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ABSTRACT

Considering a projectively invariant metric τ defined by the kernel function on a strongly convex
bounded domain Ω ⊂ Rn, we study the asymptotic expansion of the scalar curvature with respect
to the distance function, and use the Fubini-Pick invariant to describe the second term in the
expansion. This asymptotic expansion implies that if n ≥ 3 and (Ω, τ) has constant scalar curvature,
then the convex domain is projectively equivalent to a ball.
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1. Introduction

Let Ω be a strongly convex bounded domain with smooth boundary in Rn, and Ω∗ be the dual of Ω defined
by Ω∗ = int{ξ ∈ Rn|1 + 〈x, ξ〉 ≥ 0, for x ∈ Ω}. Sasaki [3] defined the characteristic function χ and the kernel
function κ of Ω as follows

χ(x) =

∫
Ω∗
n!(1 + 〈ξ, x〉)−n−1dξ, (1.1)

κ(x) =

∫
Ω∗

(2n+ 1)!(1 + 〈ξ, x〉)−2n−2 · χΩ∗(ξ)
−1dξ. (1.2)

Next he defined two metrics

ω = −χ
1

n+1 · dd(χ
−1
n+1 ), and τ = −κ

1
2n+2 · dd(κ

−1
2n+2 ), (1.3)

and proved they are complete Riemannian metrics and invariant under projective transformations. Also he
showed metrics ω and τ coincide with the Blaschke metric on a hyperbolic affine hypersphere when Ω is
projectively homogeneous.

In the paper [4], Sasaki-Yagi first gave the boundary behaviors of derivatives of the functions χ and κ, then
showed that the sectional curvatures of both metric ω and τ tend to −1 on the boundary ∂Ω. Wu [5] studied the
asymptotic expansion of the scalar curvature H of (Ω, ω) and obtained

H(x) = −n(n− 1) + 2
− 2
n+1 J(y) · dist(x, ∂Ω) +O(dist(x, ∂Ω)2), (1.4)

where J is the Fubini-Pick invariant of the boundary ∂Ω. By the theorem of Maschke-Pick-Berwald [1]: Every
locally strongly convex hypersurface with vanishing Fubini-Pick invariant must be a hyperquadric. Hence
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the estimate (1.4) implies that if n ≥ 3 and the scalar curvature of (Ω, ω) is a constant, then Ω is projectively
equivalent to a ball. When n = 2, the Fubini-Pick invariant of the boundary curve is zero, Wu [5] found that
the third term of the asymptotic expansion is also zero. Sasaki [3] also defined the p−th characteristic function
χp and its metric ωp, Wu [6] also considered the asymptotic expansion of the derivatives of χp, and proved that
the sectional curvature of (Ω, ωp) tend to −1 on the boundary ∂Ω.

In this paper, we study the asymptotic expansion of the scalar curvature of (Ω, τ) with respect to the distance
function, and use the Fubini-Pick invariant to describe the second term in the expansion. We obtain

Theorem 1.1. Let Ω ⊂ Rn be a strongly convex bounded domain with smooth boundary, and R be the scalar curvature
of (Ω, τ). For x near ∂Ω, choose y(x) so that dist(x, y) = dist(x, ∂Ω), then

R(x) = −n(n− 1) + 2
− 2
n+1 J(y) · dist(x, ∂Ω) +O(dist(x, ∂Ω)2), (1.5)

where J is the Fubini-Pick invariant of the boundary ∂Ω.

By the result of Maschke-Pick-Berwald, we have

Theorem 1.2. Let Ω ⊂ Rn (n ≥ 3) be a strongly convex bounded domain with smooth boundary. If the scalar curvature
of (Ω, τ) is a constant, then Ω is projectively equivalent to a ball.

2. Boundary behaviors of the derivatives of κ(x)

In this section we need the calculations in [4]. Let Ω be a strongly convex bounded domain with smooth
boundary which contains the origin, and let Ω∗ be the dual of Ω. The star mapping defined as

x∗ = −gradχ(x) · ((n+ 1)χ(x) + 〈gradχ(x), x〉)−1 (2.1)

is a diffeomorphism of Ω onto Ω∗, and can be smoothly extended to ∂Ω.
For a multi-index α′ = (α1, α2, ...., αn−1) with |α′| = α1 + α2 + · · ·+ αn−1, we use the notations

ξ′ = (ξ1, ξ2, ..., ξn−1), (ξ′)α
′

= ξα1
1 ξα2

2 · · · ξ
αn−1

n−1 .

For a fixed point y ∈ ∂Ω, we choose coordinates (x1, x2, ..., xn) in Rn such that y = (0, 0, ...., 0, yn) and
dist(ky, ∂Ω) = dist(ky, y) for k ∈ (0, 1) sufficiently near 1. For simplicity, we assume yn = 1. We choose
coordinate such that the boundary ∂Ω around y is written as

xn = 1− 1
4

n−1∑
i=1

(xi)
2 + 1

6

∑
aijkxixjxk +

∑
|α′|>3

aα′(x
′)α
′
+O(|x′|2N0+2), (2.2)

where x′ = (x1, x2, ..., xn−1) and N0 is a sufficiently large integer. Let y∗ denote the image of y by the star
mapping, then the boundary of ∂Ω∗ around y∗ is written as

ξn = −1 +

n−1∑
i=1

(ξi)
2 + 1

6

∑
bijkξiξjξk +

∑
|α′|>3

bα′(ξ
′)α
′
+O(|ξ′|2N0+2). (2.3)

Set x = ky and 1 + ξn = t, then 1 + 〈ξ, x〉 = kt+ 1− k. The derivative of κ is given by

κβ(x) : = ∂|β|(κ)
∂xβ

= (−1)|β|(2n+ |β|+ 1)!

∫ b

0

(kt+ 1− k)−2n−2−|β|(t− 1)βnB(t)dt, (2.4)

where

B(t) =

∫
Ω∗∩{1+ξn=t}

(ξ′)β
′
(χΩ∗(ξ))

−1dξ′, b = max
Ω∗
{1 + ξn}. (2.5)
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Choose ξ with l(ξ) := 1 + ξn sufficiently small so that d(ξ, ∂Ω∗) is attained by a unique point ς ∈ ∂Ω∗. Then
ς = (ς ′, ςn) satisfies

ςi − ξi = (t− l(ς ′)) ∂l∂ξi (ς
′). (2.6)

Hence there exist the following approximate identities

d(ξ, ς) = |t− l(ς ′)|(1 +
∑
|α′|>1

a1
α(ς ′)α

′
+O(|ς ′|2N1)), (2.7)

dξ′ = d(ς ′)(1 +
∑

|α′|,m≥1

a2
α,m(ς ′)α

′
|t− l(ς ′)|m +O(|ς ′|2N1) +O(|t− l(ς ′)|N1)), (2.8)

(ξ′)β
′

= (ς ′)β
′
(1 +

∑
m≥1

a3
m|t− l(ς ′)|m +O(|t− l(ς ′)|N1)), (2.9)

where N1 is a sufficiently large integer greater than the following integer N2.
By the formula (2.3), the Gauss curvature of ∂Ω∗ at ς has the expansion

γ(ς) = 2n−1 +
∑
|α′|≥1

a4
α(ς ′)α

′
+O(|ς ′|2N1). (2.10)

The characteristic function χΩ∗ has the asymptotic expansion (see [3])

χΩ∗(ξ) = c0(0)2
n−1

2 γ(ς)
1
2 d(ξ, ς)−

n+1
2 · (1 +

∑
m≥1

a5
md(ξ, ς)m +O(d(ξ, ς)N2)), (2.11)

where N2 = [n2 ], and c0(0) = π
n−1

2 Γ(n+1
2 ).

It follows that

(ξ′)β
′
(χΩ∗)

−1dξ′ = 1
2n−1c0(0) (ς ′)β

′
|t− l(ς ′)|

n+1
2 (1 +

∑
|α′|+m≥1

a6
α,m(ς ′)α

′
|t− l(ς ′)|m

+ O(|ς ′|2N2) +O(|t− l(ς ′)|N2))dς ′. (2.12)

Put

Pq,m =
∑
|α′|=q

a6
α,m(ς ′)α

′
, P0,0 = 1. (2.13)

Then the estimate of B(t) is obtained by computing the integral

1
2n−1c0(0)

∫
Ω∗∩{0≤l(ς′)≤t}

(ς ′)β
′
Pq,m(ς ′)|t− l(ς ′)|m+

n+1
2 dς ′. (2.14)

Relative to the polar coordinates ςi = rfi, we have

l(ς ′) = r2(1 +
∑
p≥1

εpr
p +O(r2N0)), (2.15)

where N0 is a sufficiently large integer greater than N2.
Further set l(ς ′) = tu2, then there exist vp such that

r =
√
tu(1 +

∑
p≥1

vp(
√
tu)p +O((

√
tu)N0)), (2.16)
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Define µp by

rq+n−2+|β′|dr = (
√
tu)q+n−2+|β′|√t · (1 +

∑
p≥1

(p+ 1)µp(
√
tu)p +O((

√
tu)N0))du. (2.17)

Hence

B(t) = 1
2nc0(0)

∑
k,m

∫
ak,mB(n+3+2m

2 , n−1+k+|β′|
2 )t

2n+k+2m+|β′|
2 (f ′)β

′
dS +O(tN2)

=
∑
i≥0

t
2n+i+|β′|

2

∫
λi(f

′)β
′
dS +O(tN2), (2.18)

where

ak,m =
∑
p+q=k

(p+ 1)µp · Pq,m(f ′), a0,0 = 1, (2.19)

and

λi = 1
2nc0(0)

∑
k+2m=i

ak,mB(n+3+2m
2 , n−1+k+|β′|

2 ). (2.20)

In the following paper, we denote the distance function dist(x, ∂Ω) by d. Combining (2.4) and (2.18), Sasaki-Yagi
[4] obtained

κβ = d−
2n+|β′|+2βn+2

2 (

2N2−1∑
k=0

c̃k(β) · d
k
2 +O(dN2)), (2.21)

here

c̃2p+q(β) = (−1)|β
′|Γ( 2n+|β′|+2+2p+q

2 )Γ( 2n+|β′|+2+2βn−2p−q
2 )(Γ( 2n+|β′|+2−2p−q

2 ))−1

·
p∑
j=0

Γ( 2n+|β′|+2−2j−q
2 )(Γ(p− j + 1))−1

∫
λ2j+q(f

′)β
′
dS, (2.22)

where q takes the value 0 or 1.
Because of the integral formula

∫ n−1∏
i=1

(f ′i)
βidS =


(n+|β′|−1)

Γ(
n+|β′|+1

2 )

n−1∏
i=1

Γ(βi+1
2 ), when βi, 1 ≤ i ≤ n− 1 are even,

0, otherwise,

(2.23)

Sasaki-Yagi divided into three cases
(case a): If every βi, (i = 1, · · ·n− 1) is even, then c2k+1(β) = 0 for k ≥ 0,
(case b): If at least one of βi, ( i = 1, · · ·n− 1) is odd and |β′| is odd, then c2k(β) = 0 for k ≥ 0,
(case c): If at least one of βi, (i = 1, · · ·n− 1) is odd and |β′| is even, then c0(β) = 0, c2k+1(β) = 0 for k ≥ 0.
According to the parity of the index β defined above, they obtained the following expansions

Theorem 2.1.

(case a) κβ = d−
2n+|β′|+2+2βn

2 (

N2−1∑
i=0

c̃2i(β) · di +O(dN2)),

(case b) κβ = d−
2n+|β′|+1+2βn

2 (

N2−1∑
i=0

c̃2i+1(β) · di +O(dN2−
1
2 )),

(case c) κβ = d−
2n+|β′|+2βn

2 (

N2−2∑
i=0

c̃2i+2(β) · di +O(dN2−1)).
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Put

ψ = −κ−
1

n+1 , (2.24)

then the metric τ defined in (1.3) is given by

τ = − 1√
−ψ

dd(
√
−ψ) :=

∑
hijdxidxj , (2.25)

where

hij = 1
2 (−ψijψ +

ψiψj
2ψ2 ) = 1

2(n+1)
κij
κ −

2n+3
4(n+1)2

κi
κ
κj
κ . (2.26)

Here and later, ψi, ψij , ψijk denote the usual derivatives, and the matrix (hij) denotes the inverse of the matrix
(hij). Then the boundary estimates of (hij) and (hij) follow from in [4].

Lemma 2.1. The matrix (hij) has the form:

1

4


d−1 O(d−1)

. . . O(1)
...

O(1)
. . .

...
d−1 O(d−1)

O(d−1) · · · · · · O(d−1) d−2


and (hij) has the form:

4


d O(d2)

. . . O(d2)
...

O(d2)
. . .

...
d O(d2)

O(d)2) · · · · · · O(d2) d2


Take the logarithm on both sides of (2.24) and differentiate with respect to x:

−(n+ 1)ψiψ = κi
κ ,

−(n+ 1)
ψij
ψ =

κij
κ −

n+2
n+1

κi
κ
κj
κ ,

−(n+ 1)
ψijk
ψ =

κijk
κ −

n+2
n+1 (

κij
κ
κk
κ +

κjk
κ

κi
κ + κik

κ
κj
κ ) + (n+2)(2n+3)

(n+1)2
κi
κ
κj
κ
κk
κ . (2.27)

The boundary estimates of ψ is given in [4].

Lemma 2.2. Assume n ≥ 2, the derivatives of ψ up to third order have finite continuous values on ∂Ω except

ψnn, ψiin, ψinn, 1 ≤ i < n that are of order d−
1
2 at most, and ψnnn that is of order d−

3
2 at most. Assume n ≥ 4, the

derivatives of ψ up to third order have finite continuous values on ∂Ω except ψnnn that is of order d−
1
2 at most.

3. Improve the boundary estimates of ψ

In this section, we improve the boundary estimates of ψ in the case of n ≤ 3, which is crucial for the proof
of Theorem 1.1. In section 2, the authors wrote the the asymptotic expansion of χΩ∗ as in (2.11), but by [4], the
following asymptotic expansion also holds.
If n = 2, then

χΩ∗(ξ) = 2
1
2 c0(0)γ(ς)

1
2 d(ξ, ς)−

3
2
(
1 + a5

1d(ξ, ς) +O(d(ξ, ς)
3
2 )
)
, (3.1)

if n = 3, then

χΩ∗(ξ) = 2c0(0)γ(ς)
1
2 d(ξ, ς)−2

(
1 + ã5

1d(ξ, ς) + d2 ·O(log d(ξ, ς)
)

= 2c0(0)γ(ς)
1
2 d(ξ, ς)−2

(
1 + ã5

1d(ξ, ς) +O(d(ξ, ς)
3
2 )
)
. (3.2)
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Thus for n ≤ 3, we have

χΩ∗(ξ) = 2
n−1

2 c0(0)γ(ς)
1
2 d(ξ, ς)−

n+1
2
(
1 + a5

1d(ξ, ς) +O(d(ξ, ς)
3
2 )
)
. (3.3)

By the computations in section 2, we have the following estimates:
(case a): If every βi, (i = 1, · · ·n− 1) is even, then

κβ = d−
2n+|β′|+2+2βn

2
(
c̃0(β) + c̃2(β) · d+O(d

3
2 )
)
. (3.4)

(case b): If at least one of βi, ( i = 1, · · ·n− 1) is odd and |β′| is odd, then

κβ = d−
2n+|β′|+1+2βn

2
(
c̃1(β) +O(d)

)
. (3.5)

Here we need not consider the (case c). In the following estimates, the first n− 1 components of β = (β′, βn)
and the last component βn play different roles. By (2.22), we have

c̃i(β
′, βn + 1) = 2n+|β′|+2βn+2−i

2 c̃i(β
′, βn), (3.6)

c̃0(β1, ..., βi + 2, ..., βn−1, βn) = (2n+|β′|+2βn+2)(βi+1)
4 c̃0(β1, ..., βi, ..., βn−1, βn). (3.7)

We need not to make any distinction among the first n− 1 components, hence use the abbreviation (p; q) for
denoting β = (p, 0...0, q). By (3.4)-(3.5), we have

κ = d−(n+1)(c̃0(0) + c̃2(0) · d+O(d
3
2 )),

κ1 = d−(n+1)(c̃1(1; 0) +O(d)),

κn = d−(n+2)(c̃0(0; 1) + c̃2(0; 1) · d+O(d
3
2 )),

κ11 = d−(n+2)(c̃0(2; 0) + c̃2(2; 0) · d+O(d
3
2 )),

κ1n = d−(n+2)(c̃1(1; 1) +O(d)),

κnn = d−(n+3)(c̃0(0; 2) + c̃2(0; 2) · d+O(d
3
2 )),

κ1nn = d−(n+3)(c̃1(1; 2) +O(d)),

κ11n = d−(n+3)(c̃0(2; 1) + c̃2(2; 1) · d+O(d
3
2 )),

κnnn = d−(n+4)(c̃0(0; 3) + c̃2(0; 3) · d+O(d
3
2 )).

Put

c1 = c̃1(1;0)
c̃0(0) , c2 = c̃2(0)

c̃0(0) . (3.8)

Hence by (3.6)-(3.8), we have
κ1

κ = c1 +O(d),

κn
κ = d−1

( c̃0(0;1)
c̃0(0) + ( c̃2(0;1)

c̃0(0) − c2
c̃0(0;1)
c̃0(0) ) · d+O(d

3
2 )
)
,

= (n+ 1)d−1 − c2 +O(d
1
2 ),

κ11

κ = n+1
2 d−1 +O(1),

κ1n

κ = (n+ 1)c1d
−1 +O(1),

κnn
κ = d−2

( c̃0(0;2)
c̃0(0) + ( c̃2(0;2)

c̃0(0) − c2
c̃0(0;2)
c̃0(0) ) · d+O(d

3
2 )
)
,

= (n+ 2)(n+ 1)d−2 − 2(n+ 1)c2d
−1 +O(d−

1
2 ),

κ11n

κ = (n+2)(n+1)
2 d−2 +O(d−1),

κ1nn

κ = (n+ 2)(n+ 1)c1d
−2 +O(d−1),

κnnn
κ = d−3

( c̃0(0;3)
c̃0(0) + ( c̃2(0;3)

c̃0(0) − c2
c̃0(0;3)
c̃0(0) ) · d+O(d

3
2
)
.

= (n+ 3)(n+ 2)(n+ 1)d−3 − 3(n+ 2)(n+ 1)c2d
−2 +O(d−

3
2 ).
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By (2.27) we know

−(n+ 1)ψ11n

ψ = κ11n

κ − n+2
n+1 (κ11

κ
κn
κ + 2κ1n

κ
κ1

κ ) + (n+2)(2n+3)
(n+1)2

κ1

κ
κ1

κ
κn
κ ,

−(n+ 1)ψ1nn

ψ = κ1nn

κ − n+2
n+1 (κnnκ

κ1

κ + 2κ1n

κ
κn
κ ) + (n+2)(2n+3)

(n+1)2
κ1

κ
κn
κ
κn
κ ,

−(n+ 1)ψnnnψ = κnnn
κ − 3n+2

n+1
κnn
κ

κn
κ + (n+2)(2n+3)

(n+1)2
κn
κ
κn
κ
κn
κ .

The direct computations show that ψ11n, ψ1nn have finite continuous values on ∂Ω, and ψnnn is that of order

d−
1
2 at most. Based on Lemma 2.2, we have

Lemma 3.1. Assume n ≥ 2, the derivatives of ψ up to third order have finite continuous values on ∂Ω except ψnnn that

is of order d−
1
2 at most.

4. The scalar curvature of (Ω, τ)

Now we need compute the coefficients c̃0(0) and c̃1(β) explicitly. By (2.19)-(2.22), we have

c̃0(0) = 1
2nc0(0) (Γ(n+ 1))2B(n−1

2 , n+3
2 )

∫
dS = (n+1)!

2n . (4.1)

We also have

c̃1(β) = (−1)|β
′|Γ( 2n+|β′|+3

2 )Γ( 2n+|β′|+1+2βn
2 )

∫
λ1 · (f ′)β

′
dS

= 1
2nc0(0) (−1)|β

′|Γ(n+3
2 )Γ(n+|β′|

2 )Γ( 2n+|β′|+1+2βn
2 )

∫
a1,0 · (f ′)β

′
dS. (4.2)

Formulas (2.7)-(2.12) give ∑
|α′|=1

a6
α,0(ς ′)α

′
= − 1

2n

∑
|α′|=1

a4
α(ς ′)α

′
.

By (2.3)-(2.19), we get

a1,0 = 2µ1 + P1,0(f ′)

= (n+ |β′|)v1 +
∑
|α′|=1

a6
α,0 · (f ′)α

′
(4.3)

= −n+|β′|
12

∑
bijkfifjfk − 1

2n

∑
|α′|=1

a4
α · (f ′)α

′
. (4.4)

By (2.3), we get the Gauss curvature of ∂Ω∗ at ς has the expansion

γ(ς) = 2n−1 + 2n−2
∑

biikςk +O(|ς ′|2). (4.5)

On the other hand, By (2.2)-(2.3) and the definition of star mapping we have the relation (see the section 4 in
[3])

bijk = −8aijk. (4.6)

Hence

a1,0 = −n+|β′|
12

∑
bijkfifjfk − 1

4

∑
biikfk

= 2
3 (n+ |β′|)

∑
aijkfifjfk + 2

∑
aiikfk. (4.7)

Next we expand the scalar curvature of (Ω, τ) with respect to the distance function, the Riemannian curvature
tensor of (Ω, τ) is given by (see [2])

Rijkl = −(hilhjk − hikhjl)− 1
16ψ2

n∑
p,q=1

hpq(ψpilψqjk − ψpikψqjl), (4.8)
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Hence the scalar curvature R of (Ω, τ) is given by

R = −n(n− 1) + 1
16ψ2

∑
hilhjkhpq(ψpikψqjl − ψpilψqjk). (4.9)

Lemma 2.1 and Lemma 3.1 give

R = −n(n− 1) + 1
16

∑
i 6=j

hiihjj
∑
p<n

hpp((
ψpij
ψ )2 − ψpii

ψ
ψpjj
ψ ) +O(d2)

= −n(n− 1) + d2
∑
i 6=j

∑
p<n

hpp((
ψpij
ψ )2 − ψpii

ψ
ψpjj
ψ ) +O(d2)

= −n(n− 1) + 4d3
∑
i,j,p 6=

((
ψpij
ψ )2 − ψpii

ψ
ψpjj
ψ )

+ 8d3
∑
i 6=j

((
ψiij
ψ )2 − ψiii

ψ
ψijj
ψ ) +O(d2), (4.10)

where “i, j, p 6=" means these indices are different from each other.
In the following we assume the indices rang from 1 to n− 1, and for the multi-index β = (0...0, 1

i
, 0...0, 1

j
, 0...0),

we use c̃s(i, j) to denote c̃s(β) in Theorem 2.1; if β = (0...0, 1
i
, 0...0), we use c̃s(i) to denote c̃s(β); if β =

(0...0, 1
i
, 0...0, 1

j
, 0...0, 1

k
, 0...0), we use c̃s(i, j, k) to denote the coefficients c̃s(β). By Theorem 2.1, we have

κ = d−(n+1)(c̃0(0) +O(d)),

κi = d−(n+1)(c̃1(i) +O(d)),

κii = d−(n+2)(c̃0(i, i) +O(d)),

κij = d−(n+1)(c̃2(i, j) +O(d)), i 6= j,

κiii = d−(n+2)(c̃1(i, i, i) +O(d)),

κiij = d−(n+2)(c̃1(i, i, j) +O(d)), i 6= j,

κijk = d−(n+2)(c̃1(i, j, k) +O(d)), i, j, k 6= .

It follows that

κi
κ = c̃1(i)

c̃0(0) +O(d), κii
κ = c̃0(i,i)

c̃0(0) d
−1 +O(1),

κij
κ = O(1), i 6= j, (4.11)

κiii
κ = c̃1(i,i,i)

c̃0(0) d−1 +O(1),
κiij
κ = c̃1(i,i,j)

c̃0(0) d−1 +O(1), i 6= j, (4.12)
κijk
κ = c̃1(i,j,k)

c̃0(0) d−1 +O(1), i, j, k 6= . (4.13)

From (2.27), we get

−(n+ 1)
ψijk
ψ = c̃1(i,j,k)

c̃0(0) d−1 +O(1), i, j, k 6=, (4.14)

−(n+ 1)
ψiij
ψ = ( c̃1(i,i,j)

c̃0(0) −
n+2
n+1

c̃1(j)
c̃0(0)

c̃0(i,i)
c̃0(0) )d−1 +O(1), i 6= j, (4.15)

−(n+ 1)ψiiiψ = ( c̃1(i,i,i)
c̃0(0) − 3n+2

n+1
c̃1(i)
c̃0(0)

c̃0(i,i)
c̃0(0) )d−1 +O(1). (4.16)

We can always choose a coordinate system as in section 2 and such that (see the appendix in [3])∑
m

ammi = 0, for 1 ≤ i ≤ n− 1. (4.17)

From (4.2) and (4.7), we have

c̃1(β) = (−1)|β
′|

3
n+|β′|

2n−1c0(0)Γ(n+3
2 )Γ(n+|β′|

2 )Γ( 2n+|β′|+1+2βn
2 ) ·

∑
aijk

∫
fifjfk · (f ′)β

′
dS. (4.18)
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By the integral formula (2.23), we have∑
amnp

∫
fmfnfpfidS = aiii

∫
f4
i dS + 3

∑
m 6=i

ammi

∫
f2
mf

2
i dS

= 3ω0

n+1aiii + 3ω0

n+1

∑
m6=i

ammi

= 3ω0

n+1

∑
m

ammi, (4.19)

where ω0 = π
n−1

2 (Γ(n+1
2 ))−1 is the volume of the unit n− 1 ball.

∑
amnp

∫
fmfnfpfifjfkdS = 6aijk

∫
f2
i f

2
j f

2
kdS = 6ω0

(n+1)(n+3)aijk, i, j, k 6= . (4.20)

∑
amnp

∫
fmfnfpf

2
i fjdS = ajjj

∫
f2
i f

4
j dS + 3

∑
m 6=j

ammj

∫
f2
i f

2
j f

2
mdS

= ajjj

∫
f2
i f

4
j dS + 3

∑
m 6=i,j

ammi

∫
f2
i f

2
j f

2
mdS + 3aiij

∫
f4
i f

2
j dS

= 3ω0

(n+1)(n+3)ajjj + 3ω0

(n+1)(n+3)

∑
m 6=i,j

ammj + 9ω0

(n+1)(n+3)aiij

= 3ω0

(n+1)(n+3) (
∑
m

ammj + 2aiij), i 6= j. (4.21)

∑
amnp

∫
fmfnfpf

3
i dS = aiii

∫
f6
i dS + 3

∑
m 6=i

ammi

∫
f4
i f

2
mdS

= 15ω0

(n+1)(n+3)aiii + 9ω0

(n+1)(n+3)

∑
m 6=i

ammi

= 3ω0

(n+1)(n+3) (
∑
m

3ammi + 2aiii). (4.22)

By (4.17)-(4.22), we have

c̃1(i) = 0, (4.23)

c̃1(i, j, k) = − ω0

2n−2c0(0)n!(Γ(n+3
2 ))2aijk = − (n+1)2

2n n!aijk, i, j, k 6=, (4.24)

c̃1(i, i, j) = − ω0

2n−2c0(0)n!(Γ(n+3
2 ))2aiij = − (n+1)2

2n n!aiij , i 6= j, (4.25)

c̃1(i, i, i) = − ω0

2n−2c0(0)n!(Γ(n+3
2 ))2aiii = − (n+1)2

2n n!aiii. (4.26)

By (4.10), (4.14)-(4.16) and (4.23)-(4.26), we have

R = −n(n− 1) + 4d
(n+1)2

∑
i,j,p 6=

(( c̃1(i,j,p)
c̃0(0) )2 − c̃1(i,i,p)

c̃0(0)
c̃1(j,j,p)
c̃0(0) )

+ 8d
(n+1)2

∑
i 6=j

(( c̃1(i,i,j)
c̃0(0) )2 − c̃1(i,j,j)

c̃0(0)
c̃1(i,i,i)
c̃0(0) ) +O(d2)

= −n(n− 1) + 4d
∑
i,j,p 6=

(a2
ijp − aiipajjp) + 8d

∑
i 6=j

(a2
iij − aijjaiii) +O(d2)

= −n(n− 1) + 4d
∑
i,j,p

(a2
ijp − aiipajjp) +O(d2)

= −n(n− 1) + 4d
∑
i,j,p

a2
ijp +O(d2).
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From the formula (2.2), we know that the Fubini-Pick invariant of the hypersurface ∂Ω at the point y is given
by (for details see the appendix in [3])

J(y) = 2
2n+4
n+1

∑
i,j,k

a2
ijk. (4.27)

It follows that

R(x) = −n(n− 1) + 2
− 2
n+1 J(y) · d+O(d2).

Hence we have proved Theorem 1.1.

Acknowledgements
The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their
helpful comments and suggestions. The first author is supported by NSFC Grant 12061036.

Competing interests
The authors declare that they have no competing interests.

References

[1] Li, A. M., Simon, U., Zhao, G.: Global affine differetial geometry of hypersurfaces. Walter de Gruyter, Berlin (1993).
[2] Sasaki, T.: On the Green function of a complete Riemannian or Kähler manifold with asymptotically negative constant curvature and applications.

Adv.Stud.Pure Math. 3, 387-421 (1984).
[3] Sasaki, T.: A note on characteristic functions and projectively invariant metrics on a bounded convex domain. Tokyo J.Math. 8 (1), 49-79 (1985).
[4] Sasaki, T., Yagi, T.: Sectional curvature of projective invariant metrics on a strictly convex domain. Tokyo J.Math. 19, 419-433 (1996).
[5] Wu, Y.: The scalar curvature of a projectively invariant metric on a convex domain. J.Gemo. 109, (2018).
[6] Wu, Y.: The p-th characteristic function and associated metric on a convex domain. Adv.Math(China). 47 (1), 95-108 (2018).

Affiliations

YADONG WU
ADDRESS: Jiangxi Normal University, School of Mathematics and Statistics, 330022, Nanchang-P. R. China.
E-MAIL: wydmath@163.com
ORCID ID: 0000-0001-9762-0561

HUA ZHANG
ADDRESS: Science and Technology College of NCHU, 332020, Gongqing-P. R. China.
E-MAIL: zhanghuananhang@163.com
ORCID ID: 0000-0003-0698-2132

29 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg

	1 Introduction
	2 Boundary behaviors of the derivatives of (x)
	3 Improve the boundary estimates of 
	4 The scalar curvature of (, )

