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Abstract: This paper introduces approximate temporal proximities of 1-cycle cell complexes in a space-

time view of a planar Whitehead CW space. Divergence of the vector field of a 1-cycle provides a natural

basis for an approximate Temporal Proximity (aTP) of time-varying 1-cycles useful in the detection, char-

acterization, analysis, and measurement of the closeness of changing geometric realizations of simplicial

complexes in a J.H.C Whitehead CW topological space. A practical application of aTP is given in terms

of the temporal closeness of 1-cycle shapes in sequences of video frames. A main result in this paper is

that every pair of cell complexes with the same descriptions over the same temporal interval have two

properties, namely, (i) persistence and (ii) approximate temporal closeness.
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1. Introduction

Time-varying cell complexes in a J.H.C Whitehead Closure-finite Weak (CW) space [35] provide a

natural basis for the introduction of temporal proximities [4], which are an extension of traditional

Čech [33] and Efremovič-Smirnov [28] spatial proximities as well as the more recent computational

proximities [16], descriptive proximities [24, 26] and proximal relators [7, 17, 30–32]. For an

overview of temporal proximities, see Appendix E.

Another thread leading to more recent views of proximity spaces stems from results obtained

by members of the Sugar (Turkish Şeker) group [2, 3, 14, 25]. Approximate temporal proximity is

the counterpart of approximate proximity introduced in [20] and temporal proximity introduced

in [4, §3].
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In this paper, the temporal proximity of changing 1-cycles cycE, cycE′ is considered in

terms of the divergence of each 1-cycle vector field that is a scalar field [9], i.e.,

div cycE = ∂cycE
∂bdy

+ ∂cycE
∂int

+ ∂cycE
∂t

.

div cycE quantifies the flux of a 1-cycle in terms of its boundary, interior, temporal variation as

the 1-cycle moves through space. For a threshold th > 0 , ∥div E − div E′∥ < th implies cycles

cycE, cycE′ are temporally near (denoted by cycE δ∆t cycE′ ). For an introduction to divergence

and its counterpart (gradient ∇cycE over a vector field considered as a stream field), see [11, §1.1,

pp. 16-19], [1, §13.2.4, pp. 651-652]. For our purposes, we associate a vector field #»

E(g) (for a

1-cycle E ) with a distinguished (representative) vertex g on the 1-cycle and obtain the divergence

div cycE .

Let 2k be a collection of sub-complexes of a space tCW and let

Φt(E) = {Φt,n(x) ∈ Rn ∶ x ∈ 2E ∈ 2K}

where Φt,n(x) is a feature vector with n feature values that describe a subcomplex in space tCW

that varies over time.

Example 1.1 In the description of a time-varying 1-cycle cycE at time t in a tCW space, let

Φt,1(cycE) = div cycE,

Φt,2(cycE) = fh̷ (average cycE vertex Planck energy),

Φt,2(cycE) = (Φt,1(cycE),Φt,2(cycE)).

For a pair of 1-cycles cycE, cycE′ , we have

cycE δ∥Φt∥ cycE′⇔ ∥Φt,2(cycE) −Φt,2(cycE′)∥ < th, for th > 0.

Let E ∩
∆t

E′ denote a time-dependent form of the descriptive intersection [15] of nonempty

subsets E,E′ ∈ 2K at times t, t′ , defined by

E ∩
∥Φ∥t

E′ =

Descriptions Φt(E),Φt(E′) overlap, temporally
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{x ∈ E ∪E′ ∶ Φt(x) ∈ Φt(E),Φt′(x) ∈ Φt′(E′), ∣t − t′∣ < th} .

These observations lead to the following elementary as well as useful result.

Lemma Let E,E′ be cell complexes in a temporal proximity space E (denoted by tCW E ).

E ∩
∥Φ∥t

E′ ≠ ∅ if and only if Eδ∥Φt∥E
′ .
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Remark 1.2 For the proof, see Lemma 2.6. This elementary lemma provides a useful result, since

we now can observe that a pair of cell complexes are close to each other over some temporal interval

without the requirement that we first determine their temporal intersection.

The main results given in this paper are twofold.

(1) Every persistent pair of cell complexes are approximately temporally close (see Theorem 4.3).

(2) Every pair of cell complexes with the same divergence over the same interval of time have two

properties, namely, (i) persistence and (ii) approximate temporal closeness (see Theorem 4.4).
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Figure 1: Temporally near vortexes

2. Preliminaries

In this section, we briefly present a framework for δ∥Φt∥ (approximately temporally-near) cell

complexes in tCW spaces. For the traditional view of a Whitehead CW space, see Appendix. A.

Temporal closeness of cell complexes leads naturally to fixed points in temporal intervals (see, e.g.,

for example, [22] and a recent study of time-constrained, self-similar surface shapes recorded and

approximated geometrically in triangulated video frames [4]). Briefly, a planar cell complex is a

collection of elementary cells called simplexes attached to each other, namely, (0-cells (vertexes),

1-cells (edges) and 2-cells (filled triangles). In this work, the focus is on vortexes that are collections

of nested cell complexes called 1-cycles.

Definition 2.1 (1-Cycle) A 1-cycle cycE in a CW space K is a collection of path-connected

vertexes on 1-cells (edges) attached to each other with no end vertex and with nonvoid interior.

Definition 2.2 (Temporal CW (tCW) Space) A temporally changing Whiteheadean CW space

(denoted by tCW) is a Whitehead CW space containing cell complexes that change over time,

measured by the divergence of the vector field of each cell complex in terms of its boundary and

interior at any instant in time.
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Definition 2.3 (Temporal Proximity) A CW space K is a temporal proximity space (briefly,

tCW) equipped with relation δ∆t , provided cell complexes appear, disappear and possibly reappear

during temporal intervals. In a tCW space k , cell complexes E,E′ are temporally near, provided

cell complex E appears and persists (continues) during the same interval of time in which complex

E′ appears and persists. This temporal proximity (closeness) of complexes E,E′ is denoted by

E δ∆t E
′ .

Example 2.4 Vortexes vorE, vorE′ have temporal proximity in Figure 1. From Definition 2.3,

we then write vorE δ∆t vorE′ .

In other words, cell complexes in a tCW space change over time, appearing momentarily

and eventually disappearing over varying temporal intervals.

Let 2k be a collection of subcomplexes of a space tCW and let

Φt(E) = {Φt,n(x) ∈ Rn ∶ x ∈ 2E ∈ 2K}

where Φt,n(x) is a feature vector with n feature values that describe a sub-complex in space tCW

that varies over time.

Example 2.5 In the description of a time-varying 1-cycle cycE at time t in a tCW space, let

Φt,1(cycE) = div cycE,

Φt,2(cycE) = fh̷ (average cycE vertex Planck energy),

Φt,2(cycE) = (Φt,1(cycE),Φt,2(cycE)).

For a pair of 1-cycles cycE, cycE′ , we have

cycE δ∥Φt∥ cycE′⇔ ∥Φt,2(cycE) = Φt,2(cycE′)∥ < th, for th > 0.

Let E ∩
∆t

E′ denote a time-dependent form of the descriptive intersection [15] of nonempty

subsets E,E′ ∈ 2K at times t, t′ , defined by

E ∩
∥Φ∥t

E′ =

Descriptions Φt(E),Φt(E′) overlap, temporally
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{x ∈ E ∪E′ ∶ Φt(x) ∈ Φt(E),Φt′(x) ∈ Φt′(E′), ∣t − t′∣ < th} .

Lemma 2.6 Let E,E′ be cell complexes in a tCW space. Then E ∩
∥Φ∥t

E′ ≠ ∅ if and only if

E δ∥Φt∥ E
′ .
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Proof
⇒ : For cell complexes E,E′ , assume that E ∩

∥Φ∥t
E′ ≠ ∅ . Consequently, E,E′ occur during the

same temporal interval, i.e., cell complex E appears at some time tE during the appearance of

cell complex E′ at time tE′ . In other words, times tE , tE′ occur during a temporal interval

[t, . . . , tE , . . . , tE′ , . . . t′] .

Hence Eδ∥Φt∥E
′ .

⇐ : If E δ∥Φt∥ E
′ , then, from Definition 2.3, it must be the case that cell complexes E,E′ appear

during the same temporal interval. Hence E ∩
∥Φ∥t

E′ ≠ ∅ . ◻

The focus here is on cell complexes that are nested 1-cycles that form vortexes in a tCW

space. Briefly, a vortex in a tCW space is a collection of path-connected vertexes in nested 1-cycles

(for the details, see Appendix C).

Remark 2.7 In this paper, the notation ∣K ∣ (commonly used in algebraic topology to denote a

subspace of an abstract space K [10, §1.2,p. 8]) denotes the geometric (graphical) realization of

an abstract CW space K (see, e.g., ∣K ∣ in Figure 1). If K is a planar complex, then ∣K ∣ is a

2-dimensional polytope [8, §II.1,p. 47]. Similarly, the geometric realization (polytope) of vortexes

vorE, vorE′ is denoted by ∣vorE∣ , ∣vorE′∣ in Figure 1. For a 1-cycle cycE cell complex in a space

K , we write ∣cycE∣ for its geometrical realization, i.e., cycE is a cell complex on ∣cycE∣ (see,

e.g., [29, §5.8,p. 69]).

Definition 2.8 [19](Planar Vortex) A planar vortex vorE is a finite cell complex, which is

a collection of path-connected vertices in nested, filled 1-cycles in a CW complex K . A 1-cycle in

vorE (denoted by cycA) is a sequence of edges with no end vertex and with a nonempty interior.

A geometric realization of cell complex vorE in space K in the Euclidean plane is denoted by

∣vorE∣ on ∣K ∣ .

Example 2.9 A sample, time-constrained (clocked) vortex vorE spiraling through space is repre-

sented graphically as ∣vorE∣ in Figure 1.

3. Approximate Temporal Proximities

A nonempty set X equipped with the relation δ∆t is a temporal Čech proximity space (denoted by

(X,δ∆t )), provided temporal form of the Čech axioms in Appendix D are satisfied. For an overview

of the temporal Čech axioms, see Appendix E. When we write, for example, vorE δ∆t vorE′ in
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tCW space K, we mean that vorE persists over a temporal interval ∆t = [t0, tend] that overlaps

with a temporal interval ∆t′ = [t′0, t′end] over which a vortex vorE′ persists.

Example 3.1 In Figure 1, vorE δ∆t vorE′ in the temporal CW space K , since vortex vorE

persists over a temporal interval that overlaps the temporal interval over which vortex vorE′ persists.

An interest in overlapping temporal intervals leads to the introduce of the temporal in-

tersection between cell complexes such as vortexes vorE,vorE′ that overlap in time (denoted by

vorE ∩
∆t

vorE′ ).

Definition 3.2 Let vorE, vorE′ be vortexes in a temporal CW space K . Also, let ∆vorE
t be a

temporal interval over which vorE appears and persists and let ∆vorE′
t′ be a temporal interval over

which vorE′ appears and persists. Then

vorE ∩
∥Φ∥t

vorE′ = {instant t ∶ t ∈ ∆vorE
t ∩ ∆vorE′

t′} .

Example 3.3 In Figure 1, vorE ∩
∥Φ∥t

vorE′ ≠ ∅ . Because

∆vorE
t ∩ ∆vorE′

t′ ≠ ∅

since the pair of vortexes persist over the interval [t′, tend] .

Approximate Temporal Čech Axioms

Let shapes A,B,C be in a time-varying space X . The space X is an approximate temporal

proximity space aTP, provided the following axioms are satisfied:

(tP.0) All nonempty subsets in X are temporally far from the empty set, i.e., A /δ∥Φt∥ ∅ for all

A ⊆X .

(tP.1) A δ∥Φt∥ B ⇒ B δ∥Φt∥ A .

(tP.2) A ∩
∥Φ∥t

B ≠ ∅⇔ A δ∥Φt∥ B .

(tP.3) A δ∥Φt∥ (B ∪C)⇒ A δ∥Φt∥ B or A δ∥Φt∥ C .

Lemma 3.4 Let E,E′ be cell complexes in a space tCW. E ∩
∥Φ∥t

E′ ≠ ∅ if and only if E δ∥Φt∥ E
′ .

Proof Immediate from Axiom tP.2. ◻
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Theorem 3.5 (K,δ∥Φt∥) be a tCW proximity space K and let vortexes vorE, vorE′ ∈ 2K , i.e.,

vortexes vorE, vorE′ are subcomplexes in the collection of cell complexes in space K . Then

vorE ∩
∥Φ∥t

vorE′ ≠ ∅⇔ vorE δ∥Φt∥ vorE′ .

Proof Immediate from Lemma 3.4. ◻

4. Main Results
The end-goal, here, is to arrive at a means of tracking 1-cycles either by themselves or vortexes

(nested 1-cycles) that are short-lived, appearing over a temporal interval, disappearing, and then

possibly reappearing, resembling a sequences of sunrises, appearing each morning, disappearing

each evening and then reappearing the next day.

Lemma 4.1 Every pair of subcomplexes with close rates-of-change in a tCW space K are approx-

imately temporally proximal.

Proof Let E,E′ ∈ 2K with rates-of-change ∂E
∂t

, ∂E
′

∂t′
such that

Φt(E) = ∂E
∂t

, Φt′(E′) = ∂E′

∂t′
,

∥Φt(E) −Φt′(E′)∥ < th for th > 0.

From Lemma 3.4, E δ∥Φt∥ E
′ . ◻

Definition 4.2 Let E,E′ be cell complexes in a space tCW. E,E′ persist, provided E δ∥Φt∥ E
′ ,

i.e., E and E′ appear with the same rates-of-change during the same interval of time.

Cell complexes with the same rate-of-change of their boundary or of their interior during

the same interval of time are also persistent, even if their rates-of-change are different. It is also

the case that cell complexes with close divergence during the same interval of time are persistent,

independent of differing rates-of-change as well as differing perimeters (boundaries) and interiors.

Theorem 4.3 Every persistent pair of cell complexes in a space tCW is approximately temporally

close.

Proof Let E,E′ be persistent cell complexes with the same rates-of-change over the same

temporal interval in a space tCW. From Lemma 4.1, E δ∥Φt∥ E
′ . ◻

Theorem 4.4 Every pair of cell complexes in a space tCW with the same divergence over the

same interval of time are
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(i) persistent, and

(ii) approximately temporally close.

Proof
(i) from Definition 4.2, cell complexes with close divergences over the sample time interval are

persistent.

(ii) Cell complexes E,E in tCW that appear during the interval of time, are temporally close.

Hence E δ∥Φt∥ E . ◻

Vigolo Hawaiian butterfly HbEt.00 in video frame frE at time t at the beginning of a temporal
interval [t, t + 05sec] , Betti no. β(HbEt.00) = 3 , HbEt.00 δ∥Φt∥ HbEt.01
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Vigolo Hawaiian butterfly HbEt.01 in video frame frE′ at time t + 0.1sec in temporal interval
[t, t + 05sec] , Betti no. β(HbEt.01) = 3 , HbEt.00 δ∥Φt∥ HbEt.01
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Figure 2: Persistent butterfly shapes in a pair of video frames that appear over a short temporal
interval

5. Application

This section briefly introduces an application of temporally proximal 1-cycles in a topology of data

approach to detecting persistent video frame cycles that appear, disappear and sometimes reappear

within a temporal interval. The basic approach is to track the persistence of video frame shapes

covered with filled cycles.
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In the study of temporally proximal 1-cycles on video frames, 1-cycles have free group

presentations with corresponding Betti numbers that simplify the comparison of frame 1-cycles.

Briefly, a finite group G is free, provided every element x ∈ G is a linear combination of its basis

elements (called generators) [10, §1.4, p. 21]. For the details about free groups, see Appendix F.

Lemma 5.1 [23] Every 1-cycle in a CW space has a free group presentation.

For simplicity, assume a pair of 1-cycles attached to each other have a vertex in common.

Recall that a Betti number is a count of the number generators in a free group [10, §4,p. 24]. Frame

1-cycles are, for example, descriptively close, provided the difference between the Betti numbers of

their free group presentations are close. Determining the persistence of frame cycles then reduces

to tracking the appearance, disappearance and possible reappearance of the cycles in terms of their

recurring Betti numbers over temporal intervals. For more about this, see [21].

Theorem 5.2 Every free group presentation of nested 1-cycles attached to each other has a Betti

number.

Proof Let shape shE = cycE, cycE′ , i.e., shE consists of a pair of 1-cycles attached to each other

such that cycE ∩ cycE′ ≠ ∅ and the interior int(shE) is nonvoid. From Lemma 5.1, every cycle in

shE has a free group presentation. Without loss of generality, assume cycE ∩ cycE′ = v , a vertex

common to both 1-cycles in shE . In that case, starting at v , the vertexes in shE = cycE, cycE′

are path-connected with no end vertex. Hence, shE is also a 1-cycle. Again, from Lemma 5.1, shE

has a free group presentation . Since very vertex v′ in shE can be written as a linear combination

of v , then B(shE) = 1 . What we observed for a 1-cycle with one generator easily extends to nested

1-cycles with more than one generator with a corresponding Betti number greater than 1. This

gives us the desired result. ◻

Example 5.3 A Hawaiian butterfly shape that persists in a sequence of video frames over a short

temporal interval is shown in Figure 2. The wings of each butterfly shape are constructed from

nested cycles, which have nonempty intersection with a common vertex v0 . Also notice that vertex
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v0 and antenna vertices v1, v2 also constitute a 3rd 1-cycle (call it cycE′′ ) so that we have

wing w1 = cycHa ∪ cycHb (wing w1 has nested 1-cycles),

wing w2 = cycHa′ ∪ cycHb′ (wing w2 has nested 1-cycles),

w1 ∩w2 = {v0} (wings have a common vertex),

cycE′′ = {v0 → v1 → v2 → v0} (antenna cycle),

HbEt.00 = {w1,w2, cycE′′} (butterfly HbEt.00 parts),

B(HbEt.00) = 3 (butterfly free group Betti number).

For simplicity, we will ignore the 4th 1-cycle in Figure 2, namely, the butterfly body, also

attached to v0 .

Recall that a 1-cycle is a sequence of path-connected edges with no end edge and with nonvoid

interior. Hence butterfly HbEt.00 in Figure 2 is a massive 1-cycle. From Theorem 5.2, HbEt.00

has a free group presentation with a corresponding Betti number. Observe that the three vertexes

in the antenna cycle cycE′′ in Figure 2 serve as generators of the HbEt.00 free group. Hence

B(HbEt.00) = 3 Betti number for the butterfly free group, which persists over the pair of video

frames shown in Figure 2.

So tracking a butterfly across a sequence of video frames reduces to tracking the appearance

of the Betti number of a butterfly shape over a sequence of video frames in a particular temporal

interval. This situation is represented in Figure 2 such that

HbEt.00 δ∥Φt∥ HbEt.01,

i.e., butterfly B(HbEt.00) persists, reappearing in a second video frame with a slightly altered

appearance (e.g., wing color in the first frame is less bright in the second frame) and with Betti

number = 3. In effect, B(HbEt.00) persists for a 0.1 second. What we observed about temporal

proximity in this example has been used effectively in a recent, similar study of highway traffic [4].

Example 5.4 Repeat the steps in Example 5.3 using the divergence of vertex v0 instead of the

Betti number of the butterfly 1-cycle. In other words, track the persistence of a frame shape cycle

over time using the divergence of a butterfly vertex, shared by the wings and antenna of the butterfly.

Then compare the results with those obtained in Example 5.3.

Example 5.5 Repeat the steps in Example 5.3 using both the divergence of vertex v0 as well as the

Betti number of the butterfly 1-cycle. In other words, track the persistence of a frame shape cycle

over time using the butterfly Betti number and the divergence of a butterfly vertex, shared by the
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wings and antenna of the butterfly. Then compare the results with those obtained in Example 5.3

and in Example 5.4.
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A. Cell Complexes

A planar Whitehead cell complex K [20] (usually called a CW complex) is a collection of n-

dimensional minimal cells enα, n ∈ {0,1,2} , i.e.,

K = {enα ⊂ R2 ∶ n ∈ {0,1,2}} .

in the Euclidean plane π .

Definition A.1 A cell subcomplex shE ∶= {enα} ∈ 2K (shape complex) is a closed subcomplex,

provided the subcomplex includes both a nonempty interior (denoted by int(enα)) and its boundary

(denoted by bdy(enα)). In effect, shE is closed, provided

shE = int(shE) ∪ bdy(shE) (Closed subcomplex).

Let 2π be the collection of all subsets in the Euclidean plane π . In the plane, a Whitehead

Closure-finite Weak (CW) cell complex K ∈ 2π has two properties, namely,

C: A cell complex K is closure-finite, provided each cell enα ∈ K is contained in a finite

subcomplex of K . In addition, each cell enα ∈K has a finite number of immediate faces. One

cell enα is an immediate face of another cell emα , provided enα ∩ emα ≠ ∅ [29] (also called a

common face).

W: The plane π has a weak topology induced by cell complex K , i.e., a subset S ∈ 2π is

closed, if and only if S ∩ enα is also closed in enα for each n,α [29, §5.3, p. 65].

A collection K ∈ 2π is called a CW complex, provided it has the closure-finite property

and π has the weak topology property induced by K .

Minimal cell planar complexes are given in Table 1.

Remark A.2 Closure finite cell complexes with weak topology (briefly, CW complexes) were

introduced by J.C.H. Whitehead [34], later formalized in [35]. In this work1, a cell complex
1Here, we use cl(en) (closure of a cell) and bdy(en) (contour of a cell) used in this paper, instead of Whitehead’s

ēn and ∂(en) .
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K (or complex) [35, §4, p. 221] is a Hausdorff space (union of disjoint open cells e, en, eni ) such

that the closure of an n cell en ∈ K (denoted by cl(en) is the image of a map f ∶ σn → cl(en) ,

where σn is a fixed n-simplex and where the boundary bdy(en) (otherwise known as the contour

of a complex) is defined by

bdy(en) =

Complex contour → closure cl(en) minus Int(en) interior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f(bdy(en)) = cl(en) − int(en).

Notice that a subcomplex X ⊂ K has the weak topology, since X is the union of a finite number

intersections X ∩ cl(e) for single cells e ∈K [35, §5, p. 223]. From a geometric perspective, a cell

complex is a triangulation of the CW space K [34, p. 246].

Table 1: Minimal Planar Cell Complexes

Minimal Complex Cell en ∶ n ∈ {0,1,2} Planar Geometry Interior

bc

e0 Vertex nonempty

b

b

bc

bc

e1 Edge line segment w/o end points

bc

bc

bc
e2 Filled triangle nonempty triangle interior w/o edges

B. Shape Complexes

A shape complex has two basic parts, namely, contour and interior, introduced in [18].

Each shape complex shE has a nonempty interior that excludes all points on the shape

contour.

The fundamental parts of every shape complex are gathered together in the closure of a

shape complex, definite using the Hausdorff distance [5] (see, also, [6, §23, p. 128]) between all

points in a CW complex K and a shape shE .

Definition B.1 Closure of a planar shape shE (denoted by cl(shE)) in a CW space K is defined

by

Hausdorff distance D(x, shE) = inf {∥x − p∥ ∶ p ∈ shE}
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
cl(shE) = inf {x ∈X ∶D(x, shE) = 0} .
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In other words, we have the closure of a planar shape shE is a finite bounded region of the

Euclidean plane such that

cl(shE) includes its contour & its interior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
cl(shE) = bdy(shE) ∪ Int(shE).

C. Planar Vortexes
This section briefly looks at planar vortex structures in planar CW spaces. For simplicity, we

consider only 2 cycle vortexes containing a pair of nested 1-cycles that intersect or attached to

each other via at least one bridge edge.

Definition C.1 [21] (Planar 2 Cycle Vortex) Let cycA, cycB be a collection of path-connected

vertexes on nested filled 1-cycles (with cycB in the interior of cycA) defined on a finite, bounded,

planar region in a CW space K . A planar 2 cycle vortex vorE is defined by

vorE =

cl(cycB) is contained (nested) in the interior of cl(cycA)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{cl(cycA) ∶ cl(cycB) ⊂ int(cl(cycA))} .

A vortex containing adjacent non-intersecting cycles has a bridge edge attached to vertexes

on the cycles.

Definition C.2 A vortex bridge edge is an edge attached to vertexes on a pair of non-interecting,

filled 1-cycles.

Vortex ∣vorE∣ with non-intersecting 1-cycles cycA, cycB

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

K

∣vorE∣
cycA

cycB

p

q

Vortex ∣vorE′∣ with intersecting 1-cycles cycA′, cycB′

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

K′

g1

g2

g3
b

∣vorE′∣
cycA′

cycB′

l

Figure 3: Sample planar 2-cycle vortexes
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Remark C.3 From Definition C.1, the cycles in a 2 cycle vortex can either have nonempty

intersection (see, e.g., cycA′ ∩ cycB′ ≠ ∅ in ∣vorE′∣ in Figure C) or there is a bridge edge between

the cycles (see, e.g., >pq ∣vorE∣ in Figure C). In effect, every pair of vertexes in a 2 cycle vortex is

path-connected.

Remark C.4 The structure of a 2 cycle vortex extends to a vortex with k > 2 nested filled 1-

cycles, provided adjacent pairs of cycles cycA, cycA′ in a k -cycle vortex either intersect or there

is a bridge edge attached between cycA, cycA′ .

D. Čech Proximity Spaces

This section briefly introduces Čech proximity spaces, paving the way for temporal proximity
spaces.

The simplest form of proximity relation (denoted by δ ) on a nonempty set was introduced by

E.Čech [33]. A nonempty set X equipped with the relation δ is a Čech proximity space (denoted

by (X,δ )), provided the following axioms are satisfied:

Čech Axioms

(P.0) All nonempty subsets in X are far from the empty set, A /δ ∅ for all A ⊆X .

(P.1) A δ B ⇒ B δ A .

(P.2) A ∩ B ≠ ∅⇒ A δ B .

(P.3) A δ (B ∪C)⇒ A δ B or A δ C .

Given that a nonempty set E has k ≥ 1 features such as Fermi energy EFe , cardinality

Ecard , a description Φ(E) of E is a feature vector, i.e., Φ(E) = (EFe,Ecard) . Nonempty sets A,B

with overlapping descriptions are descriptively proximal (denoted by A δΦ B ). The descriptive

intersection of nonempty subsets in A ∪B (denoted by A ∩
Φ

B ) is defined by

A ∩
Φ

B =

Descriptions Φ(A) & Φ(B) overlap
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
{x ∈ A ∪B ∶ Φ(x) ∈ Φ(A) ∩ Φ(B)} .

Let 2X denote the collection of all subsets in a nonempty set X . A nonempty set X

equipped with the relation δΦ with nonempty subsets A,B,C ∈ 2X is a Čech proximity space,

provided the Čech axioms are satisfied.
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Lemma D.1 Let K be a CW space, 2V or(K) be a collection of planar vortexes equipped with the

proximity δ and let vorA, vorB ∈ V or(K) . Then vorA ∩ vorB ≠ ∅ implies vorA δ vorB .

Proof Immediate from Axiom P.2. ◻

Let (X,δ1) and (Y, δ2) be two Čech proximity spaces. Next, we consider proximally continuous

maps informally introduced by Smirnov [28, p. 5]. Then a map f ∶ (X,δ1)→ (Y, δ2) is proximally

continuous, provided A δ1 B implies f(A) δ2 f(B) , i.e., if A,B are close in δ1 proximity space X ,

then f(A), f(B) are close in the δ2 proximity space Y [13, §1.4]. In general, a proximal continuous

map preserves the nearness of pairs of sets in the pre-image space X for the corresponding pairs

of set in the image space Y [12, §1.7, p. 16].

Theorem D.2 Let K,K ′ be a pair of CW spaces, equipped with the proximities δ1, δ2 , respectively

and let f ∶ (K,δ1)→ (K ′, δ2) be a proximally continuous map. If vortexes vorA, vorB ∈ 2K are δ1

close in space K , then f(vorA), f(vorB) are close in the δ2 proximity space K ′

Proof Given vorA δ1 vorB in space K , then by the definition of a proximally continuous map,

f(vorA) δ2 f(vorB) in space K ′ . ◻

The notation 2K denotes the collection of all subcomplexes of the CW space K .

Example D.3 Let vorA, vorB ∈ 2K be vortexes, each with same number of cycles, which overlap.

In that case, vorA∩vorB ≠ ∅ . By Axiom P.2 vorA δ1 vorB in space K . Let f ∶ (K,δ1)→ (K ′, δ2)

be a proximally continuous, defined for any vortex vorA by the identify map.

f(vorA) = vorA.

In that case, let vorE, vorE′ ∈ 2K . Then

f(vorE) = vorE,

f(vorE′) = vorE′,

vorE δ1 vorE′ ⇒ f(vorE) δ2 f(vorE′).

In other words, if vortexes vorE, vorE′ ∈ 2K are close, then f(vorE), f(vorE′) are close.

E. Temporal Proximity Space

This section briefly introduces a temporal proximity space, introduced in [4, §3].

A nonempty set X equipped with the relation δ∆t is a temporal Čech proximity space

(denoted by (X,δ∆t )), provided temporal form of the Čech axioms in Appendix D are satisfied.
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When write, for example, vorE δ∆t vorE′ in tCW space K, we mean that vorE persists over a

temporal interval ∆t = [t0, tend] that overlaps with a temporal interval ∆t′ = [t′0, t′end] over which

a vortex vorE′ persists.

Example E.1 In Figure 1, vorE δ∆t vorE′ in the temporal CW space K , since vortex vorE

persists over a temporal interval that overlaps the temporal interval over which vortex vorE′ persists.

An interest in overlapping temporal intervals leads to the introduce of the temporal in-

tersection between cell complexes such as vortexes vorE,vorE′ that overlap in time (denoted by

vorE ∩
∆t

vorE′ ).

Definition E.2 Let vorE, vorE′ be vortexes in a temporal CW space K . Also let ∆vorE
t be a

temporal interval over which vorE appears and persists and let ∆vorE′
t′ be a temporal interval over

which vorE′ appears and persists. Then

vorE ∩
∆t

vorE′ = {instant t ∶ t ∈ ∆vorE
t ∩ ∆vorE′

t′} .

Example E.3 In Fig. 1, vorE ∩
∆t

vorE′ ≠ ∅ . Because

∆vorE
t ∩ ∆vorE′

t′ ≠ ∅

since the pair of vortexes persist over the interval [t′, tend] .

Temporal Čech Axioms

(tP.0) All nonempty subsets in X are temporally far from the empty set, i.e., A /δ∆t ∅ for all

A ⊆X .

(tP.1) A δ∆t B ⇒ B δ∆t A .

(tP.2) A ∩
∆t

B ≠ ∅⇔ A δ∆t B .

(tP.3) A δ∆t (B ∪C)⇒ A δ∆t B or A δ∆t C .

The Temporal Čech Axioms includes a time-constrained form of the Čech proximity Axiom

P.2, with an important property introduced in Lemma E.4.

Lemma E.4 The temporal proximity Axiom tP.2 is an equivalence between overlapping temporal

intervals and the δ∆t proximity of subsets in the space (X,δ∆t) .

116



James F. Peters / FCMS

Proof ⇒ : Let the temporal intervals for A,B ∈ 2X overlap (i.e., let A ∩
∆t

B ≠ ∅). Then, by

Definition 2.3, A δ∆t B .

⇐ : A δ∆t B means that A and B persist over the same temporal interval ∆
A∈2X
B∈2X

t . Hence the

converse of Axiom tP.2 holds, namely,

A δ∆t B ⇒ A ∩
∆t

B ≠ ∅.

◻

Theorem E.5 (K,δ∆t) be a tCW proximity space and let vortexes vorE, vorE′ ∈ 2K , i.e.,

vortexes vorE, vorE′ are subcomplexes in the collection of cell complexes in space K . Then

vorE ∩
∆t

vorE′ ≠ ∅⇔ vorE δ∆t vorE′ .

Proof Immediate from Lemma E.4. ◻

Vortex ∣vorE′∣ with intersecting 1-cycles cycA′, cycB′
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Figure 4: Nested, intersecting planar 1-cycles in a vortex

F. Free Group Presentation of a Vortex

A finite group G is free, provided every element x ∈ G is a linear combination of its basis elements

(called generators) [10, §1.4, p. 21]. We write B to denote a nonempty basis set of generators

{g1, . . . , g∣B∣} and G(B,+) to denote the free group with binary operation “+”.

Example F.1 The basis {g1, g2, g3} generates a group G whose geometric realization is ∣vorE′∣

in Fig. E. The “+” operation on G corresponds to a move from a generator to a neighbouring
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vertex. For example:

b =

traversing 3 cycA′ & 3 cycB′ edges to reach b via g1, g2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
3g1 + 3g2

b =

traversing 7 cycB′ edges to reach b via g1, g2
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
4g1 + 3g2

b =

traversing 1 cycB′ edge to reach b via g3
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
0g1 + 1g3

The identity element 0 in G is represented by a zero move from a generator g to another vertex

(denoted by 0g ) and an inverse in G is represented by a reverse move −g .

Definition F.2 [27, p.239] (Rotman Presentation) Let X = {gi ∶ i = 1,2, . . . } ,

△ = {v = ∑kgi ∶ v ∈ groupG,gi ∈X} be a set of generators of members of a nonempty set X and set

of relations between members of G and the generators in X . A mapping of the form {X,△}→ G ,

a free group, is called a presentation of G .

We write G(V,+) to denote a group G on a nonvoid set V with a binary operation “+”.

For a group G(V,+) presentable as a collection of linear combinations of members of a basis set

B ⊆ V , we write G(B,+) .

Definition F.3 (Free Group Presentation of a Cell Complex) Let 2K be the collection of

cell complexes in a CW space K , E ∈ 2K containing n vertexes, G(E,+) a group on nonvoid set E

with binary operation “+”, △ = {v = ∑kgi ∶ v ∈ E, gi ∈ E} be a set of generators of members in E ,

set of relations between members of E and the generators B ⊂ E , gi ∈ B, v = himod n
(0) ∈K , ki the

ith integer coeficient modn in a linear combination ∑
i,j

kigj of generating elements gj = hj(0) ∈ B .

A free group presentation of G is a continuous map f ∶ 2K ×△→ 2K defined by

f(B,△) = {v ∶= ∑
i,j

kigj ∈△ ∶ v ∈ E, gj ∈ B, ki ∈ Z} .

Lemma F.4 [22, §4, p. 10] Every 1-cycle in a CW space K has a free group presentation.
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