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Abstract

In this article, we characterize interpolating sesqui-harmonic spacelike curves in a four-
dimensional conformally and quasi-conformally flat and conformally symmetric Lorentzian
Para-Sasakian manifold. We give some theorems for these curves.

1. Introduction

Let (M1,g1) and (M2,g2) be Riemannian manifolds and σ : (M1,g1)→ (M2,g2) be a smooth map. The equation

L(σ) =
1
2

∫
M1

| dσ |2 ϑg1

gives the critical points of energy functional The Euler-Lagrange equation of the energy functional gives the harmonic equation defined by
vanishing of

τ(σ) = trace∇dσ ,

where τ(σ) is called the tension field of the map σ .
Biharmonic maps between Riemannian manifolds were studied in [1]. Biharmonic maps between Riemannian manifolds ψ : (M1,g1)→
(M2,g2) are the critical points of the bienergy functional

L2(σ) =
1
2

∫
M1

| τ(σ) |2 ϑg1 .

In [2], G.Y. Jiang derived the variations of bienergy formulas and showed that

τ2(σ) = −Jσ (τ(σ))

= −4τ(Ψ)− traceRN(dσ ,τ(σ))dσ ,

where Jσ is the Jacobi operator of σ . The equation τ2(σ) = 0 is called biharmonic equation.
Interpolating sesqui-harmonic maps were studied by Branding [3]. The author defined an action functional for maps between Riemannian
manifolds that interpolated between the actions for harmonic and biharmonic maps. Ψ is interpolating sesqui-harmonic if it is critical point
of δ1,δ2

(Ψ),

Lδ1,δ2
(Ψ) = δ1

∫
M1

|dΨ|2vg1 +δ2

∫
M1

|τ(Ψ)|2vg1 , (1.1)

where δ1,δ2 ∈ R [3].
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For δ1,δ2 ∈ R the equation

τδ1,δ2
(Ψ) = δ2τ2(Ψ)−δ1τ(Ψ) = 0, (1.2)

is the interpolating sesqui-harmonic map equation [3].
An interpolating sesqui-harmonic map is biminimal if variations of (1.1) that are normal to the image Ψ(M1)⊂M2 and δ2 = 1, δ1 > 0 [4].
In a 3-dimensional sphere, interpolating sesqui-harmonic curves were studied in [3]. Interpolating sesqui-harmonic Legendre curves in
Sasakian space forms were characterized in [5]. Recently, Yüksel Perktaş et all. introduced biharmonic and biminimal Legendre curves
in 3-dimensional f -Kenmotsu manifold [6]. Moreover, spacelike and timelike curves characterized in a four dimensional manifold to be
proper biharmonic in [7]. Motivated by the above studies, in this paper, we examine interpolating sesqui-harmonic curves in 4-dimensional
LP-Sasakian manifold.

2. Preliminaries

2.1. Lorentzian almost paracontact manifolds

Let M be an n-dimensional differentiable manifold equipped with a structure (φ ,ζ ,η), where φ is a (1,1)-tensor field, ξ is a vector field, η

is a 1-form on M such that [8]

φ
2 = Id +η⊗ζ (2.1)

η(ζ ) =−1. (2.2)

Also, we have

η ◦φ = 0, φζ = 0, rank(φ) = n−1.

If M admits a Lorentzian metric g, such that

g(φV,φW ) = g(V,W )+η(V )η(W ), (2.3)

then M is said to admit a Lorentzian almost paracontact structure (φ ,ζ ,η ,g).
The manifold M endowed with a Lorentzian almost paracontact structure (φ ,ζ ,η ,g) is called a Lorentzian almost paracontact manifold [8,9].
In equations (2.1) and (2.2) if we replace ζ by −ζ , we obtain an almost paracontact structure on M defined by I. Sato [10].
A Lorentzian almost paracontact manifold (M,φ ,ζ ,η ,g) is called a Lorentzian para-Sasakian manifold [8] if

(∇V φ)W = g(V,W )ζ +η(W )V +2η(V )η(W )ζ . (2.4)

It is well konown that, conformal curvature tensor C̃ is given by

C̃(V,W )Z = R(V,W )Z− 1
n−2

{
S(W,Z)V −S(V,Z)W +g(W,Z)V −g(V,Z)QW

}
+

(
r

(n−1)(n−2)

)
{g(W,Z)V −g(V,Z)W} ,

where S is the Ricci tensor and r is the scalar curvature. If C = 0, then Lorentzian para-Sasakian manifold is called conformally flat.
Also, quasi conformal curvature tensor Ĉ is defined by

Ĉ(V,W )Z = αR(V,W )Z−β
{

S(W,Z)V −S(V,Z)W +g(W,Z)QV −g(V,Z)QW
}
−
(

r
n

(
α

(n−1)
+2β

))
{g(W,Z)V −g(V,Z)W} ,

where α,β constants such that αβ 6= 0. If Ĉ = 0, then Lorentzian para-Sasakian manifold is called quasi conformally flat.
A conformally flat and quasi conformally flat LP-Sasakian manifold Mn (n > 3) is of constant curvature 1 and also a LP-Sasakian manifold
is locally isometric to a Lorentzian unit sphere if the relation R(V,W ) ·C = 0 holds [11]. For a conformally symmetric Riemannian
manifold [12], we have ∇C = 0. So, for a conformally symmetric space R(V,W ) ·C = 0 satisfies. Therefore a conformally symmetric
LP-Sasakian manifold is locally isometric to a Lorentzian unit sphere [11].
In this case, for conformally flat, quasi conformally flat and conformally symmetric LP-Sasakian manifold M, for every V,W,Z ∈ T M [11],
we have

R(V,W )Z = g(W,Z)V −g(V,Z)W. (2.5)

3. Main results

In this section, we give our main results about interpolating sesqui-harmonic curves in a conformally flat, quasi conformally flat and
conformally symmetric LP-Sasakian manifold M̃. From now on, we will consider such a manifold as M̃.

Theorem 3.1. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that first binormal vector b1 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) γ is a circle with ρ1 =
√

1− δ1
δ2

,
or
ii) γ is a helix with ρ2

1 −ρ2
2 = 1− δ1

δ2

where δ1
δ2

< 1.
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Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the first binormal vector b1 of {t,n,b1,b2}
orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 ρ2 0 ρ3
0 0 ρ3 0




t
n
b1
b2

 (3.1)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve γ [13].
By using (3.1) and equation (2.5), we obtain

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 +ρ1ρ

2
2 )n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1ρ2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 −ρ

2
2 = 1− δ1

δ2
,

ρ2ρ3 = 0.

So, we get the proof.

Theorem 3.2. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that second binormal vector b2 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if
either
i) γ is a circle with ρ1 =

√
1− δ1

δ2
,

or
ii) γ is a helix with ρ2

1 +ρ2
2 = 1− δ1

δ2

where δ1
δ2

< 1.

Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the vector b2 of {t,n,b1,b2} orthonormal
Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 −ρ2 0 ρ3
0 0 ρ3 0




t
n
b1
b2

 (3.2)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
From (3.2) and (2.5), we get

∇tt = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 −ρ1ρ

2
2 )n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 −ρ1ρ2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.
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In this case, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 +ρ

2
2 = 1− δ1

δ2
,

ρ2ρ3 = 0.

This equation proves our assertion.

Theorem 3.3. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that binormal vector b1 is null. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) ρ1 =
√

1− δ1
δ2

and
and
ii) ρ2 = 0 or |ln|ρ2(s) =−

∫
ρ3(s)ds.

Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the first binormal vector b1 of {t,n,b1,b2}
orthonormal Frenet frame is a null(lightlike) vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
−ρ1 0 ρ2 0

0 0 ρ3 0
0 ρ2 0 −ρ3




t
n
b1
b2

 (3.3)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
By use of (3.3) and equation (2.5), we have

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 −ρ

3
1 +ρ1)n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

In view of (1.2), we arrive at

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1)δ2
−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1ρ
′
1 = 0

(ρ ′′1 −ρ
3
1 +ρ1)δ2−ρ1δ1 = 0,

2ρ
′
1ρ2 +ρ1ρ

′
2 +ρ1ρ2ρ3 = 0.

If we consider non-geodesic solution, we obtain

ρ1 =

√
1− δ1

δ2
,

ρ
′
2 +ρ2ρ3 = 0,

where δ1
δ2

< 1.

Theorem 3.4. Let M̃ be a 4-dimensional LP-Sasakian manifold and γ : I→ M̃ be a curve parametrized by arclength s with {t,n,b1,b2}
orthonormal Frenet frame such that normal vector n is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) γ is a circle with ρ1 =
√

δ1
δ2
−1 ,

or
ii) γ is a helix with ρ2

1 +ρ2
2 = δ1

δ2
−1

where δ1
δ2

> 1.
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Proof. Let M̃ be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on M̃. If the normal vector n of {t,n,b1,b2}
orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

∇t t
∇tn
∇tb1
∇tb2

=


0 ρ1 0 0
ρ1 0 ρ2 0
0 ρ2 0 ρ3
0 0 −ρ3 0




t
n
b1
b2

 (3.4)

where ρ1, ρ2,ρ3 are respectively the first, the second and the third curvature of the curve [13].
By using (3.4) and equation (2.5), we obtain

∇t t = ρ1n,

∇t∇t t =−ρ
2
1 t +ρ

′
1n+ρ1ρ2b1,

∇t∇t∇t t = −(3ρ1ρ
′
1)t +(ρ ′′1 +ρ

3
1 +ρ1ρ

2
2 +ρ1)n+(2ρ

′
1ρ2 +ρ1ρ

′
2)b1 +(ρ1ρ2ρ3)b2,

and

R(t,∇t t)t =−ρ1n.

Considering above equations in (1.2), we have

τδ1,δ2
(Ψ) = −(3ρ1ρ

′
1)δ2t +

{
(ρ ′′1 −ρ3

1 +ρ1k2
2 +ρ1)δ2

−ρ1δ1

}
n+(2ρ

′
1ρ2 +ρ1ρ

′
2)δ2b1 +(ρ1ρ2ρ3)δ2b2.

Thus, γ is a interpolating sesqui-harmonic curve if and only if

ρ1 = const. > 0 ρ2 = const.

ρ
2
1 +ρ

2
2 =

δ1

δ2
−1,

ρ2ρ3 = 0.

So, we get the proof.

4. Conclusion

In this paper we charaecterized spacelike curves to be Sesqui-harmonic curves in LP-Sasakian manifolds. We gave four theorems about these
curves. These theorems showed that if we change the vector fields of the Frenet frame {t,n,b1,b2}, then the equation of Sesqui-harmonic
curves change. So, we introduced four different spacelike Sesqui-harmonic curves in this manner.
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