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ON THE MATHEMATICAL THEORY OF TIDAL WAVE PROPAGATION
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ARSTRACT

The vertical structure of the tidal-wave'-bropagatioﬁ is expressed in terms of the solutions ta a
second-order linear inhomogeneous differential equation, with variable coefficient.

In the present paper, analytical expressions for these solutions are obtained, for the first time,
through tbe simulation of the inhomogeneous term, responsible for exciting tbe observed tines.

1. INTRODUCTION

The fundamental equation that governs the vertical structure of
the tidal-wave propagation [1] is:

(L1) d2ya fdx? + g2 () yo = Qa (x);
subject to the boundary conditions:
(12) ¥'u (0) = Kuya (0); Kn — (H(0) /by — 3)
and | N
(1.3) yu (x*) is bounded; x* i$ the upper bound.
¥n (%) is the wave function, defined as:
(14) yn = (Xn — kin /gH) e~x/2
wehere X, (x) is the velocity divergence, J (x) is the non-adiabatic
heating rate per unit mass, and x is the reduced ﬁeight; _
(15) x = [da/H (2), H () = RT () g |
'The forcing function Qp (x) is defined as:
(1.6) Qu (x) = (k/y ghn) Jn e"/2 -



98 SAMUEL H. MAKARIOUS

The subscript n indicates the mode number, h, is the equivalent
depth of the mode of oscillation that characterizes its propagation, and
may have negative values for certain kind of modes.

In the existing tidal theory [1], the real difficulty lies in specifying
Qn with sufficient accuracy from our knowledge of the radiating pso-
cesses and temperature change. Moreover, previous investigators [2,3 ]
have adopted simplified models for Q, in order to render the mathe-
matical treatment more tractable. In comparing these theoretical pre-
dictions with the observed tides, Groves [4] has found that changes as
large as 300 9%, in the upward energy flux of a particular mode, can
result for varicus distributions of Q.

For direct comparison between observations and theory, simulation
based on the theory is often powerful. This called the attention for the
inverse problem of deriving the forcing function from the observed tides.
With such an approach, numerical solutions to Eq. (1.1) have been re-
cently obtained [5]. In the present paper, the deduced empirical for-
mulae for the forcing function are utilized in deriving analytical expres-
sions for the solutions to (1.1).

2. A model for the Variable Coefficient
The variable coefifcient un? (x), in (1.1), is defined as:
(21) pn? (x) = — } + (KH + dH /dx) /by

For a reasonable choice of H (x), Eq. (1.1) is a well-behaved,
non-singular differential equation. When H, (kH -+ dH /dx) or (dH /dx)
is constant, 1.1 has nomogeneous solutions which are exponential, sinu-
soidal or Bessel functions [1,2]. For problems of any complexity, no
closed-form solution exists and it has to be approached numerically.

Table 1. The Model

| Region I 1 ' 2 3 | 4 ! 5 I
x x0 x1 x2 x3 x4 x5
0 5.3 7.0 | 11.9 15.6 16.8 -
z (km) 0 36.53 | 49.15 | 81.45 | 100.09 | 109.22
H (km) 8.47 7.22 ] 1.51 5.16 6.44 8.70
p 1.33 : S 0:00 | -0:12 | 0.00 0.25 0.25

With a realistic distribution of H (x), it was found [5] that the
domain is divided into five distinct regions, with respect to the charac-
teristics of the tidal modes propagation, as in table 1.
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The range x,, < x. < X, is further divided into 78 subregions of
spacing A x = 0,2. for each of which (kH -+ dH/dx) satisfies a linear
form, thus
(2.2) pn? (x) = pn X + qns Xo < X < x4

Pn changes sign at x; and x,.

In the upper-most region, x, << x < xs, the existing model sug-
gests that (kH -~ dH /dx) meets smoothly an exponential profile, thus

(23) un2 (x) = — I+ meX x, < x < Xs.
The parameter p is defined by:
(2.4) pn? + ) = on ebx
Pn and Oy are defined for each mode, but p is the same for all modes.
Therefter, the subscript n is dropped, for simplicily in writing, and

modes are treated independently.

3. Simulation of the Solution

In this section, the solutions to the D. Eq. (1.1) is simulated, using
the observational evidences, in the five regions of the domain (table 1),
and maintaining the contiuity at the separation levels in the solutions
and their derivatives.

(i) Theoretically, the vertical dependence terms, V (x), in the ve-
locity fields are usually expressed in terms of the solutions, y (x), as:

(3.1) V (x) = (dy /dx — y /2) ex/2

Based on the analysis, of the observed tides, V (x) have been previously
computed [6] at x = 0 (0.1) 8.4, and they have been found to be rep-
resented fairly accurately in complex exponential forms, in each of the
first two regions; 0 <~ x < x; and x; < x < X as:

(3.2) V(x)~2aueiowx,0 < x < x4

v=0

and

3
(3.3) V(x) = ZbuelfuX; x; < x < X2
v=0
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Representations in (3.2) } and (3.3) are justified by the fact that Q (x)
on the right-hand side of (1.1} is a periodic force of excitation.

On equating (3.2), and (3.3) independently, to (3.1), the complex
coefficients av (and bv) and arguments ov (and Bv) have been evaluated,
by applying the Complex Fast Fourier Transform Technique [D] to the
observed values cf V (x); thus

(3.4) (dy/dx — y[2) eX/2 = Zv av el aw x; X0 < x < X
-and similar expression for the region x; < x < X».

Differentiating (3.4) we find that the solution y (x) satisfies the
linear second order differential equation:

(3.5) A2y fdx2 — y /4 = r (x)

where

(3.6)‘1' (x) = e~%/2 3 iay av el aux
v

Hence the general solution is:

(3.7) y(x) = A ex/2 + B e X/2 | ex/2 jx

o

e X/2r clx--e‘x/zjx eX/2 rdx

o

Substituting from (3.6), for the evaluation of the integrals, we find:

/ . iau av
(38) () = ox/2 [ A Z_—"(lu_n
-/ M eivx I
+ e 2 |B +§(ow—1) eiay -I—VZ au]

On differentiation:

(3.9) () = o2 [A — % 2 ]2 — e

(1w

[B+ > (1 — 2 i)

vy (lev—1)

v elavz L 3 au] /2
v

The two constants of integration A and B are determined through
using the initial values of y (o) and the lower boundary condition (1.2),
which ean be rewritten in the form:

(310) Y(0) = K y(o) = S v + y(0) /2
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Thus we must have
A+ B=ylo)and A —B =23 av + y(o)
v

i.e.

(3.11) A=3va + y(o) and B = — X av

v
The general solution is, therefore,

(3:12) y(o) = o%/2 [ ylo) — 5 2 |

—xj2y A
Te % (iow — 1)

el x: 0 < x < x;

It should be noted that the numerical values for the solution (3.12)
are found to be comparable, within - 0.5 9, on the average, with those
obtained by direct integration of (3.1), reflecting the validity of the
approximation (3.4) and also the numerical stability of the solution.

(i) In the region x; << x < X, the solution y satisfies also (3.5),
but with r (x) given in the form:

(3.13) r(x) = e~%/2 ¥ iBy by olBx
v=0

Hence, the general solution is:

i by e@Bv1) x
3.14 y(x) — ex/2 [A —y _1B0D ! ]
yo) = x> [A G —T)

+ex2 |B4+ X w 3 bu'eiﬁvm]
v (ipv—1) v
The linearized tidal theory requires that contact chould be main-
tained at the boundaries between the regions, i.e. it requires continiuity
in y(x) and y’(x). Thus the constants A and B are determined as:
(3.15) A = y(1). e x1/2 - ¥ by e 1BY"D)x1 and B = X by elfvx:
v v

Therefore, the general solution assumes the form:

bu edByv1) x,
3.16 = eX/2 DHex1/z2 - X - ]
(316) 5 = o2 [y(1) e — 3 Pre
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b, elfvx
+ €2y i x <X <X
v (IBV —_— 1) 1:..——._2 '

(iii) In the region x» < x <C x1, the type of data, similar to those
utilized in (i) and (ii) for the evaluation of V (x), is scarce. However,
inferences on the existence of the tidal patterns are provided by other
techniques-observation [4]. By inspection, V (x) is speculated to be
expressed as:

(3.17) V(x) = (c1eiy; x + c2eivysx) ex/2

The harmonic coefficients are determined to meet the requirements for
Q(x), namely:

a) maximum heating rate cccurs in the 50 — 60 km range [4], and

b) heating rate Q vanishes at and above 80 km [2].

An expression for Q(x) is obtained by differentiation of (3.1) and
substitution into (1.1), this gives:

(3.18) (x) = (2 (x) + } )y + e7*2V

By further differentiation, we find

GL) Q) =Q(p+ 3) +ex2 (V' =V (1 +p)+ (u2+ D V)

In the present model, it is assumed that Q (and identically Q%) - 0
at x = X;, corresponding to height aorund 82 km; this level is charac-
terised by p = 0. In this case, V satisfies:

(3.20) V> —V’ 4 (u32 + D V = 05 u32 = u2 (x3)
whose solution is:
(3:21) V(x) = (cg el 3% 4 Czo71 3%) ex/2
On the other hand, the level at which maximum heating occurs

(i.e. Q° = 0) corresponds, in the present model, to x = x, and is charac-
terized by the minimum value of p = p, Therefore, 3.19) reduces to:

(3.22) V" — V(1 + p2) + p22 + ) V= Qa(pz + §) 0x2/2, at x = x;
Substituting for V as given by (3.21), together with the requirement
of continuity in V; at x = x, the coefficients ¢; and ¢ are determined.

(3.23) ¢ = e~it3x2 (q, 4 V, 7%2/2 [2) and ¢z = — elt3%2 (q,-V, e7%X2/2[2)
where

(324) qz2= (V2 eX2/2 (22 — .2 — 0:/2) + Q2(p2 + 1) /2 usp2



MATHEMATICAL THEORY OF TIDAL... 103

Therefore, the vertical dependence terms V (x) are obtained in the
range X, < X < X, by substituting for ¢; and ¢, (3.23) in (3.21). Fol-
lowing similar procedures, as for the previous two regions, the general
solution te (3.5) is:

(3.25) y(x) — Aex/2 + Be~x/2 4 ox/2 J exI2 (Vs + ipg) o) oiBax
X2
b (b — i) 0x e lix) dx
— e X2 X ex/2 {(} + iuy) o el3X (12 — ips) €2 e7i3xHdx
The constants of integration A and B satisfy the initial values of y(x2)
and y’(x:), thus:
A = y(2) e%2/2 | V(2) e*; and B = — V(2)

Hence the general solution is:

¢y eitsx2 c, e-itsxz |

=1 T G 1) 8

(3.20) y(x) = e (x — x,) /2 % y(2) —

ey ellsx c2 e iwsx

(ug—12)  lu —1f2)

%; X2 < X < Xy

(iv) In the region x; < x < x, and above, the forcing function
Q(x) vanishes and, therefore, (1.1) reduces to the homogeneous form,
with the variable coefficient as approximated in (2.2).

On using the transformation:
(3.27) s(x) = (2/3p) 3 (), 2 < O
the homogeneous equation d2 y /dx2 + u2 (x) y = 0 reduces to
(3.28) d2y [ds2 -+ (1/35) dy /ds + y = 0
Writing
(3.29) s = (2i/3) t3/2
eq. (3.28) assumes the form:
(3.30) d2y /de2 — vy = 0.

This equation is Airy’s equatidn [7], whose general solution is
given in terms of Bessel functions of the first kind J -+ 1/3 in the form:

(3.31) y = t1/2 {a Jy /3 (2it3/2[3) + bj — 1 /3 (2it3/2 [3)],

or in terms of s, the solution is:
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(332) y = p[AJI3 () + BI—13@)]ix; <x <x
In case of u2 < 0 (= — A2), the transfermation is:
(333) o (x) = (2/3p) 23 (x),

and the solutions are expressed in terms of the modified Bessel functions
of the first kind as

B3) y=2[-ATy;(6) + Bl (0] x<x<3x4

The constants of integration A and B are determined to satisfy the re-
qmrement of contmulty in y and y at x = x;y.

(v) In the uppermost region x, << x <{ x5, the variable coefficient
u? (x), in the homogeneous-form equation of (1.1), has been adjusted to
meet smoothly the model given by (2.3).

Writing

(3.35) s(x) = 8 4/ ex/8, y2 > 0

the homogeneous equation reduces to Bessel’s differential equation:
(3.36) d2y [ds2 + (1/s)dy/ds + (1 — 16/s2) y = 0,

whose solutions are Bessel functions J, and Y, of the the first and se-
cond kinds, respectively, of order 4. Hence the general solution is:

(337) y(x) = AJ,(s) + BY,(s); x4 <x << x5
If u2 < 0 (= — A2), (is) = s, we get the modified Bessel equation
whose solutions are the modified Bessel functions I, and K;:
(3.38) y(x)= Al (o) + BK,(0); x4 < x < x5
In this case,
(3.39) A =0,
in order to comply with the upper boundary condition of bounded
y(x) at x* = x.. Therefore,
(3.40) y(x) = B K, (0); x4 < x < X5
The constants A and B are determined to satisfy the reduirements

of continuity in the solution at x = x,.

This completes the method of obtaining the solutions of the linear
second order equation (1.1) in the five regions of the model as given
in table 1.
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