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Karadeniz Technical University, Faculty of Science, Department of Mathematics,
Trabzon, TURKEY

Abstract. The Fibonacci sequence has many interesting properties and stud-

ied by many mathematicians. The terms of this sequence appear in nature and
is connected with combinatorics and other branches of mathematics. In this

paper, we investigate the orbit of a special subgroup of the modular group.
Taking

Tc :=

(
c2 + c+ 1 −c

c2 1− c

)
∈ Γ0(c

2), c ∈ Z, c ̸= 0,

we determined the orbit

{T r
c (∞) : r ∈ N}.

Each rational number of this set is the form Pr(c)/Qr(c), where Pr(c) and

Qr(c) are the polynomials in Z[c]. It is shown that Pr(1), and Qr(1) the sum
of the coefficients of the polynomials Pr(c) and Qr(c) respectively, are the

Fibonacci numbers, where

Pr(c) =

r∑
s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s

s− 1

)
c2r−2s+1

and

Qr(c) =

r∑
s=1

(
2r − s

s− 1

)
c2r−2s+2.

1. Introduction

The modular group theory plays an important role in many areas of mathe-
matics, such as number theory, graph theory, automorphic function theory and
combinatorics. A natural action of the modular group on extended rationals, yields
interesting results. In [4], by using this action, Jones et. al. studied the suborbital
graphs known as the Farey graph for the modular group. Kader et al. studied the
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suborbital graphs for the extended modular group in [11]. Değer et. al. investi-
gate some results on continued fractions in suborbital graphs [1]. In [8, 9], Keskin
searched the suborbital graphs for the normalizer of Γ0(n). Güler et. al. exam-
ined relations between elliptic elements and circuits in graphs for the normalizer
of Γ0(n) in PSL(2,R) which turns to be a very important group in the studies of
moonshine [2].

Some results in these studies are directly related to the number theory. Köroğlu
et. al. obtained interesting results about the Fibonacci numbers and the suborbital
graphs by means of the action of a special subgroup of the modular group on
extended rationals [7]. Güler et. al. studied on solutions of congruence equations
that come from the action of the normalizer of Γ0(n) via suborbital graphs [3].

On the other hand, it is known that Pascal and Fibonacci numbers are crucial
subjects in combinatorics [5]. In [10], Falcon and Plaza obtained some results about
Fibonacci sequence and Pascal’s triangle.

The aim of the paper is to examine the action of a special subgroup of the
modular group on the extended rationals. With the idea of this group action,
some interesting results are obtained about the number theory. Many properties of
Fibonacci numbers are deduced and associated with the so-called Pascal’s triangle
mentioned.

2. Modular Group

Let PSL(2,R) denote the group of all linear fractional transformations
T : z → az+b

cz+d , where a, b, c and d are real and ad− bc = 1.

In terms of the matrix representation, the elements of PSL(2,R) correspond to the
matrices

±
(
a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

These matrix representations are composed of the special linear group denoted by
SL(2,R). The modular group denoted by Γ is the subgroup of SL(2,R) consisting
of the 2 × 2 matrices having integer entries. Furthermore, the modular group is
generated by the matrices

x =

(
0 −1
1 0

)
, y =

(
1 −1
1 0

)
with defining relationships x2 = y3 = −I, where I is the identity matrix. Here, x
and y are cyclic matrices of order two and three, respectively. And we can write

Γ =< x, y > .

We remark that something very related to the trace Tr(

(
a b
c d

)
) := |a + d| will

be of great use in the classification. Note that, an element of modular group is
called elliptic, parabolic or hyperbolic if its trace Tr(·) < 2, Tr(·) = 2 or Tr(·) >
2 respectively. Important subgroups of the modular group Γ, called congruence
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subgroups, are given by imposing congruence relations on the associated matrices.
One of them is

Γ0(n) =

{(
a b
c d

)
∈ Γ : c ≡ 0 modn

}
.

3. The Action of Γ on Q̂ = Q ∪ {∞}

Any element of Q̂ (the extended rational numbers set) can be written as a reduced
fraction x

y , with x, y ∈ Z and (x, y) = 1; since x
y = −x

−y , this representation is unique.

We represent ∞ as 1
0 = −1

0 . The action z → az+b
cz+d of Γ on Q̂ now becomes(

a b
c d

)
:
x

y
→ ax+ by

cx+ dy
.

Note that as

c(ax+ by)− a(cx+ dy) = −y

and

d(ax+ by)− b(cx+ dy) = x,

it follows that (ax+by, cx+dy) = 1 and so (ax+by)/(cx+dy) is a reduced fraction.

4. Main Calculations

In this section, we investigate the action of a special subgroup of the congruence
subgroup Γ0(c

2) on extended rationals for some integer c ̸= 0. Here, we use the

action of the group generated by the commutator of the elements x =

(
1 1
0 1

)
and

y =

(
1 0
c 1

)
on Q̂. Let

xyx−1y−1 =

(
c2 + c+ 1 −c

c2 1− c

)
.

Since Tr(Tc) = c2 + 2 > 2, we can say the element Tc is hyperbolic element of
modular group for c ̸= 0.

Proposition 1. The fixed points of the element Tc are,

c+ 2

2c
±

√
c2 + 4

2c
. (1)

Furthermore, Tc generates an infinitely ordered subgroup < Tc > whose elements
are in congruence subgroup Γ0(c

2). At the same time, the group < Tc > generated
by Tc is a subgroup of commutator subgroup of modular group. Also, Tc(∞) =
c2+c+1

c2 is an element of Q̂.
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Proposition 2. The group Γ0(c
2) acts on the set M := { x

c2y : x, y ∈ Z, gcd(x, yc) =
1, y ̸= 0} ∪ {∞} transitively.

Note that, if y = 0 and x ̸= 0 then we assumed that, x
c2y = x

0 = ∞ such as the

definition of extended rationals in [4].

Proof. For arbitrary x, y ∈ Z, gcd(x, yc) = 1, there exists T =

(
x ∗
yc2 ∗

)
∈ Γ0(c

2).

such that T (∞) = x
yc2 . This completes the proof. □

We interested in sequence of natural powers of the number Tc(∞) denoted by
{T r

c (∞)}, where r ∈ N. Clearly {T r
c (∞)} ⊂ M ∪{∞}. Hence, there is some element

of Γ0(c
2) such that its orbit coincidence the terms of the sequence {T r

c (∞)}. The
following theorem show us how {T r

c (∞)} sequence proceeds.

Theorem 1. Let Tc =

(
c2 + c+ 1 −c

c2 1− c

)
, with c ∈ Z. Suppose

T r
c (∞) :=

Pr(c)

Qr(c)
.

Then

Pr := Pr(c) =

r∑
s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1, (2)

Qr := Qr(c) =

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2. (3)

Since Theorem 1 includes the combinatorial identities we frequently use some
combinatorial basics such as,(

r
s

)
=

(
r − 1
s− 1

)
+

(
r − 1
s

)
(4)

so-called the Pascal Identity for integers 1 ≤ s ≤ r.
Before the proof of the theorem, we give the following lemma.

Lemma 1. Assume that the identities (2) and (3) are true for any r > 1. Then,
we have

c2Pr − cQr =

r∑
s=0

(
2r − s

s

)
c2r−2s+2. (5)

Proof. By using (4) and other properties of the combinatorial theory we get proof
easily, as follow:

c2Pr − cQr = c2
r∑

s=0

(
2r − s

s

)
c2r−2s + c2

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1
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− c

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+3

−
r∑

s=1

(
2r − s
s− 1

)
c2r−2s+3

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2.

□

Now we give the proof of Theorem 1 by using the mathematical induction
method.

Proof. For r = 1, it is clear that

Tc(∞) =

(
c2 + c+ 1 −c

c2 1− c

)(
1
0

)
=

(
c2 + c+ 1

c2

)
.

So, P1 = c2 + c+ 1 and Q1 = c2. This shows that (2) and (3) are true for r = 1.
As

T r+1
c (∞) =

Pr+1

Qr+1
(6)

and

T r+1
c (∞) = Tc(T

r
c (∞)) =

(
c2 + c+ 1 −c

c2 1− c

)(
Pr

Qr

)
=

(
c2Pr + cPr + Pr − cQr

c2Pr − cQr +Qr

)
,

(7)

we get

Pr+1 = c2aPr + cPr + Pr − cQr (8)

and

Qr+1 = c2Pr − cQr +Qr. (9)

Now assume that (2) and (3) are true for any r > 1. We will show that (2) and (3)
are true for r+ 1. To complete the proof, by using Lemma 1, it can be shown that
the following two equations can be obtained from the identities (8) and (9).

Pr+1 =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + (c+ 1)Pr, (10)

Qr+1 =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +Qr. (11)
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Indeed, if we begin with the right side of the equation (10), then we obtain desired
results as follow.

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + (c+ 1)Pr

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2

+ (c+ 1)

[
r∑

s=0

(
2r − s

s

)
c2r−2s +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1

]

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 + c2r+1 +

r∑
s=1

(
2r − s

s

)
c2r−2s+1

+

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2 +

r∑
s=0

(
2r − s

s

)
c2r−2s

+

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1.

(12)

From the equation (12), we obtain

r+1∑
s=0

(
2r − s+ 2

s

)
c2r−2s+2

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

+

r∑
s=0

(
2r − s

s

)
c2r−2s,

(13)

and
r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+3

=

r∑
s=1

(
2r − s

s

)
c2r−2s+1 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+1 + c2r+1.

(14)

So, by using (13) and (14) we have

Pr+1 =

r+1∑
s=0

(
2r − s+ 2

s

)
c2r−2s+2 +

r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+3.

Hence, the equation (2) is true for r + 1.
By using Lemma 1, we get
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Qr+1 = c2Pr − cQr +Qr =

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +Qr

=

r∑
s=0

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

= c2r+2 +

r∑
s=1

(
2r − s

s

)
c2r−2s+2 +

r∑
s=1

(
2r − s
s− 1

)
c2r−2s+2

= c2r+2 +

r∑
s=1

[(
2r − s

s

)
+

(
2r − s
s− 1

)]
c2r−2s+2

(4)
= c2r+2 +

r∑
s=1

(
2r − s+ 1

s

)
c2r−2s+2

=

r∑
s=0

(
2r − s+ 1

s

)
c2r−2s+2

=

r+1∑
s=1

(
2r − s+ 2

s− 1

)
c2r−2s+4 = Qr+1.

This implies that (3) is true for r + 1.
□

5. Pascal Numbers and Fibonacci Sequence

In this section, we give some useful informations for Fibonacci numbers related
to our results in this study. The Fibonacci numbers Fr are given by the recurrence
in [6];

F1 = F2 = 1, Fr+2 = Fr+1 + Fr, r ≥ 1.

Thus, the first few Fibonacci numbers are

1, 1, 3, 5, 8, , 13, 21, . . .

Also, the elegant formula is

Fr+1 =

⌊r/2⌋∑
s=0

(
r − s
s

)
(15)

where ⌊r/2⌋ denotes the largest integer less than or equal to r/2 [6].
We consider coefficients of the polynomials Pr and Qr as shown below in first five

terms of Pr and Qr. Furthermore we investigate that these coefficents are related
to the Pascal triangle.

P1 = c2 + c+ 1

P2 = c4 + c3 + 3c2 + 2c+ 1
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P3 = c6 + c5 + 5c4 + 4c3 + 6c2 + 3c+ 1

P4 = c8 + c7 + 7c6 + 6c5 + 15c4 + 10c3 + 10c2 + 4c+ 1

P5 = c10 + c9 + 9c8 + 8c7 + 28c6 + 21c5 + 35c4 + 20c3 + 15c2 + 5c+ 1

...

Each sequences of numerators obtained from this action consists of numbers in
Pascal 2-Triangle as shown in Table 1. For example, second sequences of numerators
(1, 1, 3, 2, 1) are located by bold numbers in Table 1.

Table 1. The Pascal 2-Triangle

1
1

1 1
1 2

↗ ↘ ↗ ↘
1 3 1
1 4 3

1 5 6 1
1 6 10 4

1 7 15 10 1
1 8 21 20 5

1 9 28 35 15 1
1 10 36 56 35 6

Proposition 3. Sum of all coefficients of Pr gives the (2r + 2) − th Fibonacci
number denoted by F2r+2, i.e. Pr(1) = F2r+2.

Proof. We remark that sum of all coefficients of Pr is Pr(1). So, by using the
identities (4) and (15) we have desired result as follows:

Pr(1) = 1 +

r∑
s=1

[(
2r − s
s− 1

)
+

(
2r − s

s

)]
(4)
= 1 +

r∑
s=1

(
2r − s+ 1

s

)

=

r∑
s=0

(
2r − s+ 1

s

)

=

⌊(2r+1)/2⌋∑
s=0

(
2r − s+ 1

s

)
(15)
= F2r+2.
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□

Now, we consider the coefficients of the polynomial Qr. These coefficients are
written at the sub rows in Pascal 2-triangle in Table 1. For example, 1, 3, 1 and 1,
6, 10, 4. So the first five terms of Qr are listed as follow:

Q1 = c2

Q2 = c4 + 2c2

Q3 = c6 + 4c4 + 3c2

Q4 = c8 + 6c6 + 10c4 + 4c2

Q5 = c10 + 8c8 + 21c6 + 20c4 + 5c2

...

Proposition 4. Sum of all coefficients of Qr gives the 2r−th Fibonacci number,
i.e. Qr(1) = F2r.

Proof.

Qr(1) =

r∑
s=1

(
2r − s
s− 1

)
=

r−1∑
j=0

(
2r − (j + 1)

j

)

=

r−1∑
j=1

(
2r − 1− j

j

)
=

⌊(2r−1)/2⌋∑
j=0

(
2r − 1− j

j

)
(15)
= F2r.

□

Proposition 5. Pr(−1) = F2r−1.
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Proof.

Pr(−1) =

r∑
s=0

(
2r − s

s

)
−

r∑
s=1

(
2r − s
s− 1

)
=

r∑
s=0

(
2r − s

s

)
−

r−1∑
s=0

(
2r − s− 1

s

)

= 1 +

r−1∑
s=0

(
2r − s

s

)
−

r−1∑
s=0

(
2r − s− 1

s

)

= 1 +

r−1∑
s=0

[(
2r − s

s

)
−

(
2r − s− 1

s

)]
(4)
= 1 +

r−1∑
s=1

(
2r − s− 1

s− 1

)
= 1 +

r−2∑
s=0

(
2(r − 1)− s

s

)

= 1 +

u−1∑
s=0

(
2u− s

s

)
=

u∑
s=0

(
2u− s

s

)
(15)
= F2u+1 = F2r−1.

□

Proposition 6. Sum of the coefficients of odd order terms of Pr is F2r.

Proof. We remark that the sum of the coefficients of odd order terms of Pr is
Pr(1)−Pr(−1)

2 . Therefore, by using Proposition 3, Proposition 5 and recurrence rela-
tions of Fibonacci numbers, we obtain the desired result as follows:

Pr(1)− Pr(−1)

2
=

F2r+2 − F2r−1

2
=

F2r + F2r+1 − F2r−1

2

=
F2r−1 + 2F2r − F2r−1

2
= F2r.

□

Also considering the scope of this study, we can also talk about k−Fibonacci
numbers. Let k ̸= 0 be an integer and Fk,0 = 0, Fk,1 = 1, and Fk,n = kFk,n−1 +
Fk,n−2 for n ≥ 2. The sequence (Fk,n) is called k−Fibonacci sequence. A few terms
of this sequence are

0, 1, k, k2 + 1, k3 + 2k, k4 + 3k2 + 1, k5 + 4k3 + 3k, k6 + 5k4 + 6k2 + 1, . . .

In [10], it is proved that

Fk,n =

⌊n−1
2 ⌋∑

i=0

(
n− 1− i

i

)
kn−1−2i for n ≥ 2.

That is,

Fk,n+1 =

⌊n
2 ⌋∑

i=0

(
n− i
i

)
kn−2i for n ≥ 1.
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Considering this result for k = c and n = r, we can give the following two conjec-
tures:

Qr = Qr(c) = cFc,2r

and
Pr = Pr(c) = Fc,2r + Fc,2r+1.

6. Conclusion

In this paper, we examined the action of a special subgroup of the congruence
subgroup on Q̂. Using this action we obtained some results on Pascal and Fibonacci
numbers via the modular group. The results obtained are important for the fields
of number theory and combinatorics. Further, it has also been observed that

∞ → Tc(∞) → T 2
c (∞) → · · · → T r

c (∞) → T r+1
c (∞) → · · ·

is an infinitely long path in the suborbital graph G(∞, c2+c+1
c2 ). Hence, this action

is related to suborbital graphs theory which firstly studied by Jones et. al. in the
reference [4]. This relationship can be examined in the future studies.
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