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ARSTRACT

The vertical structure of tbe tidal-wave-propagation is expressed in terms of the Solutions ta a 
second-order linear inhomogeneous differential equation, with variable coefficient.
In tbe present paper, analytical expressions for tbese Solutions are obtained, for tbe first tiuıe, 
thıough tbe simulation of the İnhomogeneous term, responsible for exciting tbe observed tiues.

1. INTRODUCTÎON

The fundamental eguatioîi, that govems the vertical structure of 
the tidal-wave propagation [1] is:

(1.1) d2yn/dx2 (x) yn = Qn (x);

subject to the boundary conditions:

(1.2) y’n (0) = E„y„ (0); K„ = (H(0) jhn — i) 

and

(1.3) yn (x*) is bounded; x* is the upper bouud. 

yn (x) is the wave function, defined as:

(1.4) y„ = (X„ - kj„/gH) e-x/2 

wehere Xn (x) is the velocity divergence, Jn (x) is the non-adiabatic 

heating rate per unit mass, and x is the reduced height;

(1.5) X = / dz/H (z), H (z) = RT (z)/g

The forcing function Qn (x) is defined as:

(1.6) (?n(x) = (k/T ghn)Jn
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The snbscript n indicates the mode number, h„ is the equivaient 
depth of the mode of oscillation that eharaeterizes its propagation, and 
m ay have negative values for certain kind of modes.

In the existing tidal theory [1 ], the real difficulty lies in specifying 
Qn with sufficient accuracy from our knowledge of the radiating pzo- 
cesses and temperature change. Moreover, previous investigators [2,3 ] 
have adopted simplified models for Qn in order to render the mathe- 
matical treatment more traetable. In comparing these theoretical pre- 
dietions witb the observed tides, Groves [4 ] has found that changes as
large as 300 %, in the upward energy flux of 
result for various distributions of Qn-

a particular mode, can

For direct comparison between observations and theory, simulation 
based on the theory is often powerful. This called the attention for the 
inverse problem of deriving the forcing funetion from the observed tides. 
With such an approach, numerical Solutions to Eq. (1.1) have been re- 
cently obtained [5]. In the present paper, the deduced empirieal for- 
mulae for the forcing funetion are utilized in deriving analytical expre8- 
sions for the Solutions to (1.1).

2. A model for the Variable Coefficient

The variable coefifcient (x), in (1.1), is defined as:

(2.1) (x) = - i + (kH + dH/dx) /hn

For a reasonable choice o{ H {x), Eq. (1.1) is a well-behaved, 
non-singular differential equation. When H, (kH -j- dH /dx) or (dH /dx) 
is Gonstant, 1.1 has nomogeneous Solutions which are exponential, sinu- 
soidal or Bessel funetions [1,2]. For problems of any complexity, no 
closed-form solution exists and it has to be approached numerically.

Table 1. The Model
Region 1 2 3 4 5

X x0 
0 

z (km) 0 
H (km) 8.47 
p 1.33

xl 
5.3

36.5.3
7.22
0.00

x2
7.0

49.15
7.51

-0.12

x3 
11.9 
81.45
5.16 
0.00

x4
15.6

100.09
6.44
0.25

x5
16.8

109.22
8.70
0.25

With a realistle distribution of H (x), it was found [5] that the 
domaiu is divided into five distinet regions, with respect to the eharac- 
teristics of the tidal modes propagation, as in table 1.
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The range x,0> X4 İS further' divided into 78 subregions of
spaeing A x = 0,2. for eaeh of which (kH + dH /dx) satisfies a linear 
form, thus

X

(2.2) (x) = p„ X + qn; xo

Pn changes sign at xı and X3.

X ^4

In the upper-most region, X4 < X < X5, the existing model sug- 
gests that (kH -J- dH/dx) meets smoothly an exponential profile, thus

(2.3) (x) i + Tn X4 X

The parameter p is defined by:

(2.4) i ) =

Pn and Sn are defined for each mode, but p is the same for aU modes.

Therefter, the subscript n is dropped, for simplicily in vvriting, and 
modes are treated independentiy.

3. Simulation of the Solution

In this section, the Solutions to the D. Eq. (1.1) is simulated, using 
the observational evidences, in the five regious of the domain (table 1), 
and maintaining the eontiuity at the separation levels in the Solutions 
and their derivatives.

(i) Theoretically, the vertical dependence terms, V (n), in the ve-
locity fields are usually expressed in terms of the Solutions, y {x), as:

(3.1) V (x) = (dy/dx

Based on the analysiş, of the öbserved tides, V (x) have been previously
computed [6] at x = 0 (0.1) 8.4, and they have been found to be rep-
resented fairly accurately in complex exponential forms, in each of the
first two regions; 0 < x < xı and xı X2 as:X

3
(3.2) V (x) = S au e* au x; 0 < x xı 

v-0

and

(3.3) V (x) = S bu e* ^u’^; x j X
v=0 

^2
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Representations in (3.2) } and (3.3) are justified by tbe fact that Q (x) 
on the right-hand side of (1.1) is a periodic force of excitation.

On equating (3.2), and (3.3) independently, to (3.1), the complex 
coefficients au (and bu) and arguments au (and Şu) have been evaluated,
by applying the Complex Fast Fourier Transform. Technique [5] to the 
observed values cf V (x); thus

(3.4) (dy /dx — y 12). e^/2 — 2u au e^ au x; xo < x < x ı

and similar expression for the region X| < x X2.

Differentiating (3.4) we find that the solution y (A) satisfies the 
linear second order differential equation:

(3.5) d2y/dx2 — y/4 = r (x)

where

(3.6) r (x) = S iau au auxV
Hence the general solu t i on is:

X X
(3.1) y(x) = A + B e x/2 -j- ^,'^12 r dx —e rdx

O Q

Substituting from (3.6), for the evaluation of the integrals, we find:

(3.8) y(x) = ex/2 Ta — S 
L V

+

i au au
(i au — 1) ]V

B +S
V

au
(i au — 1)

elavx 2 au 
V

On differentiatioD:

(3.9) y’(x) — i au au
(i au — 1)— S 

V

[6+ S 
L VV

(1—2 iau) 
(iau — 1)

au + S au
M

•]/2

The two constants of integration A and B are determined through
using the initial values of y (o) and the lower boundary condition (1.2), 
which can be rewritten in the form:

(3.10) y’(o) = K y(o) = S au + y(o) /2
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Thus we must have

A + B y(o) and A — B = 2 2 au A y(o) 
V

ı.e.

(3.11) A = 2u au Ay (o) and B = — 2 au 
V

The general solution is, therefore,

(3.12) y(o) = [y(o) au
(i«u — 1)

au
(iau — 1) ei“'' x; o X < X1

It should be noted that the numerical values for the solution (3.12)
are found to be comparable, within A 0.5 %, on the average, with those
oblained by direct integration of (3.1), reflecting the validity of the 
approximation (3.4) and also the numerical stability of the solution.

(ii) In the region xı
but with r (x) given in the form:

< X2, the solution y satisfies also (3.5),

(3.13) r(x) = e! 2 i^u bu eiS''^
v=0

Hence, the general solution is:

3.14 y(x) = e:^l2 Fa—.2 
L V (ip’J 1)

+ e-x/? bu ©İS'' X
(i Pu - 1)

The linearized tidal theory requires that contact should be main- 
taİD.ed at the boundaries betwcen the regions, i.e. it requires continiuity 
in y(x) and y’(x). Thus the constants A and B are determined as: 
(3.15) A = y(l) e-M/2 4- S bu e d3v-i)xı and B = S bu eiS''=^ı

Therefore, the general solution assumes the form:

(3.16) y(x) = ^-12 [y(l) xı
(i - 1)

Fb + 2
L VV

— 2 
V

X

i bu ed®* 1) xı

+ S bu
J

V

--- S bu v”i)
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+ S 
V

bv
(iPv - 1)

X2 1

(İÜ) In the region X2 < x < xı, the type of data, similar to those 
utilized in (i) and (ii) for the evaluation of V (x), is scarce. However,
inferences on the existence of the tidal patterns are provided by other
technigues-observation [4]. By inspection, V (x) is speculated to be 
expressed as:

(3.17) V(x) = (cj e i Yi X 4“ Cz e i Y2 x) e’^/^

The harmonic coefficients are determined to meet the requirements for
Q(x), namely:

a) maximum heating rate occurs in the 50 - 60 km range [4], and

b) heating rate Q vanishes at and above 80 km [2].

An expression for Q(x) is obtained by differentiation of (3.1) and 
substitution into (1.1), this gives:

(3.18) (x) = (/z2 (x) 4- i )y + e-x/2V’

By further differentiation, we find

(3.19) Q’ (x) = Q (p + I) + e-x/2 (V” V’ (1 + p) + + i) V)

In the present model, it is assumed that Q fan d identically Q’) 0
at X = X3, corresponding to height aorund 82 km; this level is charac- 
terised by p = 0. In this case, V satisfies:

(3.20) V” - V’ 4- (P3^ 4- i) V = 0; p,2 =. ^2 (^j)

whose solution is:
(3.21) V(x) = (cj ei 3^ 4- €26-1 3^) eX/2

On the other hand, the level at which maximum heating occurs 
(i.e. Q’ = 0) corresponds, in the present model, to x = X2, and is çharac- 
terized by the minimum value of p = p^ Therefore, 3.19) reduces to:

(3.22) V” — V’ (1 4" pz) "F 4“ J) V = Q2 (p2 4“ i) at x =X2
Suhstituting for V as given by (3.21), together with the reguirement
of continuity in V2 at x = X2, the coefficients Cj and C2 are determined.
(3.23) cı = e-i[^3X2 4- ^-^2/2 fZ) and 02 = — eip-3X2 (g^-V^ e-x2/212) 

■vvhere

(3.24) q2 = (V2 e- — ^-2 — P2/2) 4- Çz (pz 4- 1^ (M3P22^
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Therefore, the vertical dependence terms V (x) are obtained in the
range X2 < x Xj, by substituting for cj and C2 (3.23) in (3.21). Fol-
lowing similar procedures, as for the previous two regions, the general 
solution to (3.5) is:

(3.25) y(x) = Ae’'/2 -|- Be“’^/2 e-x/2 ^(V2 A Vs) Cı e*F’3x

+ (i — İA«ı) C2 e ‘t^3xj dx
__ q-xI2 XI p {(| + ^/^î) ‘’l e*F-'>’^ + (1 j2 — C2 e 'P-3’^}dx

X

The constants of integration A and B satisfy the initial values of y(x2) 
and y’(x;), thus:

A - y(2) e-^^212 + V(2) e-’^
Hence the general solution is:

z and B = — V(2)

(3.26) y(x) = e (x — 2^2) 12 1 y{2) —
Cj e'F'33^2 

(i#ı- 1/2)
C2 e A3X2

(Vı + 1/2) i

(İ/ll
Cı e*F'3x C2 e“İİ3'3X

1/2) (i/zı-1/2)

(iv) In the region X3 X4 and above, the forcing function
Q(x) vanishes and, therefore, (1.1) reduces to the homogeneous form.
with the variable coefficient as approximated in (2.2).

+
X

+

On using the transformation:

(3.27) s(x) = (2/3p) < 0

the homogeneous equation d2 y -j- fji (x) y = 0 reduces to

(3.28) d2y/ds2 A (1/3s) dy/ds + y = 0

Writing
(3.29) s = (21/3) t3/2

eq. (3.28) assumes the form:

(3.30) d2y/dt2 — ty = 0.

This equation is Airy’s equation [7 ], whose general solution is 
given in terms of Bessel functions of the first kind J A l /3 in the form:

(3.31) y = ti/2 [a Jı /3 (2it3/2/3) A bj — 1/3 (2it3/2 ./3) ], 

or in terms of s, the solution is:
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(3.32) y /I [A Jİ/3 (s) + B J —1/3 (s) ]; X

In case of /z2 0 (= — X2), the transformation is:

(3.33) CT (x) (2/3p)X3 (x),

and the Solutions are expressed in terms of the modified Bessel functions 
of the first kind as

(3.34) y 11/3 ® ^-1/3 X3

The constants of integration A and B 
gııirement of continuity in y and y’ at

are determined to satisfy the re- 
X = xı.

(v) In the uppermost region V4 <' x the variable coefficientX5>
(tC), in the homogeneous-form equation of (1.1), has been adjusted to 

meet smoothly the model given by (2.3).

Writing

(3.35) s(x) = 8 e’^/8, ^^2 0

the homogeneous equation reduces to Bessel’s differential equation: 

(3.36) d2y/d82 (1 /s)dy/ds + (1 —^16 /s2) y = 0,

whose Solutions are Bessel functions J4 and Y4 of the the first and se-
cond kinds, respectively, of order 4. Hence the general solution is:

(3.37) y(x) A J4 (s) + B Y4 (s); X4

If/^2 0( — X2), (İct) = s, ■we get the modified Bessel equation
whose Solutions are the modified Bessel functions I4 and K4:

(3.38) y(x) = 

In this case, 

(3.39) A = 0,

A 14(0) + B K4(a); X4

in order to comply with the upper boundary condition of bounded
y(x) at X X.5. Therefore,

X ^5

(3.40) y(x) B K4 (o);

X 5^5

The constants A and B are determined to satisfy the reduirements 
of continuity in the solution at x = X4.

This completes the method of obtaining the Solutions of the linear 
second order equation (1.1) in the five regions of the model as given 
in table 1.
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