
Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

e-ISSN: 2618-575X

Available online at www.dergipark.org.tr/en

INTERNATIONAL ADVANCED RESEARCHES

and

ENGINEERING JOURNAL

Journal homepage: www.dergipark.org.tr/en/pub/iarej

International

Open Access

Volume 06

Issue 01

April, 2022

Research Article

Job shop scheduling with genetic algorithm-based hyperheuristic approach

Canan Hazal Akarsu a,* and Tarık Küçükdeniz b
a Department of Industrial Engineering, Istanbul Esenyurt University, Istanbul, 34510, Turkey.
b Department of Industrial Engineering, Istanbul University – Cerrahpasa, Istanbul, 34320, Turkey.

 ARTICLE INFO ABSTRACT

Article history:

Received 22 November 2021

Accepted 21 March 2022

Published 15 April 2022

 Job shop scheduling problems are NP-hard problems that have been studied extensively in the

literature as well as in real-life. Many factories all over the world produce worth millions of dollars

with job shop type production systems. It is crucial to use effective production scheduling methods

to reduce costs and increase productivity. Hyperheuristics are fast-implementing, low-cost, and

powerful enough to deal with different problems effectively since they need limited problem-

specific information. In this paper, a genetic algorithm-based hyperheuristic (GAHH) approach is

proposed for job shop scheduling problems. Twenty-six dispatching rules are used as low-level

heuristics. We use a set of benchmark problems from OR-Library to test the proposed algorithm.

The performance of the proposed approach is compared with genetic algorithm, simulating

annealing, particle swarm optimization and some of dispatching rules. Computational experiments

show that the proposed genetic algorithm-based hyperheuristic approach finds optimal results or

produces better solutions than compared methods.

Keywords:
Dispatching rules

GA-based hyperheuristics
Genetic algorithms

Hyperheuristics,

Job shop scheduling

1. Introduction

Job shop scheduling problem has been widespread and

tough problem in literature that has been raised in recent

60 years [1]. There are many factories that make

production worth millions of dollars with job shop type

production system all around the world. It is really

important to employ effective production scheduling

methods in order to decrease costs and increase labor

productivity and profitability [2]. The aim of this paper is

to propose an effective GA-based hyperheuristic approach

for JSSPs.

It has been accepted that the first studies, on which job

shop scheduling was built, started in 1950s [3]. Johnson

[4]’s algorithm, which was improved for double-machine

flow type scheduling problem, was adapted to job shop

scheduling problem by Jackson [5]. During 1950s,

polynomial time algorithms directed towards the solution

of the problem of job shop scheduling continued to be

improved. The studies conducted in 1960s focused on

reaching optimal result by using enumerative algorithms.

Disjunctive graphs illustration was firstly proposed by Roy

and Sussmann [6] in 1964 and the first disjunctive graph-

based enumerative approach was implemented by Balas

[7] in 1969. As well as being the most common

enumerative approach, branch and bound algorithm’s area

of usage has been limited due to the fact that optimal

solution can’t be found for many problems. The

complexity of problem has been the focal point of the

studies during 1970s and the middle of 1980s. It has been

discussed that only small parts of job shop scheduling

problems could be solved with polynomial time algorithms

and the majority of them belongs to NP-hard class. This

situation has caused approximate solution methods to gain

importance. Dispatching rules are the first approximate

solution methods that have been improved. Between 1988

and 1991, innovative approximate solution methods [8]

such as bottleneck algorithm and in 1990s, hybrid methods

were developed [3]. While heuristic methods aim to

produce appropriate solutions within reasonable

calculation time, they don’t guarantee optimal solution [9].

The reasons why the popularity of heuristic methods has

increased since 1991 are the fact that their calculation

power is strong and they have conversion features [10].

Dispatching rules, which are also called as priority rules or

scheduling rules in literature, are the rules that are used for

the solutions of scheduling problems because of its ease of

implementation, quick reaction to sudden changes and

production of valid solutions [11]. In literature, selection

* Corresponding author. Tel.: +90 444 9 123/1325; Fax: +90 212 699 09 90.

E-mail addresses: hazalakarsu@esenyurt.edu.tr (C.H. Akarsu), tarik.kucukdeniz@gmail.com (T. Küçükdeniz)

ORCID: 0000-0003-1692-7727 (C.H. Akarsu), 0000-0002-6670-1809 (T. Küçükdeniz)

DOI: 10.35860/iarej.1018604
© 2022, The Author(s). This article is licensed under the CC BY-NC 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/).

http://www.dergipark.org.tr/en
http://www.dergipark.org.tr/en/pub/iarej
mailto:hazalakarsu@esenyurt.edu.tr
mailto:tarik.kucukdeniz@gmail.com
https://doi.org/10.35860/iarej.1018604
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-1692-7727
https://orcid.org/0000-0002-6670-1809

017 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

of dispatching rules to be used is carried out with two

methods: steady state simulation and artificial intelligence

methods [11]. The selection of dispatching rules to be used

within this study was provided by GA-based

hyperheuristic approach.

Hyperheuristic approaches are high-level heuristics that

look for a good solution instead of looking for a direct

solution, by managing a series of low-level heuristics and

they need limited problem-specific information [12]. The

concept of hyperheuristic was first used to describe the

protocol including the use of different artificial

intelligence methods [13]. It was first described as

“heuristics to choose heuristics” in accordance with

combinatorial optimization as an independent concept in

2000 [14]. Burke et al. [13] divided hyperheuristics into

two, according to the nature of heuristic search space.

These are heuristic-selection that call for one of available

low-level heuristics and heuristic-generation that form

new heuristics by using available low-level heuristics [see

15–19]. Hyperheuristics can be classified depending on the

type of low-level heuristics (LLHs) used as “construction”

or “perturbation”. Hyperheuristics that use dispatching

rules as LLHs are included in construction class according

to the structure of low-level heuristics. In this paper, GA-

based hyperheuristic approach that is included in heuristic

selection-construction class was proposed for job shop

scheduling problems.

The aim of this paper is to propose an effective GA-

based hyperheuristic approach for job shop scheduling

problems. To the best of our knowledge, there are only few

studies using GA-based hyperheuristic for the solution of

the JSSP. This study is one of the few studies proposing a

GA-based hyperheuristic for job shop scheduling

problems. Other studies are given in Section 5. Unlike the

few similar studies in the literature, 26 dispatching rules

were used as low-level heuristics to provide an effective

GA-based hyperheuristic approach for job shop scheduling

problems.

2. Problem Statement

Job shop scheduling problem is described as qualifying

starting time of each operation making objective function

optimum by fulfilling precedence and capacity constraints

specified in advance for performing n operations in m

machines [20]. The number of possible schedules in JSSP

is (n!)m for m machines and n operations [21]. In a study

carried out by Lenstra and Rinnooy Kan [22], it was

proved that JSSP was included in NP-hard class in case of

availability of more than three machines. Relevant

calculation time increases exponentially along with the

increase in the size of the problem in order to obtain

optimal solution for the problems that are included in NP-

hard class. 𝐽 = {𝐽1, 𝐽2, … , 𝐽𝑛} is the set of jobs and 𝑀 =

{𝑀1, 𝑀2, … , 𝑀𝑚} is the set of machines. It is accepted that

each operation is performed only once in each machine.

Processing of a job 𝐽𝑗 in a machine 𝑀𝑖 is called as an

operation and the operation of a job is showed as 𝑂𝑖𝑗 . Each

job follows special sequence of machines by technological

constraints. Each job has its own sequence of machines

and it is independent from the sequence of other jobs. Each

𝑂𝑖𝑗 operation has a special processing time and this time is

shown as 𝑝𝑖𝑗 . All processing times are known and fixed.

Setup times and transfer times are integrated into

processing times.

In scheduling problems, a large number of complicated

and sometimes conflicting objective functions can be built.

Mellor [23] listed 27 scheduling problem objective

functions. Minimization of maximum completion time is

the first objective function used by the researchers in

1950s. Its academic and industrial use is common due to

the fact that its mathematical formulation is easy [3].

Mathematical formulation of general job shop scheduling

problem, which its objective function is the minimization

of maximum completion time is as follows [21]:

𝐶𝑚𝑎𝑥: maximum completion time (makespan)

𝑦𝑖𝑗: starting time of job 𝑗 on machine 𝑖

𝑝𝑖𝑗 : processing time of job 𝑗 on machine 𝑖

𝑁: set of all operations (𝑖, 𝑗) that must be performed on

𝑛 jobs.

A: set of all precedence constraints (𝑖, 𝑗) → (𝑘, 𝑗) that

require job 𝑗 to be processed on machine 𝑖 before it is

processed on machine 𝑘

min 𝐶𝑚𝑎𝑥

subject to

𝑦𝑘𝑗 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) → (𝑘, 𝑗) ∊ 𝐴 (1)

𝐶𝑚𝑎𝑥 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∊ 𝑁 (2)

𝑦𝑖𝑗 − 𝑦𝑖𝑙 ≥ 𝑝𝑖𝑙 𝑜𝑟 𝑦𝑖𝑙 − 𝑦𝑖𝑗 ≥ 𝑝𝑖𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑙), (𝑖, 𝑗) ∊ 𝑁 (3)

𝑦𝑖𝑗 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖, 𝑗) ∊ 𝑁 (4)

Constraints (1) ensure all precedence constraints (𝑖, 𝑗) →

 (𝑘, 𝑗) that require job 𝑗 to be processed on machine 𝑖

before it is processed on machine 𝑘 . Constraints (2)

ensure that maximum completion time is not exceeded.

Constraints (3) ensure that an operation cannot be

interrupted, once it begins. Constraints (4) ensure

nonnegativitiy of decision variables 𝑦𝑖𝑗 .

3. The GA Metaheuristic

The genetic algorithm (GA) developed by Holland [24]

is a general search strategy and optimization method

especially used in combinatorial optimization problems

[25]. Genetic algorithms are used in many fields such as

engineering, computer science, economy administration

and supply chain management [26]. GA approach for the

solution of scheduling problems was first developed by

Davis [27] for job shop scheduling problem. GA has

several advantageous features in comparison with other

metaheuristics [26]:

 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

018

• Flexibility of identification of constraints and

quality measures,

• The ability to work with continuous and discrete

variables,

• Ability of comprehensive search space,

• The ability to provide multiple optimal or good

solutions,

• Use of parallel calculation techniques to reduce

processing time.

Contrary to local search methods which handle one

feasible solution such as simulated annealing and tabu

search, GA uses population of solutions during search in

order to prevent early convergence to local minimum [25].

Each individual in the population is called as a

chromosome. Each chromosome consists of genes and

represents a feasible solution. Chromosomes are evaluated

with the calculation of fitness values. Crossover and

mutation operators are used to produce new generations.

Produced new generations are called as offspring. After

many produced generations, the population converges

with a solution that can be local or global optimum [28].

Since the time it was first developed, there have been

significant improvements in chromosome representation

of GA [29-31], crossover operator [32], mutation operator

[32, 33], selection operator [32, 34] and generation of an

initial population [35]. These developments have made

traditional GA stronger [26]. Cheung and Zhou [36]

proposed genetic algorithm and heuristic rule-based hybrid

approach for JSSP. It was concluded that heuristic

increased the performance of GA. Wang and Zheng [37]

proposed integrated use of GA and SA for job shop

scheduling problem. Zhou, Feng and Han [38] proposed

integrated use of genetic algorithm, neighborhood search

algorithm and dispatching rules (SPT, MWKR). It was

stated that proposed algorithm proved good solutions in

comparison with neighborhood search algorithm,

simulated annealing and traditional GA. Gao, Sun and Gen

[39] proposed integrated use of GA and variable

neighborhood search methods for multi-objective flexible

job shop scheduling problems. Variable neighborhood

algorithm was used in order to increase convergence speed

of GA. Two-vector chromosome representation that

consists of a machine assignment vector and a job order

vector was used in GA. It was shown that proposed method

produced equal or better results in 157 out of 181

benchmark instances with available methods. Dao, Abhary

and Marian [26] made a bibliometric analysis of published

genetic algorithm studies between 1972 and 2014.

4. Dispatching Rules

Dispatching rules are the rules that are developed to

make a quick selection among appropriate operations to be

assigned in each time to form the schedule [18].

Dispatching rules are classified as static and dynamic

based on the time variable [11]. While static dispatching

rules such as earliest due date (EDD) and shortest

processing time (SPT) can make evaluations before

scheduling starts, dynamic rules such as most total work

remaining (MTWR) and first in first out (FIFO) make

changeable evaluations in any iteration while forming

schedule [18]. According to their structural features,

dispatching rules are classified as simple dispatching rules,

combined dispatching rules, weighted dispatching rules

and heuristic dispatching rules. Simple dispatching rules

such as SPT, EDD have a single parameter objective

function [11]. Simple dispatching rules can optimize

limited scheduling objective functions [18]. Combined

dispatching rules that are formed with the use of several

simple dispatching rules are more successful for the

solution of complicated problems. Weighted dispatching

rules are linear combination of simple dispatching rules in

which specified weights are assigned to operations

according to their importance. Heuristic dispatching rules

such as expert knowledge are generally used with simple,

combined and weighted dispatching rules based on the

structure of the system [11]. As new dispatching rules can

be formed with the combination of one or more available

dispatching rules, they can also be formed with one or

more heuristic rules and dispatching rules [40].

Dispatching rules are heuristic rules that are often used

for the solution of scheduling problems with the ability of

producing valid solutions in limited time and quick

response to sudden changes. When scheduling literature is

considered, it is clear that sequencing rules, scheduling

rules, priority rules and dispatching rules are used to

describe the same technique [11]. Panwalkar and Iskander

[41] listed and classified more than 100 dispatching rules.

Dispatching rules have been used and continued to be

developed for more than fifty years [41]. Even though

there are many studies on dispatching rules, the majority

of new studies are about combination and modification of

old dispatching rules [11].

5. GA-based Hyperheuristic Algorithm

Generally, development of a heuristic, based on a

relevant problem, is time consuming and it requires

detailed information of the field. Though it gives

successful results for the problems for which they are

developed, they can’t be generalized to new or similar

problems very often [42]. The motivation behind

hyperheuristics is to expand application fields of

developed methods. The studies carried out for this aim

date back to the beginning of 1960s [13]. In early studies

[see 43,44], when the concept of hyperheuristics wasn’t

used yet, producing better results was aimed by using

different dispatching rules in iterations according to a

specific order.

Apart from simple low-level heuristics, hyperheuristics

don’t require any problem-specific information. Each LLH

communicates with high-level heuristic with an interface

structure independent from the problem. Hyperheuristic

can call a LLH to see what happens when a LLH is used.

Called LLH sends various parameters in which we can

observe the performance of LLH such as objective

function value and computational time [14].

Indirect chromosome representation is used in genetic

algorithm-based hyperheuristics using genetic algorithm

as high-level heuristic. In indirect chromosome

representation, each chromosome represents the way of

forming a solution instead of the solution itself [12]. In

traditional GA, while chromosome directly encodes a

solution via binary arrays or permutations, early studies

were about indirect chromosome encoding as a result of

difficulty of direct encoding due to the complicated nature

of real-life problem [12]. Fang, Ross and Corne [45] is one

of the first publications in which indirect chromosome

representation is used. Eight dispatching rules were used

as low-level heuristics for the solution of open shop

scheduling problem. Each chromosome consists of a pair

of gene sequences. In each pair, the first gene represents a

dispatching rule and the second gene represents the job to

be assigned with the implementation of this dispatching

rule. It was seen that obtained results were very close to

available solution in the literature; in fact, they were

sometimes better.

To the best of our knowledge, there are only few studies

using GA-based hyperheuristic for the solution of the

JSSP. This study is one of the few studies proposing a GA-

based hyperheuristic for job shop scheduling problems.

Unlike the few similar studies in the literature, 26

dispatching rules were used as low-level heuristics in our

study. Other studies are [43], [46] and [47]. Dorndorf and

Pesch [43] used GA-based approach specifying sequence

of LLHs to minimize makespan in JSSP. As low-level

heuristics, twelve dispatching rules were used. One

chromosome includes 𝑛 − 1 genes for 𝑛 operations and

each gene represents the heuristic to be used for scheduling

an operation. Norenkov and Goodman [46] developed

heuristic combination method for JSSPs. Scheduling

problem was divided into two main problems as

sequencing of jobs and their assignment to servers and

heuristics were designated for each sub-problem. The aim

of the method is to find optimal implementation order of

heuristics. In its dimension, each chromosome is

represented by a matrix of size 𝑛 × 𝑞 where 𝑛 is the

number of jobs and 𝑞 is the number of consecutive service

stages in which each job experiences during its processing.

The schedule is formed for each service stage by adding a

job in each stage. Vázquez-Rodríguez and Petrovic [47]

developed hyperheuristic approach called as Dispatching

Rule-Based GA for the solution of multiobjective JSSP.

Genetic algorithm works in the space of dispatching rules

and the chromosome representing the solution is expressed

through (ℎ, 𝑝) binary notation where ℎ is the sequence of

dispatching rules and 𝑝 is the number of consecutive calls

of each dispatching rule. The results of the approach were

found to be superior when they were compared with GA

using permutation chromosome representation and

hyperheuristic using dispatching rule-based chromosome

representation.

GA-based hyperheuristics are also used for other

scheduling problems in [48-50]. Hart, Ross and Nelson

[48] proposed GA-based approach for scheduling of

chicken catching crew with the aim of sending chickens

according to the orders received in chicken breeding

facility, which is a real-life problem. A chromosome

representation consisting of four parts was used. In the first

part, there is a fixed problem specific criterion for

narrowing the search space. In the second part, the

information of the order sequence is included. In the third

part, there is a heuristic dividing orders into duties and in

the fourth part, there is a heuristic assigning the duties to

the crew members. As a result of the study, it was observed

that proposed method produced schedules within minutes

competed with the schedules prepared by experts in days.

For the trainer scheduling problem, Cowling, Kendall and

Han [49] developed a GAHH approach called as hyper-

GA. Working as a high-level heuristic, genetic algorithm

specifies implementation sequence of LLHs into the

problem. Twelve problem-specific heuristics were used as

LLHs. In a chromosome, each gene was expressed through

an integer value representing a LLH and the chromosome

specifies implementation sequence of low-level heuristics.

It was shown that proposed approach gave better results

than the individual results of low-level heuristics and

genetic algorithm. Bacha et al. [50] proposed a GA-based

hyperheuristic approach for permutation flow shop

problems. Authors used genetic algorithms as LLHs and

also as a high-level heuristic. Each chromosome consisted

of 10 genes and each gene includes a genetic operator or a

parameter such as population size, number of generations,

selection method, crossover method, crossover probability

etc. The high-level heuristic was also a genetic algorithm

which aim was to produce a tailored genetic algorithm to

permutation flow shop scheduling problems. Since the

effectiveness of GA depends on the selection of genetic

operators and parameters, high-level GA calibrates low-

level genetic algorithms. Authors indicated that there is

definitely a correlation between benchmark instances and

the appropriate GA parameters/operators that solve them

efficiently. In the literature, GA-based hyperheuristic

algorithms are also applied to different problems such as

one-dimensional bin-packing problem [51], design of the

packaging process of two-dimensional rectangular blocks

019 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

[52], multitask-oriented manufacturing service

composition [53] and parameter tuning [54].

6. The Proposed GA-Based Hyperheuristic

Algorithm

In this study, a genetic algorithm-based hyperheuristic

approach is proposed for job shop scheduling problems.

Proposed hyperheuristic approach is expressed through

two modules: hyperheuristic module and low-level

heuristics module. With a domain barrier, hyperheuristic

module works independently from the problem.

Hyperheuristics don’t need to know problem-specific

information or the names and methodologies of LLHs.

LLHs are the heuristics directly working in the solution

space of the problem. Therefore, LLHs module can be seen

as a black box that hides problem details from the

hyperheuristic and sends only objective function value of

the current schedule to the hyperheuristic module.

6.1 Low-Level Heuristics Module

LLHs are the heuristics making a search in the solution

space of the problem and requiring problem-specific

information. In this paper, 26 dispatching rules shown in

Table 1 were used as low-level heuristics. Dispatching

rules were selected due to their success in scheduling

problems, ease of implementation and flexibility [47]. The

adaptation of developed approach to the changes in the

problem can be easily provided by adding or removing

new dispatching rules without changing the structure of the

hyperheuristic.

The terminology below was used for the formulation of

dispatching rules [55]:

𝐶𝑖𝑗 : completion time of operation 𝑗 of job 𝑖

𝑁𝑖𝑗(𝑡) : number of jobs waiting in the queue containing

operation 𝑗 of job 𝑖 at time 𝑡

𝑝𝑖𝑗 : processing time of operation 𝑗 of job 𝑖

𝑞 : index of unassigned operations (𝑞 = 𝑗, … , 𝑚𝑖)

𝑋𝑖𝑗 : random number between 0 and 1 assigned to

operation 𝑗 of job 𝑖

𝑌𝑖𝑗(𝑡) : total work of jobs waiting in the queue

containing operation 𝑗 of job 𝑖 at time 𝑡

𝑍𝑖(𝑡) : priority value of job 𝑖 at time 𝑡. Smallest values

have greatest priority.

In traditional scheduling algorithm one dispatching rule

is selected initially and assignments of all operations are

performed according to this rule. In the proposed method,

at each decision (assignment) point, the same or a different

dispatching rule specified by the hyperheuristic is applied.

Our developed scheduling algorithm is as follows:

1st step: Select the first unassigned operation according to

job routing of each job and specify their machines. The

precedence constraints of operations are satisfied in this

step.

2nd step: Select the machine that becomes idle earliest

among the machines.

3rd step: Assign the operation to selected machine

according to the dispatching rule in 𝑘𝑡ℎ gene of the

chromosome specified by the hyperheuristic (𝑘 = 1 in the

first decision point).

4th step: Update schedule matrix. Update 𝑘 = 𝑘 + 1.

5th step: If all the operations are assigned, go to 6th step.

Otherwise, go to 1st step.

6th step: Calculate objective function value of the schedule

and send it to the hyperheuristic module.

6.2 Hyperheuristic Module

Hyperheuristic module is the part where the strategy of

selecting the most appropriate heuristic to be called from

LLH set is built in order to make the assignment at decision

points of the problem. Steps of developed GA-based

hyperheuristic module are as follows:

1st step: Create a population consisting of candidate

solutions (each of them is called as a chromosome).

2nd step: Sent the population to LLH module.

3rd step: Select the chromosomes giving better results in

accordance with objective function values returning from

LLH module for the next population.

4th step: Create a new population from selected

chromosomes with crossover and mutation operators.

5th step: Send the new population to LLH module again

and take objective function values from LLH module.

6th step: If termination condition is not satisfied, go to the

3rd step. Otherwise, go to the 7th step.

7th step: Accept the chromosome giving the best objective

function value so far as optimal result.

One of the factors specifying the quality of the solution

is the method of encoding to chromosome. Cheng, Gen, &

Tsujimura [56] stated that there were two main coding
approaches of chromosome representation for job shop

scheduling problems: direct encoding approach and

indirect encoding approach. While in direct encoding

approach, the schedule that is the direct solution of the

problem is encoded onto the chromosome, in indirect

encoding approach, for example in dispatching rule-based

chromosome representation, implementation sequence of

dispatching rules into the problem are encoded to the

chromosome. In this paper, real valued dispatching rule-

based chromosome representation is used. In dispatching

rule-based representation, dispatching rules are matched

with the numbers starting from 1 to the number of

dispatching rules and candidate solution is created as a

sequence of these numbers of size 𝑚 × 𝑛, where 𝑚 is the

number of machines and 𝑛 is the number of jobs

020

Table 1. Low-level heuristics

DR Description

Selects the job which has…

𝒁𝒊(𝒕)

RANDOM the smallest value of random priority 𝑋𝑖𝑗

FIFO arrived at machine queue first 𝐶𝑖,𝑗−1

LIFO arrived at machine queue last −𝐶𝑖,𝑗−1

SPT the shortest processing time (Also used as tie-breaking rule) 𝑝𝑖𝑗

LPT the longest processing time −𝑝𝑖𝑗

STPT the shortest total processing time ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1

LTPT the longest total processing time − ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1

LTWR the least total work remaining ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗

MTWR the most total work remaining − ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗

SDT the smallest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1

LDT the largest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷ 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) − (𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑗)
𝑚𝑖
𝑗=1

SDR the smallest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)

𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗

LDR the largest ratio of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ÷

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)

− (𝑝𝑖𝑗/ ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗)

SMT the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) 𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑗
𝑚𝑖
𝑗=1

LMT the largest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) −(𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑗)
𝑚𝑖
𝑗=1

SMR the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ×

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)

𝑝𝑖𝑗 × ∑ 𝑝𝑖𝑞
𝑚𝑖
𝑞=𝑗

LMR the largest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 ×

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒)

−(𝑝𝑖𝑗 ×

∑ 𝑝𝑖𝑞)
𝑚𝑖
𝑞=𝑗

FRO the fewest number of remaining operations 𝑚𝑖 − 𝑗 + 1

LRO the largest number of remaining operations −(𝑚𝑖 − 𝑗 + 1)

AVPRO_1 the shortest average processing time [59]. ∑ 𝑝𝑖𝑗/𝑚𝑖
𝑚𝑖
𝑗=1

AVPRO_2 the longest average processing time [59] −(∑
𝑝𝑖𝑗

𝑚𝑖

𝑚𝑖
𝑗=1)

SIO shortest imminent operation [40]. 𝑝𝑖,𝑗+1

WINQ the least total work in the queue of its next operation 𝑌𝑖,𝑗+1(𝑡)

NINQ the least number of jobs in the queue of its next operation 𝑁𝑖,𝑗+1(𝑡)

PT+WINQ the smallest value of (𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +

total work in the queue of its next operation)[59].

𝑝𝑖𝑗 + 𝑌𝑖,𝑗+1(𝑡)

2PT+WINQ+NPT the smallest value of (2 × 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 +

total work in the queue of its next operation +

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑛𝑒𝑥𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛)[60].

2 × 𝑝𝑖𝑗 +

𝑌𝑖,𝑗+1(𝑡) + 𝑝𝑖,𝑗+1

In real valued representation, dispatching rules used as

LLHs are represented by the number intervals between 0

and 1 instead of integers. A candidate solution consists of

𝑚 × 𝑛 unit of value, which is between 0 and 1. A low-level

heuristic can be repeated more than once in a candidate

solution.

An illustration of chromosome representation for a

problem of size (2 × 4) is shown in Figure 1. Four low-

level heuristics (ℎ1, ℎ2, ℎ3, ℎ4) were used and their

intervals were defined by a minimum and a maximum

value making selection probability of all low-level

heuristics equal (25%). Each gene in the chromosome

carries a random value. Each LLH falls into its specific

discrete probability range and values in the chromosome

are used to transform the chromosome representation to

the LLH representation by using these discrete probability

ranges. When the chromosome is decoded, the sequence of

LLHs called by hyperheuristic respectively at each

decision point is also given in Figure 1. It is seen that the

solution obtained from hyperheuristic shows the way to be

followed in order to reach optimal solution instead of

direct solution of the scheduling problem.In this study, 26

low-level heuristics were used and their intervals were

defined in order to make selection probability of all low-

level heuristics equal. Until all operations were assigned,

low-level heuristics encoded in the chromosome are called

by hyperheuristic respectively at each decision point and

an operation is assigned to the selected machine. Initial

population is generated randomly. Uniform distribution is

used as probability distribution function for creating the

first population in real valued encoding.

021 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

Figure 1. Illustration of chromosome representation

Table 2. Average makespan of selected problems on benchmarked algorithms

Benchmark

Instances
Optimum

Metaheuristics
Hyper-

heuristic
Dispatching Rules

GA SA PSO GAHH SPT MTWR SIO FIFO PT+WINQ

FT06 55 56.96 56.20 57.96 55 84 58 69 74 74

LA01 666 672.43 666.76 677.56 666 817 828 867 912 912

LA06 926 926.13 926.00 926.00 926 1205 971 1199 1082 1082

LA11 1222 1226.26 1222 1225.76 1222 1537 1268 1453 1299 1299

LA19 842 939.63 899.06 942.50 876.93 1011 1000 1160 919 1028.7

ORB01 1059 1239.06 1173.26 1250.43 1085.46 1266 1374 1466 1327 1327

ABZ7 656 910.80 798.36 864.90 732.7 818 788 969 859 859

SWV11 2983 4920.83 4267.46 4745.23 3584.06 3712 4382 4232 4224 3923

In order to create a new population, some chromosomes

coming from previous population should be selected to the

new population as parent chromosomes. There are

different methods in order to decide which chromosomes

to choose. These methods are divided into two classes as

fitness proportionate selection and ordinal selection [57].

In this study, roulette wheel selection, known as the most

common proportional selection method, is used. In roulette

wheel selection, roulette wheel slots are assigned to each

individual proportional to its fitness value. Good solutions

have more slots and therefore more probability of being

selected. Roulette wheel selection steps are as follows

[57]:

1st step: Calculate the fitness value (𝑓𝑖) of each individual

in the population.

2nd step: Calculate the probability of being selected (slot

size) for each individual in the population: 𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

.

3rd step: Calculate the cumulative probability for each

individual: 𝑞𝑖 = ∑ 𝑝𝑗
𝑛
𝑗=1 .

4th step: Generate a uniform random number, 𝑟 ∈ (0,1].

5th step: If 𝑟 < 𝑞1 then select first chromosome (𝑥1) ,

otherwise select chromosome 𝑥𝑖 such that 𝑞𝑖−1 < 𝑟 ≤ 𝑞𝑖.

6th step: Repeat 4th and 5th steps n times.

7. Computational Analysis

 The performance of proposed GA-based hyperheuristic

approach was evaluated by comparing with some

metaheuristics and dispatching rules on a set of benchmark

instances obtained from OR-Library [58]: FT06 (6×6),

LA01 (10×5), LA06 (15×5), LA11 (20×5), LA19 (10×10),

ORB1 (10×10), ABZ7 (20×15), SWV11 (50×10). The

methods that were compared are GA, SA, PSO and SPT,

MTWR, SIO, FIFO, PT + WINQ dispatching rules that

were found to be successful in the literature for

minimization of makespan in job shop problems.

 In this paper, parallel GA and parallel GA-based

hyperheuristic were used. Though genetic algorithms are

more resistant against premature convergence to local

optimum according to other local search methods, they

aren’t completely immune. One of proposed methods for

reducing premature convergence of GA is parallelization

of the GA into disjoint subpopulations. Parallel GA helps

reducing computational time due to the use of parallel

processors [25]. The code of proposed GAHH method was

written in MATLAB. Population size, crossover rate and

mutation rate parameter values for GA and GA-based

hyperheuristic were used as 100, 0.7 and 0.1, respectively.

The proposed GA-based hyperheuristic approach, GA, SA

and PSO were run 30 times with 1000 iterations in each

run. Average results are given in Table 2. The proposed

GAHH approach gave optimal results for FT06, LA01,

LA06 and LA11 instances and gave better results than the

benchmark methods on the other instances. The best

results for each run are given in Table 3. Also, boxplots of

the 30 runs on each dataset can be seen in Figure 2. As an

example, Gantt chart representing the optimal schedule to

the FT06 instance is shown in Figure 3.

022

Table 3. Best values achieved among all the runs for each benchmarked algorithm

Benchmark

Instances
Optimum

Metaheuristics
Hyper-

heuristic
Dispatching Rules

GA SA PSO GAHH SPT MTWR SIO FIFO PT+WINQ

FT06 55 55 55 55 55 84 58 69 74 74

LA01 666 666 666 666 666 817 828 867 912 912

LA06 926 926 926 926 926 1205 971 1199 1082 1082

LA11 1222 1222 1222 1222 1222 1537 1268 1453 1299 1299

LA19 842 895 875 889 867 1011 1000 1160 919 1028.7

ORB01 1059 1171 1100 1183 1078 1266 1374 1466 1327 1327

ABZ7 656 857 767 820 723 818 788 969 859 859

SWV11 2983 4570 4128 4430 3513 3712 4382 4232 4224 3923

Figure 2. Boxplots of the 30 runs on each dataset

When average running results are considered, the

proposed GA-based hyperheuristic approach gives the

optimal results in 4 instances and produces better results

than GA, SA, PSO, SPT, MTWR, SIO, FIFO, PT+WINQ

in LA19 by 6.67%, 2.46%, 6.96%, 13.26%, 12.31%, 24.4,

4.58%, 14.75% respectively; in ORB01 by 12.4%, 7.48%,

13.19%, 14.26%, 21%, 25.96%, 18.2%, 18.2%

respectively; in ABZ07 by 19.55%, 8.23%, 15.29%,

10.43%, 7.02%, 24.39%, 14.7%, 14.7% respectively; in

SWV11 by 27.17%, 16.01%, 24.47%, 3.45%, 18.21%,

15.31%, 15.15%, 8.64% respectively.

 When best running results are considered, the proposed

GA-based hyperheuristic approach produces better results

than GA, SA, PSO, SPT, MTWR, SIO, FIFO, PT+WINQ

in LA19 by 3.13%, 0.91%, 2.48%, 14.24%, 13.3%, 25.26,

5.66%, 15.72% respectively; in ORB01 by 7.94%, 2%,

8.88%, 14.85%, 21.54%, 26.47%, 18.76%, 18.76%

respectively; in ABZ07 by 15.64%, 5.74%, 11.83%,

11.61%, 8.25%, 25.39%, 15.83%, 15.83% respectively; in

SWV11 by 23.13%, 14.9%, 20.7%, 5.36%, 19.83%,

16.99%, 16.83%, 10.45% respectively.

8. Conclusions

 In today’s highly competitive production environment,

developing effective production scheduling methods has

become a requirement for surviving in the market and

maintaining competition. Increasing profitability is

possible by increasing productivity in production and

decreasing the costs by using effective scheduling

methods. For this aim, a genetic algorithm-based

hyperheuristic approach for job shop scheduling problem

is proposed in this paper. The hyperheuristic approach is

based on selection of the most appropriate heuristic from

simple heuristics set which are called as low-level

heuristics embedded under the hyperheuristic in order to

make assignments at decision points of the problem. Since

hyperheuristic approach doesn’t need any problem-

specific information except low-level heuristics.

In this paper, 26 dispatching rules were used as low-

level heuristics. Dispatching rules were chosen due to their

success, ease of implementation and flexibility in

scheduling problems. The performance of proposed GA-

based hyperheuristic approach was evaluated by

comparing with GA, SA, PSO and SPT, MTWR, SIO,

FIFO, PT + WINQ dispatching rules that were found to be

successful in the literature for minimization of makespan

in job shop scheduling problems. Eight benchmark

instances in different sizes from different data sets were

obtained from OR-Library. Computational experiments

showed that the proposed GAHH approach has reached to

the optimal solution in 4 out of 8 benchmark instances and

was superior than the GA, SA, PSO and dispatching rules

on the other instances. Computational results showed that

proposed GAHH approach is an effective and promising

method for JSSPs. We can further improve GAHH by

combining a learning mechanism such as reinforcement

learning. Reinforcement learning can avoid premature

convergence and escape local optimum for 4 benchmark

instances. Furthermore, we can test our proposed GAHH

approach on different sets of benchmark instances and

compare their results to the best methods in the state of art.

023 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

Figure 2. Gantt chart of optimal schedule for FT06

Declaration

 The authors declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article. The authors also declared that this article is

original, was prepared in accordance with international

publication and research ethics, and ethical committee

permission or any special permission is not required.

Author Contributions

C.H. Akarsu developed the methodology, performed

the analysis and wrote the original draft. T. Küçükdeniz

developed the methodology, supervised and improved the

study.

Nomenclature

GAHH : Genetic algorithm-based hyperheuristic

GA : Genetic algorithm

SA : Simulated annealing

PSO : Particle swarm optimization

EDD : Earliest due date

SPT : Shortest processing time

MTWR : Most total work remaining

FIFO : First in first out

JSSP : Job shop scheduling problem

LLH : Low-level heuristic

References

1. Potts, C. N. and V. A. Strusevich, Fifty years of scheduling :

a survey of milestones. J. Oper. Res. Soc., 2009. 60(1): p.

41–68.

2. Jones, A., L. C. Rabelo, and A. T. Sharawi, Survey of job

shop scheduling techniques, in Wiley encyclopedia of

electrical and electronics engineering, 1999, Wiley Online

Library.

3. Jain, A. S. and S. Meeran, Deterministic job-shop

scheduling: Past, present and future. Eur. J. Oper. Res.,

1999. 113(2): p. 390–434.

4. Johnson, S., Optimal two- and three-stage production

schedules with setup times included. Nav. Res. Logist. Q.,

1954. 1: p. 61–68.

5. Jackson, J., An extension of Johnson’s result on job-lot

scheduling. Nav. Res. Logist. Q., 1956. 3(3): p. 201–204.

6. Roy, B. and B. Sussmann, Les problemes

d’ordonnancement avec contraintes disjonctives. Note ds,

1964. 9.

7. Balas, E., Machine scheduling via disjunctive graphs: An

implicit enumeration algorithm. Oper. Res.,1969. 17: p.

941–957.

8. Kovalev, M. Y., et al., Approximation scheduling

algorithms: A survey. Optimization, 1989. 20(6): p. 859–

878.

9. Sharma, P. and A. Jain, A review on job shop scheduling

with setup times. Proc. Inst. Mech. Eng. Part B J. Eng.

Manuf., 2016. 230(3): p. 517–533.

10. Jones, D. F., S. K. Mirrazavi, and M. Tamiz, Multi-objective

meta-heuristics: An overview of the current state-of-the-art.

Eur. J. Oper. Res., 2002. 137(1): p. 1–9.

11. Fan, H. L., et al., Survey of the selection and evaluation for

dispatching rules in dynamic job shop scheduling problem,

in 2015 Chinese Automation Congress (CAC), 2015. p.

1926–193.

12. Chakhlevitch, K. and P. Cowling, Hyperheuristics: Recent

developments in Adaptive and Multilevel Metaheuristics,

2008, Springer. p. 3–29.

13. Burke, E. K., et al., A classification of hyper-heuristic

approaches, in Handbook of Metaheuristics, 2010,

Springer. p. 449–468.

14. Cowling, P., G. Kendall, and E. Soubeiga, A hyper heuristic

approach to scheduling a sales summit, in International

conference on the practice and theory of automated

timetabling, 2020. p.176-190.

15. Hunt, R., M. Johnston, and M. Zhang, Evolving machine-

specific dispatching rules for a two-machine job shop using

genetic programming, in 2014 IEEE Congress on

Evolutionary Computation (CEC), 2014. p. 618–625.

16. Nguyen, S., et al., Automatic design of scheduling policies

for dynamic multi-objective job shop scheduling via

cooperative coevolution genetic programming. IEEE Trans.

Evol. Comput., 2014. 18(2): p. 193–208.

17. Sim, K. and E. Hart, A novel heuristic generator for JSSP

using a tree-based representation of dispatching rules, in

Proceedings of the Companion Publication of the 2015

Annual Conference on Genetic and Evolutionary

Computation, 2015. p. 1485–1486.

18. Hart, E. and K. Sim, A hyper-heuristic ensemble method for

static job-shop scheduling. Evol. Comput., 2016. 24(4): p.

609–635.

19. Branke, J., et al., Automated design of production

scheduling heuristics: A review. IEEE Trans. Evol.

Comput., 2016. 20(1): p. 110–124.

20. Yenisey, M. M. and M. Şevkli, Atölye tipi çizelgeleme

problemleri için parçacık sürü optimizasyonu yöntemi.

İTÜDERGİSİ/d, 2006. 5(2): p. 58–68.

21. Pinedo, M. L., Scheduling: Theory, algorithms and systems.

2008, New Jersey: Prentice-Hall.

22. Lenstra, J. K. and A. R. Kan, Computational complexity of

discrete optimization problems. Ann. Discret. Math., 1979.

4: p. 121–140.

23. Mellor, P., A Review of Job Shop Scheduling. J. Oper. Res.

Soc., 1966. 17(2): p. 161–171.

24. Holland, J. H., Adaptation in natural and artificial systems:

an introductory analysis with application to biology,

control, and artificial intelligence. 1975, Ann Arbor (MI):

6

5

4 5

3 1 6

2 3

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

31 5

4

6

M
ac
h
in
e 1

1

1

1

2

2

2

2

3

3

3

6

3

6

6

6

4

4

4

5

5

5

5

2

2

4

4

024

The University of Michigan Press.

25. Park, B. J., H. R. Choi, and H. S. Kim, A hybrid genetic

algorithm for the job shop scheduling problems. Comput.

Ind. Eng., 2003. 45(4): p. 597–613.

26. Dao, S. D., K. Abhary, and R. Marian, A bibliometric

analysis of Genetic Algorithms throughout the history.

Comput. Ind. Eng., 2017. 110: p. 395–403.

27. Davis, L., Job shop scheduling with genetic algorithms, in

Proceedings of an international conference on genetic

algorithms and their applications, 1985.

28. Gen, M. and R. Cheng, Genetic algorithms and engineering

optimization. 2000, John Wiley & Sons.

29. Zhong, T. X. and J. C. Chen, A hybrid-coded genetic

algorithm based optimisation of non-productive paths in

CNC machining. Int. J. Adv. Manuf. Technol., 2002. 20(3):

p. 163–168.

30. Wang, Y. M., H. L. Yin, and J. Wang, Genetic algorithm

with new encoding scheme for job shop scheduling. Int. J.

Adv. Manuf. Technol., 2009. 44(9–10): p. 977–984.

31. Dao, S. D., K. Abhary, and R. Marian, Optimisation of

partner selection and collaborative transportation

scheduling in virtual enterprises using GA. Expert Syst.

Appl., 2014. 41(15): p. 6701–6717.

32. Qing-dao-er-ji, R. and Y. Wang, A new hybrid genetic

algorithm for job shop scheduling problem. Comput. Oper.

Res., 2012. 39(10): p. 2291–2299.

33. Tang, P.-H. and M.-H. Tseng, Adaptive directed mutation

for real-coded genetic algorithms. Appl. Soft Comput.,

2013. 13(1): p. 600–614.

34. Wu, X., et al., A genetic algorithm for cellular

manufacturing design and layout. Eur. J. Oper. Res., 2007.

181(1): p. 156–167.

35. Šetinc, M., M. Gradišar, and L. Tomat, Optimization of a

highway project planning using a modified genetic

algorithm. Optimization, 2015. 64(3): p. 687–707.

36. Cheung, W. and H. Zhou, Using genetic algorithms and

heuristics for job shop scheduling with sequence-dependent

setup times. Ann. Oper. Res., 2001. 107(1–4): p. 65–81.

37. Wang, L. and D. Zheng, An effective hybrid optimization

strategy for job-shop scheduling problems. Comput. Oper.

Res., 2001. 28(6): p. 585–596.

38. Zhou, H., Y. Feng, and L. Han, The hybrid heuristic genetic

algorithm for job shop scheduling. Comput. Ind. Eng., 2001.

40(3): p. 191–200.

39. Gao, J., L. Sun, and M. Gen, A hybrid genetic and variable

neighborhood descent algorithm for flexible job shop

scheduling problems. Comput. Oper. Res., 2008. 35(9): p.

2892–2907.

40. Gere, W. S., Heuristics in job shop scheduling. Manage.

Sci., 1966. 13(3): p. 167–190.

41. Panwalkar, S. S. and W. Iskander, A survey of scheduling

rules. Oper. Res., 1977. 25(1): p. 45–61.

42. Burke, E. et al., Hyper-heuristics: a survey of the state of the

art. J. Oper. Res. Soc., 2013. 64(12): p. 1695–1724.

43. Dorndorf, U. and E. Pesch, Evolution based learning in a

job shop scheduling environment. Comput. Oper. Res.,

1995. 22(1): p. 25–40.

44. Hart, E. and P. Ross, A heuristic combination method for

solving job-shop scheduling problems, in International

Conference on Parallel Problem Solving from Nature,

1998. p. 845–854.

45. Fang, H., P. Ross, and D. Corne, A promising hybrid

GA/heuristic approach for open-shop scheduling problems,

in Proceedings of 11th European Conference on Artificial

Intelligence, 1994. p. 590–594.

46. Norenkov, I. P. and E. D. Goodman, Solving scheduling

problems via evolutionary methods for rule sequence

optimization, in Soft computing in engineering design and

manufacturing, 1998, Springer. p. 350–355.

47. Vázquez-Rodríguez, J. A. and S. Petrovic, A new

dispatching rule based genetic algorithm for the multi-

objective job shop problem. J. Heuristics, 2010. 16(6): p.

771–793.

48. Hart, E., P. Ross, and J. A. D. Nelson, Scheduling chicken

catching – An investigation into the success of a genetic

algorithm on a real-world scheduling problem. Ann. Oper.

Res., 1999. 92: p. 363–380.

49. Cowling, P., G. Kendall, and L. Han, An investigation of a

hyperheuristic genetic algorithm applied to a trainer

scheduling problem, in the IEEE Congress on Evolutionary

Computation (IEEE CEC02), 2002.

50. Ahmed Bacha, S. Z., et al., A New Hyper-Heuristic to

Generate Effective Instance GA for the Permutation Flow

Shop Problem. Procedia Comput. Sci., 2019. 159: p. 1365–

1374.

51. Ross, P., et al., Learning a procedure that can solve hard

bin-packing problems: A new ga-based approach to hyper-

heuristics, in Genetic and Evolutionary Computation

Conference, 2003. p. 1295–1306.

52. Thomas, J. and N. S. Chaudhari, Design of efficient packing

system using genetic algorithm based on hyper heuristic

approach. Adv. Eng. Softw., 2014. 73: p. 45–52.

53. Zhang, S., Y. Xu, and W. Zhang, Multitask-oriented

manufacturing service composition in an uncertain

environment using a hyper-heuristic algorithm. J. Manuf.

Syst., 2021. 60: p. 138–151.

54. Pang, L. M., H. Ishibuchi, and K. Shang, Using a Genetic

Algorithm-based Hyper-heuristic to Tune MOEA/D for a

Set of Various Test Problems, in IEEE Congress on

Evolutionary Computation (CEC), 2021. p. 1486–1494.

55. Haupt, R., A survey of priority rule-based scheduling. OR

Spectr., 1989. 11(1): p. 3–16.

56. Cheng, R., M. Gen, and Y. Tsujimura, A tutorial survey of

job-shop scheduling problems using genetic algorithms—I.

representation. Comput. Ind. Eng., 1996. 30(4): p. 983–997.

57. Sastry, K., D. E. Goldberg, and G. Kendall, Genetic

algorithms, in Search methodologies, 2005, Springer. p. 97–

125.

58. Beasley, J. E., OR-Library, 1990. [cited 2017 20 Nov];

Available from:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.ht

ml.

59. Jayamohan, M. S. and C. Rajendran, New dispatching rules

for shop scheduling : A step forward. Int. J. Prod. Res.,

2000. 38(3): p. 563–586.

60. Rajendran, C. and O. Holthaus, Efficient jobshop

dispatching rules: Further developments. Prod. Plan.

Control Manag. Oper., 2000. 11(2): p. 171–178.

025 Akarsu and Küçükdeniz, International Advanced Researches and Engineering Journal 06(01): 016-025, 2022

