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Bu çalışmada, Altın Kartal Optimizasyon (AKO) algoritmasının 

performansını iyileştirmek için AKO algoritmasının parametreleri optimize 

edilmiştir. Bu sayede algoritmanın parametresinin en iyi değerinin elde 

edileceği ve elde edilen parametre değerleri için algoritmanın daha kararlı bir 

işlem gerçekleştireceği öngörülmektedir. Algoritmanın parametre 

optimizasyonu birçok çalışmada kullanılmaktadır. AKO algoritmasının iki 

farklı parametre değeri vardır. Bu parametreler sırasıyla saldırı ve seyirdir. 

Seyir parametre değeri [0.5-1], saldırı parametresi değeri [0.5-2] arasındadır. 

Algoritmanın her bir parametre değeri için 23 farklı kıyaslama fonksiyonu 

üzerinde deneysel çalışmalar yapılmıştır. Deneysel çalışma sonuçlarında en 

iyi parametrelerin değerleri belirlenmeye çalışılmıştır. Unimodal benchmark 

test fonksiyonlarında seyir parametresi 0.75 değeri ile iyi sonuçlar elde 

etmiştir. Saldırı parametresi ise fonksiyonlara bağlı olarak 1.5'e yaklaştığında 

optimum sonuca doğru yakınsadığı tablo ve grafiklerde verilmiştir. Benzer 

şekilde, multimodal kıyaslama testi sonuçlarında, seyir parametresi 0.75 

değeri ile benzer şekilde iyi sonuçlar hesaplamıştır. Fonksiyonların 

özelliklerine bağlı olarak, değer 1.5'e yaklaştıkça saldırı parametresinin 

değerinin daha iyi bir çözüm bulduğu tablo ve grafiklerde gösterilmiştir. 
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 In this study, in order to improve the performance of the Golden Eagle 

Optimization (GEO) algorithm, the parameters of the algorithm were 

optimized. In this way, it is predicted that the best value of the algorithm's 

parameter will be obtained and the algorithm will perform a more stable 

operation for the obtained parameter values. The algorithm’s parameter 

optimization is used in many studies. There are two different parameter values 

of the GOE algorithm. These parameters are attack and cruise, respectively. 

Cruise parameter value is between [0.5-1] and attack parameter value is 

between [0.5-2]. Experimental studies were carried out on 23 different 

benchmark functions for each parameter value of the algorithm. In the 

experimental study results, the values of the best parameters were tried to be 

determined. It is shown in the tables and graphics that the solutions converge to 

the optimum result when the cruise parameter approaches 0.75 and the attack 

parameter 1.5 for the unimodal benchmark test functions. Similarly, for 

multimodal benchmark functions, it is seen in the tables and graphs that the 

attack parameter is 1.5 and the cruise parameter is 0.75.  
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Introduction  
Optimization is the process of obtaining the best value of the objective function under certain 

constraints (Beşkirli and Dağ, 2022). Metaheuristic algorithms do not guarantee that they will obtain 

exact results for all optimization problems (Beşkirli and Dağ, 2020; Beşkirli et. al., 2020). However, 

they try to achieve the best results. Metaheuristic algorithms give better results than classical methods. 

In this study, Golden Eagle Optimization (GEO) algorithm was used. Although optimization 

algorithms try to achieve good results, the algorithm will be able to achieve better results with the 

improvements to be made on the algorithm. The best parameter level of the GEO algorithm was 

investigated in this study. It affects the success of the result to be obtained by parameter arrangement 

of the algorithm. For this reason, the parameter values that we think will be suitable for many 

problems in the literature have been applied to the benchmark functions and the best parameter values 

have been recommended. There are many studies in the literature on this subject. When these studies 

are examined, it is stated that the performance of the algorithm is at the highest level when the 

parameters of the algorithms are at the best value. Some of these studies are (Akay and Karaboga, 

2012; Brest et. al., 2017; Brest et. al., 2008; Cicirello and Smith, 2000; Grefenstette, 1986; Luo et. al., 

2016; Michalewicz and Schoenauer, 1996; Rao et. al., 2012; Zhangqi et al., 2011). Some studies on 

GOE in the literature are as follows: GOE algorithm was developed by Pan et al. (2022) and 3D UAV 

path planning process was performed. The method proposed by Pan et al. (2022) was called the GEO-

DLS method and this method was used to improve the search capability of GEO. In GEO-DLS, it has 

been seen that the parameters are used with the values in the original form of GEO. A secure Ad Hoc 

optional distance vector routing protocol study with the improved GEO algorithm by Joshi and Biradar 

(2021). In this study, it was observed that no changes were made in the parameters of the GEO 

algorithm. Ilango et al. (2021) proposed a hybrid approach with GEO in order to achieve an optimum 

distribution over the distribution network. Thus, they aimed to minimize the cost through optimal 

allocation as parking space for electric vehicles. However, it was observed that no change was made in 

the parameter values of the GEO algorithm. Selimyan and Musavi (2021) used the GEO aggregation 

to design the organ transplant supply chain network problem. In this study, it has been seen that the 

parameters of the GEO algorithm are used in their original form. Abdel-Basset et al. (2022) made a 

comparison with the algorithms recently proposed by high-dimensional knapsack problems. These 

algorithms include the GEO method, but it has been observed that no changes have been made in the 

parameters of the GEO method. Vijh et al. (2021) solved the feature selection method for histological 

images using the GEO algorithm. An innovation has been made on the GEO algorithm, but it has been 

observed that no changes have been made on the parameters.  

In this study, the parameter determination of the GEO algorithm was made by taking the cruise 

parameter between [0.5-1] and the attack parameter between [0.5-2] values. The improved parameters 

of the GEO algorithm are applied to 7 unimodal and 16 multimodal benchmark functions. When the 
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attack and cruise parameters were 1.5 and 0.75, respectively, better solutions were obtained than the 

original parameter values of GEO. Obtained results are given with tables and convergence curves. 

 

Material and Methods 

 

The Golden Eagle Optimizer Algorithm (GEO) 

 

The golden eagle optimizer algorithm (GEO), one of the nature-inspired algorithms, was proposed by 

Muahmmadi-Balani (Mohammadi-Balani et. al., 2021) in 2021 based on the superior vision, high 

speed and very strong claws of golden eagles. During the hunting process of golden eagles, they first 

draw a circular trajectory for hunting and follow a straight path for hunting. The mathematical 

modeling of this algorithm is firstly the spiral movement of golden eagles. Afterwards, the prey 

selection process takes place. Then it is attacked. Then the travel vector is calculated. Then, the 

transition to new positions is made to replace the golden eagles. There is a transition from exploration 

to exploitation. A related image is given in Figure 1. 

 

Figure 1. Correlation steps between exploration and exploitation in golden eagles (Mohammadi-Balani et al., 

2021) 

 

The main steps of golden eagles are shown in Figure 2. The prey is selected first, respectively. Then 

vector calculation for the attack is performed. Then the cruise plane is created. A vector is then 

randomly selected from the generated course plane. Finally, the process is terminated with the step 

vector. 
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Figure 2. The main steps of golden eagles (Mohammadi-Balani et al., 2021) 

 

Benchmark Functions 

The parameters of the GEO algorithm were applied to 23 different benchmark problems to obtain the 

optimum value. These problems consist of unimodal and multimodal functions. Unimodal benchmark 

functions are given in Table 1. Multimodal benchmark functions are given in Table 2. 

 

Table 1. Unimodal benchmark functions (D: Dimension) 

Fn. Name D Search Range Function      
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Table 2. Multimodal benchmark functions (D: Dimension) 

Fn. Name D Search Range Function      
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Results and Discussion 

To find the best parameter values, 23 different comparison functions were applied to the GEO 

algorithm. The best values obtained for the unimodal benchmark functions solution are given in Table 

3-4. The best values obtained for the solution of multimodal benchmark functions are given in Table 

7-8. Convergence curves obtained for unimodal benchmark functions according to different attack and 
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cruise parameter values are given in Tables 5 and 6, and multimodal benchmark functions are given in 

Table 9-10. 

 

Table 3. Best values of unimodal functions according to attack and cruise parameters 

 Values of Parameters 

Func. Attack 0.5 1 
Cruise 0.5 0.75 1 0.5 0.75 1 

F1 Best 1.52E-03 1.89E-14 6.23E-18 8.71E-05 3.52E-06 0.00E+00 
F2 Best 3.85E-09 1.03E-51 1.16E-22 1.55E-13 4.59E-100 9.20E-77 

F3 Best 2.53E-13 2.13E-66 2.18E-28 5.87E-189 5.44E-20 1.02E-96 

F4 Best -9.53E-01 -1.00E+00 -1.00E+00 -9.86E-01 -1.00E+00 -1.00E+00 
F5 Best -2.57E+00 -4.40E+00 -4.16E+00 -2.59E+00 -1.00E+00 -4.91E+00 

F6 Best 8.23E+02 2.94E-04 6.71E-03 6.74E+02 4.35E-10 8.31E-13 

F7 Best 4.57E+00 3.53E-07 3.49E-05 3.36E+00 1.03E-11 2.26E-15 

 

Table 4. Best values of unimodal functions according to attack and cruise parameters 

 Values of Parameters 

Func. Attack 1.5 2 
Cruise 0.5 0.75 1 0.5 0.75 1 

F1 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
F2 Best 2.14E-140 9.90E-103 1.94E-73 5.87E-103 7.92E-75 1.74E-54 
F3 Best 6.67E-182 2.30E-143 1.07E-104 7.92E-136 2.01E-103 2.71E-73 

F4 Best -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 

F5 Best -4.78E+00 -4.94E+00 -4.77E+00 -4.86E+00 -4.76E+00 -4.37E+00 

F6 Best 4.52E-09 3.53E-14 7.99E-10 1.43E-10 2.19E-08 4.82E-04 
F7 Best 5.77E-11 2.31E-16 7.20E-13 2.13E-12 3.52E-11 1.25E-06 

 

Table 5. Convergence curves by parameter values for unimodal benchmark functions (A: Attack, 

C: Cruise) 

 
Values of Parameters 

A 0.5 1 

C 0.5 0.75 1 0.5 0.75 1 

F1 

      

F2 
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F3 

      

F4 

      

F5 

      

F6 

      

F7 

      

 

Table 6. Convergence curves by parameter values for unimodal benchmark functions (A: Attack, 

C: Cruise) 

 

Values of Parameters 

A 1.5 2 

C 0.5 0.75 1 0.5 0.75 1 

F1 
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F2 

      

F3 

      

F4 

      

F5 

      

F6 

      

F7 

      

 

When the results and convergence curves for the unimodal functions are examined, it is seen that the 

algorithm achieves the best value when the Attack and Cruise parameters are 1.5 and 0.75, 

respectively. 
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Table 7. Best values of multimodal functions according to attack and cruise parameters 

 Values of Parameters 

Func. Attack 0,5 1 
Cruise 0,5 0,75 1 0,5 0,75 1 

F8 Best -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 
F9 Best -9.12E+02 -9.60E+02 -9.60E+02 -8.95E+02 -9.60E+02 -9.60E+02 

F10 Best 3.11E-08 0.00E+00 3.64E-03 0.00E+00 0.00E+00 0.00E+00 

F11 Best 7.65E-08 1.35E-31 1.97E-19 4.16E-10 9.56E-29 1.35E-31 

F12 Best 6.75E+00 2.32E+00 3.82E-02 6.25E+00 2.32E+00 3.65E-07 
F13 Best 5.19E+01 3.06E-02 9.29E-02 3.21E+01 1.51E-02 8.10E-08 

F14 Best 1.83E-01 2.94E-01 3.19E-01 2.44E-01 2.27E-01 2.46E-01 

F15 Best -7.14E+00 -8.68E+00 -6.05E+00 -8.95E+00 -9.31E+00 -8.57E+00 

F16 Best 6.22E+00 7.35E-01 2.66E-03 3.92E+00 1.03E+00 2.09E-01 
F17 Best 5.93E+01 4.38E-03 4.06E-03 3.54E+01 7.22E-03 1.10E-02 

F18 Best 7.42E+00 7.32E+00 5.47E+00 7.26E+00 6.71E+00 3.97E+00 

F19 Best 2.86E+07 2.87E+02 1.56E+03 1.52E+07 1.39E+00 2.19E-01 

F20 Best 1.16E+02 1.15E+01 1.80E+02 7.63E+01 1.09E+01 2.09E+01 

F21 Best 3.81E+04 4.35E+00 1.12E+02 1.83E+04 2.39E+00 6.91E+01 
F22 Best 2.70E+00 4.00E-01 3.00E-01 3.20E+00 6.00E-01 2.00E-01 

F23 Best 1.49E-11 2.63E-11 3.75E-11 7.17E-12 5.53E-21 6.14E-24 

 

Table 8. Best values of multimodal functions according to attack and cruise parameters 

 Values of Parameters 

Func. Attack 1.5 2 
Cruise 0.5 0.75 1 0.5 0.75 1 

F8 Best -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 -1.00E+00 
F9 Best -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 

F10 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F11 Best 1.35E-31 1.35E-31 1.35E-31 1.35E-31 1.35E-31 1.35E-31 

F12 Best 3.98E+00 5.78E-08 1.54E-05 8.68E-04 9.31E-01 9.30E-03 
F13 Best 7.48E-03 8.09E-09 5.88E-06 9.86E-03 4.67E-05 1.80E-02 

F14 Best 4.18E-01 2.77E-01 4.10E-01 2.37E-01 3.21E-01 2.19E-01 

F15 Best -9.13E+00 -9.24E+00 -8.94E+00 -8.35E+00 -8.77E+00 -7.67E+00 

F16 Best 1.53E-01 1.04E-01 1.46E-07 1.15E-07 1.90E-07 1.15E-03 
F17 Best 1.10E-02 2.42E-10 1.98E-07 6.91E-09 3.10E-07 7.00E-04 

F18 Best 1.56E+00 1.58E+00 1.93E+00 1.98E+00 2.28E+00 1.80E+00 

F19 Best 8.10E-01 3.39E-03 2.88E-01 3.08E-01 2.18E+00 6.07E+01 

F20 Best 1.39E+01 4.38E+01 4.38E+01 3.88E+01 2.49E+01 1.44E+02 
F21 Best 8.08E+01 6.85E+01 2.21E+01 5.48E-01 1.06E+01 9.73E+01 

F22 Best 1.10E+00 3.00E-01 3.00E-01 5.00E-01 3.00E-01 4.01E-01 

F23 Best 6.70E-22 5.48E-27 3.84E-21 4.02E-22 2.37E-19 3.07E-16 
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Table 9. Convergence curves by parameter values for multimodal benchmark functions (A: Attack, 

C: Cruise) 

 

Values of Parameters 

A 0.5 1 

C 0.5 0.75 1 0.5 0.75 1 

F8 

      

F9 

      

F10 

      

F11 

      

F12 

      

F13 
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F14 

      

F15 

      

F16 

      

F17 

      

F18 

      

F19 

      

F20 
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F21 

      

F22 

      

F23 

      

 

Table 10. Convergence curves by parameter values for multimodal benchmark functions (A: Attack, 

C: Cruise) 

 
Values of Parameters 

A 1.5 2 

C 0.5 0.75 1 0.5 0.75 1 

F8 

      

F9 

      

F10 
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F11 

      

F12 

      

F13 

      

F14 

      

F15 

      

F16 

      

F17 

      

F18 
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F19 

      

F20 

      

F21 

      

F22 

      

F23 

      

 

When the results and convergence curves for the multimodal functions are examined, it is seen that the 

algorithm achieves the best value when the Attack and Cruise parameters are 1.5 and 0.75, 

respectively. 

In this study, cruise and attack parameters of the GEO algorithm are optimized using unimodal and 

multimodal benchmark functions. In Table 3 and Table 4, rank analysis based on the number of 

functions in which unimodal benchmark functions are successful is performed. In Figure 3, rank 

success numbers for Unimodal benchmark functions are given. According to the rank analysis, when 

the attack parameter of the GEO algorithm is 1.5 and the cruise parameter is 0.75, it is seen in Figure 3 

that the best values are obtained in unimodal functions. 
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Figure 3. Rank Analyses for Unimodal Benchmark Functions (A: Attack, C: Cruise) 

 

In Table 7 and Table 8, rank analysis based on the number of functions in which the multimodal 

benchmark functions were successful was performed. In Figure 4, rank success numbers for 

Multimodal benchmark functions are given. According to the rank analysis, when the attack parameter 

of the GEO algorithm is 1.5 and the cruise parameter is 0.75, it is seen in Figure 4 that the best values 

are obtained in multimodal functions. 

 

 

Figure 4. Rank Analyses for Multimodal Benchmark Functions (A: Attack, C: Cruise) 

 

In the original article of the GEO algorithm, it was stated that the lowest objective function value was 

obtained in the range of attack parameter [0.5-2.0] and cruise parameter [1.0-0.5] (Mohammadi-Balani 

et al., 2021). The parameter values of GEO are taken as linear increasing for attack parameter and 



249 

 

linear decreasing for cruise parameter (Mohammadi-Balani et al., 2021). However, in this study, it is 

proved both in the tables and in Figures 3 and 4 that better results are obtained if the attack parameter 

is 1.5 and the cruise parameter is 0.75. 

 

Conclusion 

In this study, the best parameter value for the benchmark functions of the attack and cruise parameters 

of the golden eagle’s optimization (GEO) algorithm is calculated. An evaluation was made according 

to the effect of these parameters on the functions. The attack parameter of the algorithm is between [0-

2] and the cruise parameter is between [0-1]. As a result of the calculation on the functions of the 

algorithm, it is seen that the attack parameter is 0.75 and the cruise parameter is 1.5, and it is the best. 

The algorithm achieved the best results in both unimodal functions and multimodal functions at the 

specified parameter values. Separate convergence plots were found to be the best in these results. In 

the rank analysis, it has been determined that the GEO algorithm attack and cruise parameters are 

more successful in benchmark functions when they are 0.75 and 1.5, respectively. As a result, it is 

recommended that the golden eagles optimization algorithm achieves the best result in these parameter 

values and it is recommended to use these parameter values in overnight studies. In the next studies, it 

is aimed to solve real world problems by making improvements on the algorithm by using this 

parameter value and providing a performance shot. 
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