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ABSTRACT

Considering a projectively invariant metric 7 defined by the kernel function on a strongly convex
bounded domain 2 C R", we study the asymptotic expansion of the scalar curvature with respect
to the distance function, and use the Fubini-Pick invariant to describe the second term in the
expansion. This asymptotic expansion implies that if » > 3 and (€2, 7) has constant scalar curvature,
then the convex domain is projectively equivalent to a ball.
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1. Introduction

Let Q be a strongly convex bounded domain with smooth boundary in R”, and Q* be the dual of © defined
by Q* = int{€ € R,|1+ (z,§) >0, for x € Q}. Sasaki [3] defined the characteristic function y and the kernel

function x of Q as follows

(@) = / nl(1+ (€,2) " e, (L1)
k(z) = / @0+ DI+ (6,2)) "2 - xq (6)de. (12)
S *
Next he defined two metrics
1 —1 1 —1
w = _Xm . dd(Xm), and T = —K2n+2 .dd(,{ﬁ% (1.3)

and proved they are complete Riemannian metrics and invariant under projective transformations. Also he
showed metrics w and 7 coincide with the Blaschke metric on a hyperbolic affine hypersphere when  is

projectively homogeneous.
In the paper [4], Sasaki-Yagi first gave the boundary behaviors of derivatives of the functions x and «, then

showed that the sectional curvatures of both metric w and 7 tend to —1 on the boundary 99. Wu [5] studied the
asymptotic expansion of the scalar curvature H of (2, w) and obtained

H(z)=-n(n—-1)+ 2_%4-1J(y) - dist(z,00) + O(dist(z,00)?), (1.4)

where J is the Fubini-Pick invariant of the boundary 9. By the theorem of Maschke-Pick-Berwald [1]: Every
locally strongly convex hypersurface with vanishing Fubini-Pick invariant must be a hyperquadric. Hence
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the estimate (1.4) implies that if n > 3 and the scalar curvature of ({2,w) is a constant, then Q is projectively
equivalent to a ball. When n = 2, the Fubini-Pick invariant of the boundary curve is zero, Wu [5] found that
the third term of the asymptotic expansion is also zero. Sasaki [3] also defined the p—th characteristic function
Xp and its metric w,, Wu [6] also considered the asymptotic expansion of the derivatives of x,, and proved that
the sectional curvature of (2, w,) tend to —1 on the boundary 9.

In this paper, we study the asymptotic expansion of the scalar curvature of (€2, 7) with respect to the distance
function, and use the Fubini-Pick invariant to describe the second term in the expansion. We obtain

Theorem 1.1. Let Q C R™ be a strongly convex bounded domain with smooth boundary, and R be the scalar curvature
of (2, 7). For x near 99, choose y(z) so that dist(x,y) = dist(z,0N), then

2
R(z) = —n(n — 1) + 27 n+1 J(y) - dist(z, 0Q) + O(dist(z, 0Q)?), (1.5)
where J is the Fubini-Pick invariant of the boundary Of.
By the result of Maschke-Pick-Berwald, we have

Theorem 1.2. Let Q C R™ (n > 3) be a strongly convex bounded domain with smooth boundary. If the scalar curvature
of (2, 7) is a constant, then Q) is projectively equivalent to a ball.

2. Boundary behaviors of the derivatives of «(x)

In this section we need the calculations in [4]. Let Q be a strongly convex bounded domain with smooth
boundary which contains the origin, and let Q* be the dual of 2. The star mapping defined as

" = —gradx(z) - ((n +1)x(z) + (gradx(z), )" 21

is a diffeomorphism of Q2 onto 2*, and can be smoothly extended to 9<2.
For a multi-index o = (a, ag, ...., 1) with |&/| = a3 + a2 + - - - + a1, we use the notations

& = (€1, En 1), (€)Y =€EM£52 .. g0 1

For a fixed point y € 02, we choose coordinates (z1,x2,...,2,) in R™ such that y = (0,0,....,0,y,) and
dist(ky,00Q) = dist(ky,y) for ke (0,1) sufficiently near 1. For simplicity, we assume y, = 1. We choose
coordinate such that the boundary 0©2 around y is written as

n—1
ta =1 =33 @) + 5 agrmimme+ Y aw (@) + Ol PN0+), 22)
i=1 la’[>3

where 2’ = (21, 22,...,2,—1) and Ny is a sufficiently large integer. Let y* denote the image of y by the star
mapping, then the boundary of 9Q* around y* is written as

n—1
En= =1+ Y (&2 + 3D binbliut D bar(€)” +O(EPN0T2). (23)
i=1 |

a’|>3

Setz = kyand 1+ ¢, =t, then 1+ (§,z) = kt + 1 — k. The derivative of « is given by

kg(z): = Lsﬂ‘c(ﬁ”)
b
= (_1)\ﬁ\(2n+|ﬁ|+1)!/ (kt +1 — k)~2n=2=181(4 — 1) B(t)dt, (2.4)
0
where
B = [ )7 (o ()70, b=max{1+€,). 25)
Q*N{1+&,=t}
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Choose ¢ with [(§) := 1+ &, sufficiently small so that d(¢, 0Q2*) is attained by a unique point ¢ € 0Q*. Then
¢ = (¢, ¢n) satisfies

G =& =(t-U)g (). (2.6)

Hence there exist the following approximate identities
d(&,6) = [t =1+ Y ab()* +0(s M), 2.7)

la/|>1
de' =d() 1+ Y ad ()= U™+ O( PN + Ot = 1) M), (2.8)

|a/|,m>1
()" = ()14 Y @t = 1™ + Ot = 1) M), (2.9)
m>1

where N; is a sufficiently large integer greater than the following integer No.
By the formula (2.3), the Gauss curvature of 0Q* at ¢ has the expansion

=2"71 4 Y ah ()Y + O(s PN, (2.10)

la/|>1

The characteristic function xo- has the asymptotic expansion (see [3])

n—1 1 _ntl 5 m N.
X (€) = c0(0)2°7 A1) 2d(E.<) 3 - (1+ 3 ald(&, )™ + O(d(€, <)), 211)
m>1
-1
where N = [2],and ¢o(0) =7 2 T'(24)
It follows that
’ ’ + ’
() (xa) e = b (@Ol -UNT A+ YD @ - 1"
|a/|[+m>1
+ O(s*) + O(Jt = U(s")|™))ds (2.12)
Put
Pym= > a5,()*, Poy=1 (2.13)
lo’|=q
Then the estimate of B(t) is obtained by computing the integral
1 na' ’ ’ m—&-LH ’
27n=T¢o(0) ()7 Pym ()|t —1(<)] 2 d¢'. (2.14)
Q*N{o<i(¢")<t}
Relative to the polar coordinates ; = r f;, we have
) =121+ 6r? +0(™)), @15
p>1
where N is a sufficiently large integer greater than N;.
Further set [(¢’) = tu?, then there exist v, such that
r=Viu(l+ Y v, (Viu? + O((Viu)°)), (2.16)

p>1
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Define 41, by
rt =2 e = (VEu) TV (14 (0 4+ Dpp(VEWP + O(VEu) o)) du. (2.17)
p>1

Hence

2n+k+2m+|ﬂ |

B(t) = M«»Z / Qg B(2E 2 n LT (£ ds +0(t™)

2n+z+|ﬁ \ ,
= Yo [y +o) (2.18)
i>0
where
Whm = > P+ V- Pam(f), aco=1, (2.19)
pta=Fk
and
/\i — 271/01)(0) Z ak,mB(n+32+27n7 n71+2k+|5 ‘) (220)
k+2m=1

In the following paper, we denote the distance function dist(x, Q) by d. Combining (2.4) and (2.18), Sasaki-Yagi
[4] obtained

248|428, +2 2271 k
rp=d= 2 (Y @(8)-d2 +0@™), (221)
k=0
here
62p+q(6) — (_1)\B/|P(2n+\5 |-&2-2+2;0+q)1—\(2n+\6 |+2;25n—2p—Q)(F(2n+IB |-i2-2—2p—Q))—1
p
ST - 1)) () s, 222)

J=0

where ¢ takes the value 0 or 1.
Because of the integral formula

(n4181-1) "

n—1
/H(fi’)ﬁidS: g,
=1

0, otherwise,

) when B;,1 <i < n—1are even,

(2.23)

Sasaki-Yagi divided into three cases
(case a): If every 3;, (i =1,---n — 1) is even, then cox11(8) = 0 for k > 0,
(case b): If at least one of 5;,(i =1, ---n — 1) is odd and |5’| is odd, then co(8) = 0 for k > 0,
(case c): If at least one of 3;, (i =1, ---n — 1) is odd and |5’| is even, then ¢o(8) =0, corr+1(8) =0 for k > 0.
According to the parity of the index 3 defined above, they obtained the following expansions

Theorem 2.1.
|| +2+28, N2l

(casea) kg=d 2 ( Z &2i(B) - d' + O(d™?)),
i=0

_2nt|f 41426, TR . Nl
(cased) rg=d 2 (Y @ia(B)-d'+0(d">"2)),
=0
N2—2

2n+ |8 |+26n 4
(casec) wp=d" 2 ( Z Gaig2(B) - d +O(d™71)).
i=0

dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function

Put
Y= —H‘%ﬂ, (2.24)
then the metric 7 defined in (1.3) is given by
T=— \/;wdd(\/@) =Y hijdwidzy, (2.25)
where
hij = 3(—5 + 552) = s 2 — atee e (2.26)

Here and later, 1;, v;;, vi;, denote the usual derivatives, and the matrix (h%/) denotes the inverse of the matrix
(hij). Then the boundary estimates of (h;;) and (k%) follow from in [4].

Lemma 2.1. The matrix (h;;) has the form:

d-! o(d—)
1 O(1)
Oo(1) E
d~*  0@d™)
O(d™1) o) d*
and (h*7) has the form:
d O(d?)
o(d*)
Hoow) :
d O
O(d)2) e e O(d2) d?
Take the logarithm on both sides of (2.24) and differentiate with respect to x:
—n+ DY =
e - ogeR
e o SRS ) G s (227)

The boundary estimates of v is given in [4].

Lemma 2.2. Assume n > 2, the derivatives of v up to third order have finite continuous values on 0Q except
1 3

Unns Ciin, Yinn, 1 < @ < n that are of order d” 2 at most, and .y, that is of order d”2 at most. Assume n > 4, the

1
derivatives of 1) up to third order have finite continuous values on 9 except V¥, that is of order d™ 2 at most.

3. Improve the boundary estimates of

In this section, we improve the boundary estimates of ¢ in the case of n < 3, which is crucial for the proof
of Theorem 1.1. In section 2, the authors wrote the the asymptotic expansion of xo- as in (2.11), but by [4], the
following asymptotic expansion also holds.

If n = 2, then
Y- (€) = 270(0)1() 2d(€, )2 (1 + a¥d(€, <) + Od(€.)2)), (3.1)
ifn = 3, then
Y- (©) = 260(0)3(c) 2d(€,6)2(1 4+ @d(E,<) + & - Ollog d(é, <))
= 20(0)9(s) 2d(,9) 2 (1 + ald(€,) + O(d(E,)?)). (32)
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Thus for n < 3, we have

n—1 1 n+1 3
X (€) =272 co(0)7(5)2d(§,9)" 2 (1+ald(§,) + O(d(§,)2)). 3.3)

By the computations in section 2, we have the following estimates:
(case a): Ifevery 3;, (i=1,---n —1) is even, then

2n+|8"|+24+28n 3
kg =d~ 2 (¢o(B) + &2(B) - d + O(d2)). (3.4)

(case b): If at least one of §;,(i =1,---n — 1) is odd and |5’| is odd, then

2n+|B8'|[+1+28,

kp=d 2 (a(B)+0(d)). (3.5)

Here we need not consider the (case c). In the following estimates, the first n — 1 components of 3 = (§', 8,)
and the last component §,, play different roles. By (2.22), we have

G, B+ 1) = ZHE2But2mi 5 5 3, (3.6)
60(517 "'761' + 27 "'7Bn—17ﬁn) = (@nt]5 |+25n+2 J(Bit1) (ﬁl) . 751'7 "'75”—155”)' (37)

We need not to make any distinction among the first n — 1 components, hence use the abbreviation (p; ¢) for
denoting 5 = (p,0...0, ¢). By (3.4)-(3.5), we have

—(n+1) ~ 3
ko= 4 (E(0) +&(0) - d + O(d2)),
k1 = d-™TV(E(1;0) 4+ O(d)),
2 3
kn = d- T (E(0;1) + E(0;1) - (d2)),
3
K11 = d_("+2)(60(2;0)+52(2;0)~d+O(d§)),
ki = d-"2(E(1;1) 4+ O(d)),
3
fonm = A" (E(0;2) 4 &(0;2) - d + O(d2)),
Fian = A (@ (1:2) + O(d)),
3
rin = A7 (E(21) + E(21) - d + 0(d?)),
3
Funn = A~ (E(0;3) + E2(033) - d + O(d2)).
Put
¢1(1;0 _ ¢2(0
= ;t(E(o))v C2 = aigog' (3.8)
Hence by (3.6)-(3.8), we have
L= ¢ +0(d),
3
Kn _ 1/ ¢o(0;51 ¢2(0;51 ¢ (051 =
o= d (2((0)) +( i((o)) —C2 g((O))) d+0(d2)),
1
= (n+1)d" —cy+0(d2),
o= 2dTT+0(),
Ee = (n+1ad +0(D),
fmm =2 (& (0;2 5(0;2) G0 (0:2 3
o= d (g((o)) + ( éé(o) -7 (0))) d+0(d2)),
1
= (n+2)(n+1)d?—2(n+1)cd ' +0(d"2),
Klnln _ (n+2)2(n+1)d +O( )’
fan = (n+2)(n+1)ad > +0(d™),
nnn  — —3(&0(0;3) 22(0;3 &0(0;3 3
mame = 73900 4 (208 0, B0+ O(d2).

3
2

= (n4+3)(n+2)(n+1)d>—=3(n+2)(n+1)cd 2 +0(d"2).
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By (2.27) we know
R R R S R o e
Yinn _  Einn +2 (Enn K Kin Kn (n42)(2n+3) K1 Kn En
—(n+1)Fpe = S - TR 25 ) g R
Ynnn  _  Enan +2 fnn Kn | (P12)(2043) Ky K fn
—(n1)Spe = e 30 e e 4 S

The direct computations show that 111, ¥1,, have finite continuous values on 99, and ¢, is that of order
1

d~ 2 at most. Based on Lemma 2.2, we have

Lemma 3.1. Assume n > 2, the derivatives of 1) up to third order have finite continuous values on 0SY except W,y that

1
is of order d” 2 at most.

4. The scalar curvature of (2, 7)

Now we need compute the coefficients & (0) and ¢; () explicitly. By (2.19)-(2.22), we have

Z(0) = m(r(nﬂ))?B(nT—l,nT%)/dS: am)y (4.1)
We also have
a(f) = (—1)1 DS ) p (2 2 / M- (f)7ds
= g (- DVPIT () ()2 20 ) / aro- ()7 ds. (4.2)

Formulas (2.7)-(2.12) give

By (2.3)-(2.19), we get

aro = 2u1+ Pro(f)
= (+[BNor+ Y ade- (1) (4.3)
la/|=1
= - Y binfifif =2 > ab- (). (4.4)

lo’|=1
By (2.3), we get the Gauss curvature of 9Q* at ¢ has the expansion
o) =21+ 2772 “biins + O(Is' ). (4.5)

On the other hand, By (2.2)-(2.3) and the definition of star mapping we have the relation (see the section 4 in
(3D

bijk = —8aijk.- (4.6)
Hence
ap = 7% Zbijkfifjfk - izbnkfk
= %(”JF|5/|)Zaijkfifjfk+22ankfk. 4.7)

Next we expand the scalar curvature of (€2, 7) with respect to the distance function, the Riemannian curvature
tensor of (2, ) is given by (see [2])

Rijri = —(hithji — hikhji) — ﬁ Z WP (Ypirthgin — Vpitqit), (4.8)

p,q=1
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Hence the scalar curvature R of (£, 7) is given by
R=—n(n—1)+ g Y W' WP R Wpintbgit — Ypirthain)- (4.9)

Lemma 2.1 and Lemma 3.1 give

R = —n(n—1)+4 ) A7y " prr((i)? — Lei ey 4 O(d?)
i#j p<n
= —n(n—1)+d2) D hPP((Lei)? — Lei i) 4 O(d?)
i#j p<n
= —n(n—1)+4d® D ((Lzi2)? - Lo len)
i,3,p7
+ 8d3 Z wuy ‘/)zm 1/)1“ ) + O(dQ) (410)

i#]
where “i, 7, p 2" means these indices are different from each other.

In the following we assume the indices rang from 1 to n — 1, and for the multi-index 8 = (0...0, 1, 0...0, 1, 0...0),
we use é(i,j) to denote é,(3) in Theorem 2.1; if 8= (0...0,1,0...0), we use ¢s(i) to denote Cs (ﬁ),‘ if p=
(0...0,1,0...0,1,0...0, %, 0...0), we use &(4, j, k) to denote the coefficients ¢;(/53). By Theorem 2.1, we have

i j

ko= d”"(E(0) + O(d)),
ki = d-"TD(E () 4+ 0(d)),
ki = d- "D (E(i,4) + O0(d)),
kg = d-"T(@,5) +0(d), i#],
Kiiq = d_(n+2) (El (Z7 7;7 Z) + O(d))u
ki = d-"D(E0,0,5) + O(d), i # 7,
Rijk = d_(n+2) (51(7;’.77 k) + O(d))7 Zajvk 7é
It follows that
o= B (O L4 O(d), fs= 5go<;6§>d—1+0(1) 5= O(1), i # 4.11)
ma = AEGHdT HO(1), SR =tgld 0, i #), (4.12)
o= SR H00), gk (4.13)
From (2.27), we get
~( 1t = alBIT L 0(1), Qg k4 (4.14)
~(n+ 1) = (7“5{;(73’;) - 2280 1 0(1), i# (4.15)
iii _ 61 i,i,i) n (,1( ) (/0(7, 3 —_
(418 = () gna2 8l LGyt 4 O(1), (4.16)

We can always choose a coordinate system as in section 2 and such that (see the appendix in [3])

Zammi:Q for1<i<n-—1. (4.17)
From (4.2) and (4.7), we have
~ N n n n ! n ’
&(8) = E— I8 Lop (22 ) p (2 A p (2t 20y N,y / fififi - (£)7ds, (4.18)
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By the integral formula (2.23), we have

> mp / FmfnfpfidS = i / F1AS 43 amm / f2,f2ds

m#i
3 3
= niol Qi + n‘j_ol Z Gmmi
3w
= ”+01 Z ammiv (419)

m

n—1

wherewy =7 2 (T'(21)) ™! is the volume of the unit n — 1 ball.

S oy [ FmfuluifsfedS = baig [ £2126205 = oo ann. gk (4.20)
Sy [ Fdaaf2 508 = asyy [ 2500843 Y amny [ £2£21208
m#j
= ajj / F11AS 43 Gmmi / FRI2f2.dS + 3a;; / firzds
m#£i,j
3w w
= GIeTy%ii T 4(%?)(3#3) Z Ammg + 4(n+%(%+5)ana
m#i,j
= o5t O ammy + 2ai5), i # 5 (4.21)
3 _ 4 p2
S oy [ Fnfufoff0S = s [ £245 43 an [ if208
m#i
o 15wq 9wo
= w3 %i T GiDnTs) Gmmi
= ol Zgamm + 2a;:;). 4.22)
By (4.17)-(4.22), we have
&1(i) =0, (4.23)
&1(i, k) = — gl (D)) 2ase = — "5 nlage, i,k #, (4.24)
61(2717.7) = _2n+20(0)n!(r‘(n7+3))2aiij - (n+1) Tl'a,“], ( 7é j7 (425)
¢1(i,1,1) = —ﬁmn!(lﬂ(%’g))%m = —(”;nl)znlaiii- (4.26)
By (4.10), (4.14)-(4.16) and (4.23)-(4.26), we have
o d ¢1(%,4,p) ¢1(4,2,p) ¢1(4,7,
R = —n(n-1)+ g3 D () - 2P )
i,§,p#
¢1(4,4,5) ¢1(4,7,7) ¢1(4,3,1
+ e (R - S ) + 0
i#j
= —n(n—1)+4d Y (a};, — aipajp) +8d Y _(al; — aijjaii) + O(d°)
i.j.p# i#j
= -n(n—1)+4d Z(a?jp — Qiipagjp) + O(d®)
4,J,p
= —n(n—1)+4d) _af, +O(d).
4,3,p
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From the formula (2.2), we know that the Fubini-Pick invariant of the hypersurface 0} at the point y is given
by (for details see the appendix in [3])

2n+4
Jy) =274 > a. (4.27)

4,5,k

It follows that

R(z)=-n(n—-1)+ 2_%J(y) -d+ O(d?).

Hence we have proved Theorem 1.1.
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