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Abstract
Let R be a ring and Z(R) be the center of R. The aim of this paper is to define the notions
of centrally extended Jordan derivations and centrally extended Jordan ∗-derivations, and
to prove some results involving these mappings. Precisely, we prove that if a 2-torsion
free noncommutative prime ring R admits a centrally extended Jordan derivation (resp.
centrally extended Jordan ∗-derivation) δ : R → R such that

[δ(x), x] ∈ Z(R) (resp. [δ(x), x∗] ∈ Z(R)) for all x ∈ R,

where ′∗′ is an involution on R, then R is an order in a central simple algebra of dimension
at most 4 over its center.
Mathematics Subject Classification (2020). 16W10, 16N60, 16W25

Keywords. Prime ring, semiprime ring, involution, centrally extended Jordan
derivation, centrally extended Jordan ∗−derivation

1. Introduction and notions
Throughout this paper, R denotes an associative ring with center Z(R). The maximal

right ring of quotients of R is denoted by Qmr(R) and the center of Qmr(R) is called the
extended centroid of R and denoted by C, more information about these object can be
found in [5]. For any x, y ∈ R, the symbol [x, y] (resp. x ◦ y) denotes the commutator
(resp. anti-commutator) xy − yx (resp. xy + yx). A ring R is called prime, if for any
a, b ∈ R, aRb = (0) implies either a = 0 or b = 0, and if aRa = (0) implies a = 0, then R is
called a semiprime ring. For any n ∈ Z+, R is called n-torsion free if nx = 0 for all x ∈ R,
implies x = 0. An anti-automorphism ′∗′ of a ring R is called involution if it is of period 2.
By a ring with involution, we mean a ring equipped with an involution ′∗′, it is also called
∗-ring. Let H(R) := {x ∈ R : x∗ = x} and S(R) := {x ∈ R : x∗ = −x}; the elements of
H(R) are called symmetric and the elements of S(R) are called skew-symmetric. Following
Herstein [17, Ch. 6], H(R) will denote the ring generated by the symmetric elements of
R.
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An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) for
all x, y ∈ R. For a fixed element a ∈ R, a mapping x 7→ [a, x] is called inner derivation
induced by ′a′. An additive map d is called a Jordan derivation if d(x2) = d(x)x + xd(x)
for all x ∈ R. Obviously, every derivation is a Jordan derivation but the converse need not
be true (see [4, Example 3.2.1]). Moreover, the question that “when a Jordan derivation is
a derivation?" caused a new and significant area of research (see [3,9,10,18,27]). In 1957,
Herstein [18] showed that for 2-torsion free prime rings , every Jordan derivation is an
ordinary derivation. Later, Bres̆ar and Vukman [9] gave a brief and elegant proof of this
result. In the same year, Bres̆ar [10] showed that for a rather wide class of rings, namely
semiprime rings with 2-torsion free condition, every Jordan derivation is a derivation.
Thenceforth a considerable amount of results has been proved in this direction.

Let R be a ∗-ring. An additive mapping d : R → R is called a ∗-derivation if d(xy) =
d(x)y∗ +xd(y) for all x, y ∈ R and is called a Jordan ∗-derivation if d(x2) = d(x)x∗ +xd(x)
for all x ∈ R. The notions of ∗-derivation and Jordan ∗-derivation are first mentioned in
[11]. Note that the mapping x → ax∗ − xa, where a is a fixed element of R, is a Jordan ∗-
derivation which is known as inner Jordan ∗-derivation. The study of Jordan ∗-derivations
has been originated from the problem of representability of quadratic forms by bilinear
forms (see [25,26]). Since then there has been a significant interest in the study of algebraic
structure of Jordan ∗-derivations in rings and algebras, for a good cross-section we refer
the reader to [2, 12,21,22]. For further generalizations and recent results, see [13].

Let S be a subset of R, a mapping f is called centralizing (resp. commuting) on
S, if [f(x), x] ∈ Z(R) (resp. [f(x), x] = 0) for all x ∈ S. The study of commuting and
centralizing mappings goes back to 1955, when Divinsky [16] proved that a simple artinian
ring is commutative if it admits a commuting nontrivial automorphism. In this line of
investigation, Posner [24] proved another remarkable result which states that if there exists
a nonzero centralizing derivation on R, then R must be commutative. Motivated by the
centralizing and commuting mappings, Ali and Dar [1] introduced ∗-centralizing and ∗-
commuting mappings and defined as follows: a mapping f is called ∗-centralizing (resp.
∗-commuting) on a set S if [f(x), x∗] ∈ Z(R) (resp. [f(x), x∗] = 0) for all x ∈ S.

There has been a rising literature on the investigation of centrally extended mappings
in rings under various settings; for e.g. see [6], [14], [15], [23]. Continuing in this line
of investigation, in this paper we introduce centrally extended Jordan derivations and
give examples to show the existence of these maps in a 2-torsion free prime rings. We
also show that there exists no nonzero centrally extended Jordan derivation δ on a 2-
torsion free noncommutative prime ring (resp. prime ring with involution ′∗′) satisfying
[δ(x), x] ∈ Z(R) (resp. [δ(x), x∗] ∈ Z(R)) for all x ∈ R, unless R is an order in a central
simple algebra of dimension 4 over its center. Finally, we give the notion of centrally
extended Jordan ∗-derivation and provide the analogous studies.

2. Preliminaries
By s4, we denote the standard identity in four noncommuting variables, which is defined

as follows:
s4(x1, x2, x3, x4) =

∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4),

where S4 is the symmetric group of degree 4 and (−1)σ is the sign of permutation σ ∈ S4. It
is known by the standard PI-theory that, a prime ring R satisfying s4 can be characterized
in a number of ways, as follows:

Lemma 2.1. [8, Lemma 1] Let R be a prime ring with extended centroid C. Then the
following statements are equivalent:

(i) R satisfies s4.
(ii) R is commutative or R embeds into M2(F ), for a field F.
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(iii) R is algebraic of bounded degree 2 over C (i.e., for any a ∈ R, there exists a
polynomial x2 + αx + β ∈ C[x] satisfied by a).

(iv) R satisfies [[x2, y], [x, y]].

Lemma 2.2. [1, Lemma 2.2] Let R be a 2-torsion free semiprime ring with involution
′∗′. If an additive self-mapping f of R satisfies [f(x), x∗] ∈ Z(R) for all x ∈ R, then
[f(x), x∗] = 0 for all x ∈ R.

Lemma 2.3. [5, Proposition 2.1.7 (ii)] Let R be a prime ring, Qmr(R) be the maximal
right ring of quotients of R and D be the set of all right dense ideals of R. Then for all
q ∈ Qmr(R), there exists J ∈ D such that qJ ⊆ R.

Lemma 2.4. [7, Proposition 3.1] Let R be a 2-torsion free semiprime ring and U be a
Jordan subring of R. If an additive self-mapping f : R → R satisfies [f(x), x] ∈ Z(R) for
all x ∈ U, then [f(x), x] = 0 for all x ∈ U.

Lemma 2.5. [7, Theorem 3.2] Let R be a prime ring. If an additive mapping F : R → R
is commuting on R, then there exists λ ∈ C and an additive ξ : R → C, such that
F (x) = λx + ξ(x) for all x ∈ R.

Lemma 2.6. [17, Theorem 6.5.1] If R is a semiprime ring, then H(R) is semiprime,
where H(R) is the ring generated by all symmetric elements in R.

Lemma 2.7. [17, Theorem 6.5.3] If R is a semiprime ring, then Z(H(R)) ⊆ Z(R).

Lemma 2.8. [19, Lemma 2] If R is a semiprime ring and [S(R)2, S(R)2] = (0), then R
satisfies s4.

Lemma 2.9. [20, Theorem 3] Let R be a prime ring with involution ′∗′ and center Z(R).
If n be a fixed natural number such that xn ∈ Z(R) for all x ∈ H(R), then R satisfies s4.

Lemma 2.10. [20, Theorem 7] Let R be a prime ring with involution ′∗′ and center Z(R).
If d is a nonzero derivation on R such that d(x)x + xd(x) ∈ Z(R) for all x ∈ S(R), then
R satisfies s4.

Lemma 2.11. [27, Lemma 1.3] Let R be a semiprime ring and a ∈ R some fixed element.
If a[x, y] = 0 for all x, y ∈ R, then there exists an ideal I of R such that a ∈ I ⊆ Z(R)
holds.

3. Results on centrally extended Jordan derivations
This section deals with the study of centrally extended Jordan derivations of rings. In

fact, we characterize 2-torsion free noncommutative prime rings admitting CE−Jordan
derivations. Recently, Bell and Daif [6] introduced centrally extended derivations which
are obviously a generalization of derivations; and they discussed the existence of these
mappings in rings. Accordingly, a self-mapping d of R is called a centrally extended
derivation if d(x + y) − d(x) − d(y) ∈ Z(R) and d(xy) − d(x)y − xd(y) ∈ Z(R) for all
x, y ∈ R. Motivated by this, we now introduce a finer notion than centrally extended
derivation, and call a centrally extended Jordan derivation, as follows:

Definition 3.1. A mapping δ : R → R that satisfies

δ(x + y) − δ(x) − δ(y) ∈ Z(R), (A)

δ(x ◦ y) − δ(x) ◦ y − x ◦ δ(y) ∈ Z(R) (B)
for all x, y ∈ R, is called a centrally extended Jordan derivation of R. We shall abbreviate
this map as CE−Jordan derivation.
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Example 3.2. Let R = M2(Z) × Z be a ring and define a mapping δ : R → R by

δ

((
a b
c d

)
, x

)
=

((
0 −b
c 0

)
, 1

)
.

Then, it is straightforward to check that δ is a CE−Jordan derivation of R.

Remark 3.3. If R is a 2-torsion free noncommutative prime ring, then it is not difficult
to see that an additive map δ : R → R is a CE−Jordan derivation if and only if δ(x2) −
δ(x)x − xδ(x) ∈ Z(R) for all x ∈ R. It is natural to ask whether a CE−Jordan derivation
can be a CE−derivation or a Jordan derivation? In the following counter-example, we
show that in case R is a noncommutative prime ring, the above statement is not always
true:
Let Z be the ring of integers and

R =
{(

a b
c d

)
| a, b, c, d ∈ Z

}
be a noncommutative prime ring. Then a mapping δ : R → R such that

δ

(
a b
c d

)
=

(
0 b
b 0

)
is a CE−Jordan derivation, but neither a CE−derivation nor a Jordan derivation.

We begin with the following lemma:

Lemma 3.4. Let R be a 2-torsion free ring with no nonzero central ideal. If δ is a
CE−Jordan derivation of R, then δ is additive.

Proof. Let δ be a CE−Jordan derivation of R. In view of condition (A), for any x, y, z ∈
R, we have

δ(x + y) = δ(x) + δ(y) + cδ(x,y,+), (3.1)
where cδ(x,y,+) ∈ Z(R). There exists some cδ(z,x+y,◦) ∈ Z(R) such that

δ(z ◦ (x + y)) = δ(z) ◦ (x + y) + z ◦ δ(x + y) + cδ(z,x+y,◦)

= δ(z) ◦ x + δ(z) ◦ y + z ◦ (δ(x) + δ(y) + cδ(x,y,+)) + cδ(z,x+y,◦)

= δ(z) ◦ x + δ(z) ◦ y + z ◦ δ(x) + z ◦ δ(y) + 2zcδ(x,y,+)

+cδ(z,x+y,◦). (3.2)
Another way of looking at it is,

δ(z ◦ (x + y)) = δ(z ◦ x + z ◦ y)
= δ(z ◦ x) + δ(z ◦ y) + cδ(z◦x,z◦y,+)

= δ(z) ◦ x + z ◦ δ(x) + cδ(z,x,◦) + δ(z) ◦ y + z ◦ δ(y)
+cδ(z,y,◦) + cδ(z◦x,z◦y,+), (3.3)

where cδ(z◦x,z◦y,+), cδ(z,x,◦) and cδ(z,y,◦) are the central elements.
Comparing (3.2) and (3.3), we conclude that 2zcδ(x,y,+) + cδ(z,x+y,◦) = cδ(z◦x,z◦y,+) +

cδ(z,x,◦) +cδ(z,y,◦) ∈ Z(R). It forces that Rcδ(x,y,+) ⊆ Z(R), where cδ(x,y,+) is a fixed central
element in R, but R has no nonzero central ideal, therefore Rcδ(x,y,+) = (0). Likewise, we
get cδ(x,y,+)R = (0). It implies that cδ(x,y,+) ∈ A(R), the annihilator of R. But A(R) is
always a central ideal in R, hence our hypothesis forces A(R) = (0) and consequently
cδ(x,y,+) = 0. From (3.1), we get δ(x + y) = δ(x) + δ(y) for all x, y ∈ R, as desired. □
Corollary 3.5. Let R be a 2-torsion free noncommutative prime ring. If δ is a CE−Jordan
derivation of R, then δ is additive.

Now, we are in position to state and prove the first result of this paper.
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Theorem 3.6. Let R be a 2-torsion free noncommutative prime ring. If R admits a
CE−Jordan derivation δ : R → R such that [δ(x), x] ∈ Z(R) for all x ∈ R, then either
δ = 0 or R is an order in a central simple algebra of dimension at most 4 over its center.

Proof. By the hypothesis, we have [δ(x), x] ∈ Z(R) for all x ∈ R. In view of Corollary
3.5, δ is additive and hence from Lemma 2.4, it follows that

[δ(x), x] = 0 for all x ∈ R. (3.4)

Since δ is an additive and commuting function, by Lemma 2.5, there exists λ ∈ C (extended
centroid of R) and an additive mapping σ : R → C such that

δ(x) = λx + σ(x) for all x ∈ R. (3.5)

Polarizing (3.4), we have

[δ(x), y] + [δ(y), x] = 0 for all x, y ∈ R.

Replacing y by x ◦ y, we get

[δ(x), x ◦ y] + [δ(x ◦ y), x] = 0 for all x, y ∈ R.

It implies
[δ(x), x ◦ y] + [δ(x) ◦ y, x] + [x ◦ δ(y), x] = 0 for all x, y ∈ R.

Using (3.5) in the preceding relation to get

[λx + σ(x), x ◦ y] + [(λx + σ(x)) ◦ y, x] + [x ◦ (λy + σ(y)), x] = 0,

that is

[λx, x◦y]+[λ(x◦y), x]+[σ(x)◦y, x]+[λ(x◦y), x]+[x◦σ(y), x] = 0 for all x, y ∈ R. (3.6)

It follows that R satisfies

λ[x, x ◦ y] + λ[x ◦ y, x] + 2σ(x)[y, x] + λ[x ◦ y, x] = 0, (3.7)

and so
2σ(x)[y, x] + λ[x ◦ y, x] = 0 for all x, y ∈ R. (3.8)

Further, it implies
2σ(x)[y, x] + λ[y, x2] = 0 for all x, y ∈ R,

and a fortiori
λ[[y, x2], [y, x]] = 0 for all x, y ∈ R.

It implies that either λ = 0 or [[y, x2], [y, x]] = 0 for all x, y ∈ R. By Lemma 2.1, the latter
case is equivalent to the s4 identity and R is assumed to be noncommutative, therefore R
is an order in a central simple algebra of dimension at most 4 over Z(R).

On the other hand, let us assume that λ = 0. Then from (3.8), we have

2σ(x)[y, x] = 0 for all x, y ∈ R.

Using the restriction on torsion of R, we have

σ(x)[y, x] = 0 for all x, y ∈ R.

Since R is a prime ring, for each x ∈ R, either σ(x) = 0 or [R, x] = (0). Put U = {x ∈
R : σ(x) = 0} and V = {x ∈ R : [R, x] = (0)}. Therefore, we note that R can be written
as the set-theoretic union of the additive subgroups U and V, which is not possible. Thus,
we have either R = U or R = V. It implies that either σ(x) = 0 for all x ∈ R or [R, x] = (0)
for all x ∈ R. If σ(x) = 0 for all x ∈ R, then from (3.5), we find δ(x) = 0 for all x ∈ R. In
the other case R is a commutative ring; which leads a contradiction. This completes the
proof. □
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Theorem 3.7. Let R be a 2-torsion free noncommutative prime ring with involution ′∗′

that admits a CE−Jordan derivation δ : R → R such that [δ(x), x∗] ∈ Z(R) for all x ∈ R.
Then either δ = 0 or R is an order in a central simple algebra of dimension at most 4
over its center.

Proof. Let us assume that [δ(x), x∗] ∈ Z(R) for all x ∈ R. With the aid of Corollary 3.5
and Lemma 2.2, we have

[δ(x), x∗] = 0 for all x ∈ R. (3.9)
Applying involution in (3.9), we get

[δ(x)∗, x] = 0 for all x ∈ R. (3.10)
In view of Lemma 2.5, there exists λ ∈ C and an additive mapping σ : R → C such that

δ(x)∗ = λx + σ(x) for all x ∈ R.

It implies
δ(x) = λ∗x∗ + σ(x)∗ for all x ∈ R. (3.11)

We now split the proof into two parts, as follows:
Case 1. Suppose that there exists a non-zero element c ∈ C such that c∗ 6= c. Let
c∗ − c = zc. Clearly z∗

c = −zc 6= 0. Also zc ∈ C. By Lemma 2.3, there exists a nonzero
ideal J of R such that zcJ ⊆ R. Polarizing (3.9), we get

[δ(x), y∗] + [δ(y), x∗] = 0 for all x, y ∈ R. (3.12)
Replacing y by y ◦ r in (3.12), where r ∈ J, we get

[δ(x), (y ◦ r)∗] + [δ(y ◦ r), x∗] = 0. (3.13)
Therefore, we have

[δ(x), y∗ ◦ r∗] + [δ(y) ◦ r, x∗] + [y ◦ δ(r), x∗] = 0 for all x, y ∈ R, r ∈ J. (3.14)
In particular for y = h ∈ H(R) in (3.14), we get

[δ(x), r∗ ◦ h] + [r ◦ δ(h), x∗] + [δ(r) ◦ h, x∗] = 0.

Using (3.11) in the above expression, we obtain
λ∗[x∗, r∗ ◦ h] + λ∗[r∗ ◦ h, x∗] + λ∗[r ◦ h, x∗] + 2σ(r)∗[h, x∗] + 2σ(h)∗[r, x∗] = 0.

It implies
λ∗[r ◦ h, x∗] + 2σ(r)∗[h, x∗] + 2σ(h)∗[r, x∗] = 0 for all x ∈ R, r ∈ J, h ∈ H(R). (3.15)

Replacing r by zcr = rzc in (3.15), we get
λ∗[r ◦h, x∗]zc +2σ(rzc)∗[h, x∗]+2σ(h)∗[r, x∗]zc = 0 for all x ∈ R, r ∈ J, h ∈ H(R). (3.16)

Multiply (3.15) by zc and comparing with (3.16), we obtain
(σ(rzc)∗ − σ(r)∗zc)[h, x∗] = 0.

Therefore primeness of R implies that either [h, x∗] = 0 for all h ∈ H(R), x ∈ R or
σ(rzc)∗ = σ(r)∗zc. In the former case, R satisfies s4 identity by Lemma 2.9. But R is
noncommutative, therefore R is an order in a central simple algebra of dimension at most
4 over its center. In the latter case, we have

σ(rzc)∗ = σ(r)∗zc. (3.17)
Replacing r by rzc in (3.14), we obtain

[δ(x), y∗ ◦ r∗]z∗
c + [δ(y) ◦ r, x∗]zc + [y ◦ δ(rzc), x∗] = 0.

It implies
−[δ(x), y∗ ◦ r∗]zc + [y ◦ δ(rzc), x∗] + [δ(y) ◦ r, x∗]zc = 0 for all x, y ∈ R, r ∈ J. (3.18)
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Multiplying (3.14) by zc and then adding it into (3.18), we find
[y ◦ δ(rzc), x∗] + [y ◦ δ(r), x∗]zc + 2[δ(y) ◦ r, x∗]zc = 0 for all x, y ∈ R, r ∈ J,

which by virtue of (3.11), leads to
[y ◦ (λ∗r∗z∗

c + σ(rzc)∗), x∗] + [y ◦ (λ∗r∗ + σ(r)∗), x∗]zc + 2[δ(y) ◦ r, x∗]zc = 0.

An application of (3.17) yields
[y ◦ (−λ∗r∗ + σ(r)∗), x∗]zc + [y ◦ (λ∗r∗ + σ(r)∗), x∗]zc + 2[δ(y) ◦ r, x∗]zc = 0.

It follows that
2[y ◦ σ(r)∗, x∗]zc + 2[δ(y) ◦ r, x∗]zc = 0 for all x, y ∈ R, r ∈ J.

Since zc 6= 0, it implies that
2(2σ(r)∗[y, x∗] + [r ◦ δ(y), x∗]) = 0 for all x, y ∈ R, r ∈ J.

Using 2-torsion freeness of R and (3.11), we have
2σ(r)∗[y, x∗] + [r ◦ (λ∗y∗ + σ(y)∗), x∗] = 0.

It implies
2σ(r)∗[y, x∗] + λ∗[r ◦ y∗, x∗] + 2σ(y)∗[r, x∗] = 0 for all x, y ∈ R, r ∈ J. (3.19)

In particular, for y ∈ J, we replace y by yzc and get
2σ(r)∗[y, x∗]zc − λ∗[r ◦ y∗, x∗]zc + 2σ(yzc)∗[r, x∗] = 0.

Using (3.17), we have
2σ(r)∗[y, x∗]zc − λ∗[r ◦ y∗, x∗]zc + 2σ(y)∗[r, x∗]zc = 0. (3.20)

Multiplying (3.19) by zc and then subtract it from (3.20), we conclude that
λ∗[r ◦ y∗, x∗]zc = 0 for all x ∈ R, r, y ∈ J.

By the primeness of R we have either [r ◦ y, x] = 0 or λ = 0. Since R is noncommutative,
the first situation cannot occur; consequently λ = 0. Thus δ(x) = σ(x)∗ for all x ∈ R.
From relation (B), we have

σ(x ◦ y)∗ − σ(x)∗ ◦ y − x ◦ σ(y)∗ ∈ Z(R) for all x, y ∈ R,

that is
2σ(x)∗[y, x] = 0 for all x, y ∈ R.

Using 2-torsion freeness hypothesis, we find
σ(x)∗[y, x] = 0 for all x, y ∈ R.

Further proceeding as Theorem 3.6, we are done in this case.
Case 2. Let c∗ = c for all c ∈ C. Polarizing (3.9), we have

[δ(x), y∗] + [δ(y), x∗] = 0 for all x, y ∈ R. (3.21)
Replacing y by h ◦ k, where k ∈ S(R) and h ∈ H(R), we have

−[δ(x), h ◦ k] + [δ(h) ◦ k, x∗] + [h ◦ δ(k), x∗] = 0. (3.22)
In view of (3.11), it follows that

−[λx∗, h ◦ k] + [(λh + σ(h)) ◦ k, x∗] + [h ◦ (−λk + σ(k)), x∗] = 0.

It implies
−λ[x∗, h ◦ k] + 2σ(h)[k, x∗] + 2σ(k)[h, x∗] = 0 for all x ∈ R, h ∈ H(R), k ∈ S(R). (3.23)

Replacing x by k in (3.23), we find
λ[k2, h] − 2σ(k)[h, k] = 0 for all h ∈ H(R), k ∈ S(R). (3.24)
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Taking involution on both side in (3.24) and using z∗ = z for all z ∈ C, we find
λ[k2, h] + 2σ(k)[h, k] = 0 for all h ∈ H(R), k ∈ S(R). (3.25)

Adding (3.25) and (3.24), we obtain
2λ[k2, h] = 0 for all h ∈ H(R), k ∈ S(R). (3.26)

Thereby 2-torsion freeness and primeness of R implies that either λ = 0 or [k2, h] = 0
for all k ∈ S(R) and h ∈ H(R). Latter case implies dh(k)k + kdh(k) = 0 for all k ∈ S(R),
where dh is the inner derivation induced by h. In view of Lemma 2.10, R satisfies s4 or
dh = 0. Therefore either R satisfies s4 or H(R) ⊆ Z(R). By Lemma 2.9, in each of the
situation, R satisfies s4. But R is noncommutative, hence R is an order in a central simple
algebra of dimension at most 4 over its center.

We now consider λ = 0. Using (B) and (3.11), we have
σ(x ◦ y) − σ(x) ◦ y − x ◦ σ(y) ∈ Z(R) for all x, y ∈ R.

Therefore
2σ(x)[y, x] = 0 for all x, y ∈ R.

Further proceeding as the proof of Theorem 3.6, we get the conclusion. □

4. Results on centrally extended Jordan ∗-derivation
Let R be a ring with involution ′ ∗′ . In [14], El-Deken and Nabiel introduced the notion

of centrally extended ∗-derivation and investigated the case when centrally extended ∗-
derivations are ∗-derivations. More specifically, they established the following result: If
R is a semiprime ∗-ring with no nonzero central ideals, then every centrally extended
∗-derivation d on R is a ∗-derivation. Motivated by the concept of centrally extended
∗-derivations, we now introduce the notion of centrally extended Jordan ∗-derivation as
follows:

Definition 4.1. A mapping δ : R → R that satisfies
δ(x + y) − δ(x) − δ(y) ∈ Z(R), (C)

δ(x ◦ y) − δ(x)y∗ − xδ(y) − δ(y)x∗ − yδ(x) ∈ Z(R) (D)
for all x, y ∈ R is called centrally extended Jordan ∗-derivation of R. We shall abbreviate
this map as CE−Jordan ∗-derivation.

Example 4.2. Let R =
{  0 a b

0 0 c
0 0 0

 : a, b, c ∈ Z
}

be a ring. Define mapping δ, ∗ :

R → R by

δ

 0 a b
0 0 c
0 0 0

 =

 0 0 k
0 0 0
0 0 0

 ,

 0 a b
0 0 c
0 0 0

∗

=

 0 c b
0 0 a
0 0 0


where k is a fixed integer. Then, it is straight forward to check that δ is a CE−Jordan
∗-derivation of R, with involution ′∗′ of R.

Remark 4.3. If R is a 2-torsion free noncommutative prime ring with involution ′∗′, then
an additive map d is a CE−Jordan ∗-derivation if and only if d(x2)−d(x)x∗−xd(x) ∈ Z(R)
for all x ∈ R. It is observed that, in this case, a CE−Jordan ∗-derivation is not necessarily
a Jordan ∗-derivation or CE ∗-derivation, for example:

Let Z be the ring of integers and R =
{(

a b
c d

)
| a, b, c, d ∈ Z

}
, a prime ring. Define

a mapping ∗ : R → R by
(

a b
c d

)∗
=

(
d −b

−c a

)
, which is an involution of R. If
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δ : R → R be a mapping such that δ

(
a b
c d

)
=

(
a 0
0 a

)
, then δ is a CE−Jordan

∗-derivation but neither Jordan ∗-derivation nor CE ∗-derivation.

In this section our focus will be on CE−Jordan ∗-derivations acting on 2-torsion free
noncommutative prime rings. More specifically, we prove the CE−Jordan ∗-derivation
analogy of the above results. We begin our discussions with the following lemma.

Lemma 4.4. Let R be a 2-torsion free semiprime ring with involution ′∗′ and with no
nonzero central ideal. If δ is a CE−Jordan ∗-derivation of R, then δ is additive.

Proof. For any x, y, z ∈ R, in view of (C), it follows that there exists cδ(x,y,+) ∈ Z(R)
such that

δ(x + y) = δ(x) + δ(y) + cδ(x,y,+), (4.1)
Using (D), we have

δ(z ◦ (x + y)) = δ(z)(x∗ + y∗) + δ(x + y)z∗ + (x + y)δ(z)
+zδ(x + y) + cδ(z,x+y,◦)

= δ(z)(x∗ + y∗) +
(

δ(x) + δ(y) + cδ(x,y,+)

)
z∗ + (x + y)

δ(z) + z

(
δ(x) + δ(y) + cδ(x,y,+)

)
+ cδ(z,x+y,◦)

= δ(z)(x∗ + y∗) + (δ(x) + δ(y))z∗ + (x + y)δ(z)
+z(δ(x) + δ(y)) + cδ(x,y,+)(z + z∗) + cδ(z,x+y,◦), (4.2)

where cδ(z,x+y,◦), cδ(x,y,+) are central elements. Computing in a different manner, we get

δ(z ◦ (x + y)) = δ(z ◦ x + z ◦ y)
= δ(zx + xz) + δ(zy + yz) + cδ(z◦x,z◦y,+)

=
(

δ(z)x∗ + δ(x)z∗ + zδ(x) + xδ(z) + cδ(z,x,◦)

)
+

(
δ(z)y∗ + δ(y)z∗ + z

δ(y) + yδ(z) + cδ(z,y,◦)

)
+ cδ(z◦x,z◦y,+), (4.3)

where cδ(z◦x,z◦y,+), cδ(z,x,◦), cδ(z,y,◦) are central elements.
Comparing (4.2) and (4.3) to conclude (z +z∗)cδ(x,y,+) +cδ(z,x+y,◦) = cδ(z,x,◦) +cδ(z,y,◦) +

cδ(z◦x,z◦y,+). It forces (z +z∗)cδ(x,y,+) ∈ Z(R) for all z ∈ R, where cδ(x,y,+) is a fixed central
element in Z(R). Replacing z by h, where h ∈ H(R), we have 2hcδ(x,y,+) ∈ Z(R). Using
2-torsion freeness hypothesis, we get

hcδ(x,y,+) ∈ Z(R) for all h ∈ H(R). (4.4)

It implies
cδ(x,y,+)[h, u] = 0 for all h ∈ H(R), u ∈ R.

From the last expression, we can find

cδ(x,y,+)[h, u]h′ + cδ(x,y,+)h[h′
, u] = 0 for all h, h

′ ∈ H(R), u ∈ R.

Therefore, it follows that

cδ(x,y,+)[H(R), u] = (0) for all u ∈ R, (4.5)

where H(R) is the ring generated by H(R). In particular

cδ(x,y,+)[H(R), H(R)] = (0).
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In view of Lemma 2.6, H(R) is also a semi prime ring. Now, we shall first show that
cδ(x,y,+) ∈ H(R). Suppose that cδ(x,y,+) 6∈ H(R), i.e., c∗

δ(x,y,+) 6= cδ(x,y,+). Then (c∗
δ(x,y,+) −

cδ(x,y,+))k ∈ H(R) for all k ∈ S(R). Using (4.4), we get

cδ(x,y,+)(c∗
δ(x,y,+) − cδ(x,y,+))k ∈ Z(R) for all k ∈ S(R). (4.6)

Applying involution, we have

c∗
δ(x,y,+)(c

∗
δ(x,y,+) − cδ(x,y,+))k ∈ Z(R) for all k ∈ S(R). (4.7)

Subtracting (4.6) from (4.7), we get

(c∗
δ(x,y,+) − cδ(x,y,+))2k ∈ Z(R) for all k ∈ S(R). (4.8)

Using (4.4), we find c∗
δ(x,y,+)h ∈ Z(R) for all h ∈ H(R). An easy consequence of this is

(c∗
δ(x,y,+) − cδ(x,y,+))h ∈ Z(R) for all h ∈ H(R). (4.9)

Since cδ(x,y,+) ∈ Z(R), left multiplying (4.9) by c∗
δ(x,y,+) − cδ(x,y,+) in order to find

(c∗
δ(x,y,+) − cδ(x,y,+))2h ∈ Z(R) for all h ∈ H(R). (4.10)

Adding (4.8) and (4.10), we have

(c∗
δ(x,y,+) − cδ(x,y,+))2(h + k) ∈ Z(R) for all h ∈ H(R), k ∈ S(R). (4.11)

It yields
(c∗

δ(x,y,+) − cδ(x,y,+))2R ⊆ Z(R).
Since R does not contain non-zero central ideals, thus we have (c∗

δ(x,y,+) − cδ(x,y,+))2 = 0,

where c∗
δ(x,y,+) − cδ(x,y,+) ∈ Z(R). The fact that center of a semiprime ring has no nonzero

nilpotent elements, forces c∗
δ(x,y,+)−cδ(x,y,+) = 0, a contradiction to our assumption. Hence

cδ(x,y,+) ∈ H(R).
Therefore in view of Lemma 2.11, our expression cδ(x,y,+)[H(R), H(R)] = (0) implies

that there exists an ideal I ⊆ H(R) such that cδ(x,y,+) ∈ I ⊆ Z(H(R)). Using Lemma
2.7, we get cδ(x,y,+) ∈ I ⊆ Z(R). As R does not contain non-zero central ideals, we get
cδ(x,y,+) = 0; and hence δ is additive, by (4.1). It completes the proof. □

Corollary 4.5. Let R be a 2-torsion free noncommutative prime ring with involution ′∗′.
If δ is a CE−Jordan ∗-derivation of R, then δ is additive.

Theorem 4.6. Let R be a 2-torsion free noncommutative prime ring with involution ′∗′

that admits a CE−Jordan ∗-derivation δ : R → R such that [δ(x), x] ∈ Z(R) for all x ∈ R.
Then either δ = 0 or R is an order in a central simple algebra of dimension at most 4
over its center.

Proof. Let us assume that [δ(x), x] ∈ Z(R) for all x ∈ R. By Lemma 2.4 and Lemma 4.4,
we conclude that

[δ(x), x] = 0 for all x ∈ R. (4.12)
Polarizing (4.12), we have

[δ(x), y] + [δ(y), x] = 0 for all x, y ∈ R. (4.13)

Replacing y by k2, where k ∈ S(R) in (4.13), we arrive at

[δ(x), k2] + [−δ(k)k + kδ(k), x] = 0 for all x ∈ R, k ∈ S(R). (4.14)

Since δ is a commuting and additive function thereby using Lemma 2.5, there exists λ ∈ C
and an additive mapping σ : R → C such that

δ(x) = λx + σ(x) for all x ∈ R. (4.15)
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With this, it follows from (4.14) that

[λx, k2] + [−(λk + σ(k))k + k(λk + σ(k)), x] = 0 for all x ∈ R, k ∈ S(R).
In fact, we have

λ[x, k2] = 0 for all x ∈ R, k ∈ S(R). (4.16)
Since the center of a prime ring contains no proper zero divisors, it follows that either λ = 0
or k2 ⊆ Z(R) for all k ∈ S(R). In the latter case, we have 0 = [k2, x] = [k, x]k + k[k, x]
for all x ∈ R and k ∈ S(R). It can be seen as dx(k)k + kdx(k) = 0 for all k ∈ S(R),
where dx(k) = [k, x] is the inner derivation induced by x ∈ R. In view of Lemma 2.10,
either R satisfies s4 or dx(t) = 0 for all t ∈ R. Clearly, dx(t) = [x, t] = 0 for all x, t ∈ R
leads a contradiction. Thus we conclude that R is an order in a central simple algebra of
dimension at most 4 over its center.

Now, if λ = 0, then from (4.15), we have δ(x) = σ(x) for all x ∈ R. In view of (D) and
torsion condition on R, it implies

σ(x2) − σ(x)x∗ − xσ(x) ∈ Z(R) for all x ∈ R,

and so
σ(x)[x + x∗, y] = 0 for all x, y ∈ R.

Using Brauer’s trick, we have either σ(x) = 0 for all x ∈ R or x + x∗ ∈ Z(R) for all x ∈ R.
If σ = 0, then by (4.15) δ = 0, as desired. Now if x + x∗ ∈ Z(R) for all x ∈ R, then
replacing x by h ∈ H(R), we get H(R) ⊆ Z(R). Hence by Lemma 2.9, we are done. □

Theorem 4.7. Let R be a 2-torsion free noncommutative prime ring with involution ′∗′

that admits a CE−Jordan ∗-derivation δ : R → R such that [δ(x), x∗] ∈ Z(R) for all
x ∈ R. Then either δ = 0 or R is an order in a central simple algebra of dimension at
most 4 over its center.

Proof. Let us consider [δ(x), x∗] ∈ Z(R) for all x ∈ R. In light of Lemma 2.2 and Lemma
4.4, we may infer that

[δ(x), x∗] = 0 for all x ∈ R. (4.17)
This implies that

[δ(x)∗, x] = 0 for all x ∈ R. (4.18)
Using Lemma 2.5 in Eq. (4.18), there exists λ ∈ C and an additive mapping σ : R → C
such that

δ(x)∗ = λx + σ(x) for all x ∈ R,

and equivalently we have
δ(x) = λ∗x∗ + σ(x)∗ for all x ∈ R. (4.19)

Polarizing (4.17), we find
[δ(x), y∗] + [δ(y), x∗] = 0 for all x, y ∈ R.

Replacing y by k2 in the last expression, where k ∈ S(R), we get

[δ(x), k2] + [−δ(k)k + kδ(k), x∗] = 0.

Using (4.19), it yields

[λ∗x∗, k2] + [−(λ∗k∗ + σ(k))k + k(λ∗k∗ + σ(k)), x∗] = 0 for all x ∈ R, k ∈ S(R). (4.20)
Since λ ∈ C and σ(R) ⊆ C, we obtain

λ∗[x∗, k2] = 0 for all x ∈ R, k ∈ S(R).
Further, a similar demonstration that is given in the proof of Theorem 4.6 ensures the
conclusion. □
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[25] P. Šemrl, On Jordan ∗-derivations and an application, Colloq. Math. 59, 241-251,

1990.
[26] P. Šemrl, Quadratic functionals and Jordan ∗-derivations, Stud. Math. 97, 157-165,

1991.
[27] B. Zalar, On centralisers of semiprime rings, Comment. Math. Univ. Carolina. 32

(4), 609-614, 1991.


