al., 2020). 

 MLP, one of the most employed neural network 

techniques, especially for the problems related to 

production control (Cadavid et al., 2020), contains 

input and output layers of units and hidden unit/units’ 

layers between them (Fallah, Mitnitski and Rockwood, 

2011). In MLP, the units are organized in a feed-

forward layered topology (Venkatesan and Anitha, 

2006). MLP uses various nonlinear functions to 

convert n inputs to l outputs. In Equation (2), the 

activation function used to determine the network 

output is given (Yilmaz and Kaynar, 2011): 

 

𝑥0 = 𝑓(∑ 𝑥ℎ𝑤ℎ𝑜ℎ )                   (2) 

 

where f denotes the activation function, 𝑥ℎ is hth 

hidden layer node’s activation and 𝑤ℎ𝑜 is the hth 

hidden layer node and oth output layer interconnection. 

Deep learning, which has significant successful 

applications in many different areas such as text 

detection and classification, speech and image 

recognition, provides advanced analytical opportunities 

for analyzing big data obtained from manufacturing 

processes (Wang et al., 2018). There have been 

different deep learning approaches, including 

Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Auto-encoders, Deep Belief 

Network, Deep Boltzmann Machines, and each of them 

may have some sub-variants (Zhao et al., 2019). LSTM 

is an architecture of RNN which uses past sequences to 

forecast future data (Moghar and Hamiche, 2020). In 

LSTM architecture, information flows, including 

determining which information to remain and how long 

it persists, are regulated via input, forget, and output 

gates (Bandara, Bergmeir, and Smyl, 2020). The input, 

output, and forget gates have different abilities and 

tasks in the architecture. The input gate can choose 

information necessary to be stored in the internal state, 

the output gate has the capability of deciding the output 

information, and the forget gate can throw away the 

useless information (Zhang et al., 2017b). LSTM has 

widely preferred for the predictive analysis of 

sequential data and has a wide range of application 

areas, including failure prediction, remaining useful 

life prediction, voice recognition, time series analysis, 

document classification (Nabipour et al., 2020). LSTM 

stands out for its ability to recognize long-term 

dependencies and patterns in sequential data and 

provide more successful results of anomaly and failure 

detections than standard RNN in this data type (Greff 

et al., 2016; Meyes et al., 2019). 

The mathematical expression of LSTM output of 

the jth cell (𝑐𝑗) at time t is given in Equation (3) 

(Hochreiter and Schmidhuber, 1997; Smagulova and 

James, 2019): 
 

𝑦𝑐𝑗(𝑡) = 𝑦𝑜𝑢𝑡𝑗(𝑡)ℎ(𝑠𝑐𝑗
(𝑡))               (3) 

 

where 𝑠𝑐𝑗
(𝑡) is an internal state: 

 

𝑠𝑐𝑗
(𝑡) = 𝑦𝜙𝑗(𝑡)𝑠𝑐𝑗

(𝑡 − 1) + 𝑦𝑖𝑛𝑗(𝑡)𝑔(𝑛𝑒𝑡𝑐𝑗(𝑡))       (4) 

 

where 𝑦𝜙𝑗 is an output of forget gate: 

 

𝑦𝜙𝑗(𝑡) = 𝑓𝜙𝑗
(𝑛𝑒𝑡𝜙𝑗

)                (5) 
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The output values of the output gate (𝑜𝑢𝑡𝑗) and 

input gate (𝑖𝑛𝑗) are given in Equations (6)-(7) 

(Hochreiter and Schmidhuber, 1997; Smagulova and 

James, 2019): 

 

𝑦𝑜𝑢𝑡𝑗(𝑡) = 𝑓𝑜𝑢𝑡𝑗
(𝑛𝑒𝑡𝑜𝑢𝑡𝑗

)               (6) 

 

𝑦𝑖𝑛𝑗(𝑡) = 𝑓𝑛𝑗
(𝑛𝑒𝑡𝑖𝑛𝑗

)                (7) 

 

Net inputs of a cell are expressed in Equations (8)-

(10) (Hochreiter and Schmidhuber, 1997; Smagulova 

and James, 2019): (u: denotes units) 

 

𝑛𝑒𝑡𝑜𝑢𝑡𝑗
(𝑡) = ∑ 𝑤𝑜𝑢𝑡𝑗𝑢𝑦𝑢(𝑡 − 1)𝑢               (8) 

 

𝑛𝑒𝑡𝑖𝑛𝑗
(𝑡) = ∑ 𝑤𝑖𝑛𝑗𝑢𝑦𝑢(𝑡 − 1)𝑢               (9) 

 

𝑛𝑒𝑡𝑐𝑗
(𝑡) = ∑ 𝑤𝑐𝑗𝑢𝑦𝑢(𝑡 − 1)𝑢              (10) 

 

This study aims to address the multi-class failure 

classification problem in the plastic extrusion process 

using the actual sequential process data of an insulation 

company by applying LSTM, one of the deep learning 

methods widely known for its successful performance 

in prediction problems for the sequentially formed 

datasets, and machine learning methods of MLP and 

LR, to evaluate and compare the class prediction 

performance of these approaches. 

Even though there have been studies handling the 

determination of process parameters problem in the 

plastic extrusion process with machine learning 

methods (Huang and Liao, 2002; Al Rozuq and Al 

Robaidi, 2013; Cirak and Kozan, 2009), none studies 

reached addressing any problems in this process with 

deep learning. Therefore, this study aims to contribute 

to the related literature by addressing the failure 

classification problem in the plastic extrusion process 

and applying deep learning.   

In the next section of this study, some of the 

relevant related works addressing similar problems by 

applying LSTM, MLP, and LR are introduced. 

Afterward, the problem is explained in detail. 

Following this section, application findings and their 

analysis are presented. Finally, the results are evaluated 

and discussed in the conclusion section. 

2. Related Works 

Failure classification and prediction problems have 

been attracted considerable attention in previous 

studies. In those studies, wide range of machine 

learning based methods, including Artificial Neural 

Networks (ANN) (Dreiseitl and Ohno-Machado, 2002; 

Gyimothy, Ferenc and Siket, 2005; Singh, Kaur and 

Malhotra, 2009), CNN (Janssens et al., 2016; Tan and 

Pan, 2019), Decision Tree (DT) (Dreiseitl and Ohno-

Machado, 2002; Gyimothy, Ferenc and Siket, 2005; 

Singh, Kaur and Malhotra, 2009), Deep CNN 

(Razaviarab, Sharifi and Banadaki, 2019), k-nearest-

neighbour (Dreiseitl and Ohno-Machado, 2002), LR 

(Dreiseitl and Ohno-Machado, 2002; Gyimothy, Ferenc 

and Siket, 2005; Singh, Kaur and Malhotra, 2009; 

Malhotra and Singh, 2011), LSTM (Malhotra et al., 

2015; Zhang et al., 2017b; Morariu et al., 2018; Tan 

and Pan, 2019; Ye et al., 2019), MLP (Liukkonen et 

al., 2009; Kutyłowska, 2015; Hore et al., 2016; Orrù et 

al., 2020), Random Forest (Tan and Pan, 2019) and 

Support Vector Machine (SVM) (Dreiseitl and Ohno-

Machado, 2002; Singh, Kaur and Malhotra, 2009; 

Zhang et al., 2017a; Oh et al., 2019) have been applied. 

This section presents indicators and findings related to 

LSTM, MLP, and LR models for the failure prediction 

problem used in previous studies. 

Zhang et al. (2017b) employed the LSTM-RNN 

method to predict the battery’s remaining useful life 

with deep learning capability. They compared the 

LSTM and SVM methods and noted that the LSTM-

RNN method predictions are more accurate than SVM. 

Tan and Pan (2019) proposed a model to predict faults 

of wireless networks based on LSTM and CNN. This 

study compared CNN, CNN-LSTM, and Random 

Forest models’ performances and showed that their 

CNN-LSTM hybrid prediction model had better 

performance than the other applied models. Malhotra et 

al. (2015) studied the fault prediction problem by 

applying the stacked LSTM. They used data sets, 

including power demand, multi-sensor motor, space 

shuttle. Their results indicated that normal time-series 

behavior could be modeled with the stacked LSTM. 

Morariu et al. (2018) used the LSTM approach to 

estimate energy consumption patterns in the production 

cycle accurately.  They proposed a structure that 

processes the information flow in high-capacity 

production systems using map reduction algorithms 

and focuses on energy consumption with big data 

concepts collected in various layers. Ye et al. (2019) 

proposed the LSTM-RNN structure by making 

parameter estimates for a reasonable estimate of river 

water quality.  

Hore et al. (2016) used the MLP-FFN classifier to 

predict failures of reinforced concrete buildings. They 

identified the possibility of failure of the handled 

buildings in the future. The experimental results 

obtained in this study indicated that the proposed 

model provides satisfactory performance. Kutyłowska 

(2015) developed MLP networks to model the damage 

frequency in the water supply systems. She noted that 

the plumbing could use the created model to determine 

the frequency of breakdowns and plan the replacement 

of broken pipes. Liukkonen et al. (2009) performed a 

wave soldering event study to predict product failures 

using the MLP neural network model. They focused on 

root causes in response to the number of failures they 

detected in their work. As the MLP algorithm’s input, 

they accepted the types of failure as the output of the 

process parameters. Finally, Orrù et al. (2020) applied 

MLP and SVM for the fault prediction problem using 
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real-time collected sensor data from a refinery’s 

production line. 

Malhotra and Singh (2011) used the LR and seven 

other machine learning methods to predict faulty 

classes with object-oriented metrics in software testing. 

Singh, Kaur, and Malhotra (2009) compared LR, 

Artificial Neural Network (ANN), SVM, and DT 

methods for the fault proneness of object-oriented 

system classes by using Receiver Operating 

Characteristic analysis. Gyimothy, Ferenc, and Siket 

(2005) employed LR, neural network, and DT for fault 

prediction. The results showed that the logistic 

regression analysis was significant. Finally, Dreiseitl 

and Ohno-Machadob (2002) compared LR and ANN 

methods with other classification algorithms, such as 

SVM, k-nearest neighbors, and DT. 

3. Problem and Data Description 

Conducting predictive analysis based on process 

data is one of the prerequisites of today’s 

manufacturing understanding. In this study, the 

classification problem of multi failure types occurring 

during the plastic extrusion process of an insulation 

company has been addressed. Plastic extrusion is a 

continuous process in which a solid plastic material is 

converted into a molten fluid; the flowable melt moves 

into the die and takes the desired shape. The 

temperature and pressure rollers fed from the top and 

bottom layers produce a double waterproofing sheet. 

The line is fed from top layers via extruders A and B, 

and from bottom layers, via extruder C. There are 

lower, central, and upper calenders at the end of the 

die. Finally, the calendered product is cooled and 

wound in rolls. Extruder C is used to reprocess 

granulated plastic waste. For this reason, a filter system 

is used in Extruder C.  

The initial dataset received from the company 

covers the real measurements taken every 5 minutes 

sequentially and the failure categories at measurement 

times. In this process, a number of failure types, 

including edge tearing, die cleaning, die changing, 

filter changing, failures of material feeding can occur. 

However, only filter changes and material feeding 

failures to the line during the data collection period 

have occurred. So the failure categories have been 

labeled as “No failure,” “Filter change,” and “Feeding 

failures” in the initial dataset. These categories are 

coded to be used in the models as follows: 

• No failure (0) 

• Filter change (1) 

• Feeding failures (2) 

Some of the parameters’ values do not change 

during the analysis period. Therefore, these parameters 

were excluded from the analysis. Also, there are some 

parameters with some missing values. After cleaning 

the dataset, the final dataset includes 7171 observations 

regarding seven parameters and failure categories as 

the target variable. The variables, their descriptions, 

and ranges are given in Table 1. 

Table 1. Description of the variables in the dataset 

No Variable Name Description Range 

1 
Pane1-Temperature 

Central Roll (°C) 

Temperature of the 

central roll  
[9.500,57.089] 

2 
Pane1-Temperature 

Lower Roll (°C) 

Temperature of the 

lower roll 
[9.619,68.725] 

3 
Pane1-Temperature 

Upper Roll (°C) 

Temperature of the 

upper roll 
[10.363,58.945] 

4 
Pane1-Melt  

Temp. A (°C) 

Melt temperature 

of 

extruder A 

[8.766,196.181] 

5 
Pane1-Melt , 

Temp. B (°C) 

Melt temperature 

of 

extruder B 

[9.530,195.107] 

6 
Pane1-Melt  

Temp. C (°C) 

Melt temperature 

of 

extruder C 

[11.527,197.047] 

7 

Ext. C. melt 

pressure_difference 

(°C) 

Difference of the  

two consecutive  

melt pressures in  

extruder C 

[-157.937,223.702] 

4. Application and Findings 

This study has addressed the multi-class failure 

classification problem using actual measurement data 

taken from the plastic extrusion process of an 

insulation company with LSTM, MLP, and LR.  The 

performance of LSTM depends on the values of its 

hyperparameters. Since there is no exact way of 

choosing which hyperparameter values work best, one 

of the most frequently followed methods is to use some 

combinations of parameters and test these 

combinations’ performances with several experiments 

(Greff et al., 2016). 

In this study, the analysis-ready data set was 

randomly divided into training, validation, and testing 

sets with the size of 70%, 20%, and 10% of the whole 

data set, respectively. Therefore, the fault categories’ 

observations into the training, validation and testing 

sets are as equal as possible. In Table 2, features of the 

training, validation, and testing sets are presented.  

Table 2. Features of the training, validation, and testing sets 

Number (percentage) of 

failure categories in the training 

set 

No failure: 4675 

(94.79%) 

Filter change: 6 

(0.12%) 

Feeding failure: 

251 (5.09%) 

 

Training set size 4932 

Number (percentage) of 

failure categories in the 

validation set 

No failure: 1441 

(95.43%) 

Filter change: 3 

(0.20%) 

Feeding failure: 66 

(4.37%) 

Validation set size 1510 

Number (percentage) of 

failure categories in the testing 

No failure: 695 

(95.34%) 
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set Filter change: 2 

(0.27%) 

Feeding failure: 32 

(4.39%) 

Testing set size 729 

 

Before implementing the analyzed methods, all 

inputs were normalized. In normalization, firstly, min-

max and z-score normalization techniques are among 

the most widely used normalization techniques. The 

classification performance of MLP and LSTM have 

indicated that these models have better performance 

with the data normalized by the z-score technique. 

Therefore, the z-score normalization technique has 

been selected, and the results obtained with the z-score 

normalized data set have been presented in the rest of 

the study. This study followed the methodology of 

training models, running the trained models with 

multiple parameter settings several times by using the 

validation set and finally evaluating the models’ 

performances in the testing set. Depending on the 

dataset’s highly unbalanced structure, the performance 

of the methods is evaluated by employing evaluation 

metrics of precision, recall, and F1 score for each 

category. In addition to these metrics, the overall 

accuracy of the methods’ predictions is also computed 

and compared. All employed metrics’ formulas are 

given in Equations (11)-(14) (Orrù et al., 2020): 

 

Overall Accuracy =
TP+TN

TP+FP+TN+FN
            (11) 

 

Precision =
TP

TP+FP
               (12) 

 

Recall =
TP

TP+FN
              (13)

  

F1 Score = 2 ×
(Precision×Recall)

(Precision+Recall)
            (14) 

 

(TP: True positives, TN: True negatives, FP: False 

positives, and FN: False negatives) 

In LSTM and MLP models, batch size, epoch, 

learning rate, dropout rate, and optimizer type 

combinations seen in Table 3 are run ten times in the 

validation set, and the combination that gives the best 

result among these combinations is employed in the 

testing set. All models are coded in R. 

Table 3. Parameters in the experiments 

Parameters Value 

Output Units 3 

Batch Size 4,8,16,32,64 

Epoch 10,20,50,100 

Optimizer RMSprop, adam 

Learning Rate 0.001,0.0001 

Dropout Rate 0.02, 0.2 

 

Confusion matrices of the models are presented in 

Figures 1-3. Overall accuracies of the applied methods 

are given in the lower right corner of the matrices. 

Moreover, at the rightest column and in the bottom 

row,  recall and precision values of the methods on 

each failure category are presented, respectively.  

 
Figure 1. Confusion matrix of LR 

 

 
 
Figure 2. Confusion matrix of MLP 

 
Figure 3. Confusion matrix of LSTM 

 

All applied methods have reached a high overall 

accuracy. LSTM is the best with 100% accuracy, while 

LR is the last with 97.94% accuracy. Performances of 

the applied methods in terms of precision, recall, and 

F1 Score evaluation metrics are presented in Table 4. 

The results have indicated that LSTM has 100% 

performance for each category for each evaluation 

metric. The most important point revealing the success 

of LSTM is that it accurately predicts the class of 

Category 1 (Filter change), which occurs only twice in 

the whole test set. LR and MLP have been inadequate 

to predict the class of these two observations in 

Category 1. LR has predicted Category 1 as Category 0 

(No failure), while MLP has predicted Category 2 
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(Feeding failure). The precision of LP and MLP for 

Category 1 is obtained as undefined from 0 divided by 

0. Therefore, F1 Scores cannot be calculated. 

Both LR and MLP have reached high precision, 

recall, and F1 Score over Category 0. However, MLP 

has better precision and F1 Score for Category 0 than 

LR, while LR has a higher recall value over Category 0 

than MLP. Therefore, in parallel with this study’s aim, 

to test and compare LR and MLP performances, it is 

more appropriate to emphasize Category 2 (Feeding 

failure) rather than Category 0. 

LR has achieved a higher precision value over 

Category 2 than MLP. This result has revealed that the 

portion of the classes that LR predicts as Category 2 

actually to be Category 2 is higher than MLP. On the 

other hand, MLP has yielded more successful results 

than LR in recall and F1 Score for Category 2. It 

implies that the ratio of actual “Feeding failure” 

detected correctly by MLP is higher than LR. 

A 5-fold cross-validation procedure has been 

carried out to assess the validity of the models. As a 

result, the overall accuracy of LR, MLP, and LSTM 

methods have been obtained as 97.89%, 98.76%, and 

99.26%, respectively.  

In addition to overall accuracy, precision, recall, 

and F1 score for each category for each method have 

been calculated. The results presented in Table 5 

indicate that LSTM has the best performance for all 

metrics. For example, while LR and MLP could not 

detect any observations of Category 1, LSTM has 

correctly predicted 66.67% of Category 1 observations. 

The results of 5-fold cross-validation have also 

confirmed that LSTM has the most successful 

performance in all failure categories for the problem 

examined in this study. 

  

Table 4 Prediction performances of the methods on the testing set 

 LR MLP LSTM 

Category Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score 

0 98.30% 99.57% 98.93% 99.14% 99.28% 99.21% 100.00% 100.00% 100.00% 

1 - 0.00% - - 0.00% - 100.00% 100.00% 100.00% 

2 88.00% 68.75% 77.19% 78.79% 81.25% 80.00% 100.00% 100.00% 100.00% 

 

Table 5. Prediction performances of the methods with 5-fold cross-validation 

 LR MLP LSTM 

Category Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score 

0 98.55% 99.25% 98.90% 99.16% 99.60% 99.38% 99.52% 99.77% 99.64% 

1 - 0.00% - - 0.00% - 66.67% 77.78% 68.89% 

2 82.87% 72.69% 77.25% 91.31% 84.35% 86.87% 94.86% 90.24% 92.30% 

 

5. Conclusions 

This study addresses the problem of failure 

classification, which takes an important role in our 

age’s manufacturing vision, based on the actual process 

data. The problem’s application is conducted using the 

actual process data obtained from the plastic extrusion 

process of an insulation company. The study aims to 

contribute to the literature by addressing the failure 

classification problem in the plastic extrusion process 

and applying a deep learning method, LSTM, to the 

problem. In addition to LSTM, machine learning 

methods of MLP and LR are also applied, and 

performances of the models are compared based on 

accuracy, precision, recall, and F1 Score measures. 

The models’ class prediction accuracy has been 

obtained within a high range of 97.94% (LR) and 

100.00% (LSTM). LSTM has classified all failure 

categories correctly. LR and MLP have reached a 

considerable and close performance in classifying 

Category 0 and Category 2, but they have been 

insufficient to predict the class of Category 1. 

LSTM, as a deep learning method, has performed 

better than the considered machine learning methods 

and had 100% accuracy even though the problem 

dataset contains an extremely low number of Failure-1 

observations. Further studies might test the models 

with larger datasets, including sufficient failure 

observations and more process parameters. 
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