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Abstract. We introduce some new lattices of classes of modules with respect

to appropriate preradicals. We introduce some concepts associated with these

lattices, such as the σ-semiartinian rings, the σ-retractable modules, the σ-

V -rings, the σ-max rings. We continue to study σ-torsion theories, σ-open

classes, σ-stable classes. We prove some theorems that extend some known

results. Our results fall into well known situations when the preradical σ is

chosen as the identity preradical.
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1. Introduction

Lattices and big lattices of module classes has been studied to obtain information

about the underlying ring R and about its associated module category. For exam-

ple, the big lattice of preradicals and some associated lattices of special kinds of

preradicals have provided a wealth of information about the rings and their module

categories.

Similar considerations can be made about module classes lattices defined by

closure properties. Some examples of these lattices are: the lattice of the natural

classes, the lattice of the hereditary torsion classes, the lattice of Serre classes, that

of the Wisbauer classes and some others.

In [6], the big lattices of module classes induced by a preradical σ over R-Mod

were introduced, for example, the lattices of σ-hereditary classes, of σ-cohereditary

classes, of σ-natural classes, and of σ-conatural classes. Note that the σ-open classes

lattice and the σ-torsion theories lattice were also introduced in the same paper.

Our objective in this work is to introduce some new lattices of module classes

with respect to a preradical σ, to use these lattices to set properties for rings and for
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their module categories. We introduce the σ-semiartinian rings, the σ-retractable

modules, σ-V -rings, and σ-max rings. We extend some well known results in the

literature.

2. Preliminaries

2.1. Preradicals and classes of modules. In this section, we present basic

results about preradicals on R-Mod and about classes of modules. For more in-

formation about preradicals, see [5], [11] and [14]. We refer to [1], [4], and [7], for

basic results about hereditary, cohereditary, natural, conatural and open classes.

A preradical on R-mod is an assignment σ : R-Mod → R-Mod such that for each

M ∈ R-Mod, σ(M) ≤ M and for each R-morphism f : M → N , f(σ(M)) ≤ σ(N).

σ is a subfunctor of the identity functor on R-Mod. R-pr denotes the collection of

all preradicals on R-Mod.

In R-pr, we have two binary operations, one of them called the product, denoted

with “·” and the other called the coproduct denoted with “:” given by:

(σ · τ)(M) = σ(τ(M)),

(σ : τ)(M) is defined by (σ : τ)(M)/σ(M) = τ(M/σ(M)).

We will write στ instead of σ · τ . A preradical σ is called idempotent if σσ = σ,

and σ is called a radical if (σ : σ) = σ.

Let us recall that σ is a radical if and only if σ(M/σ(M)) = 0, for each M ∈ R-

Mod. σ is t-radical if and only if σ(M) = σ(R)M . t-radicals are precisely the

preradicals preserving epimorphisms. t-radicals are also called cohereditary radicals.

A preradical σ is a left exact preradical if it is a left exact functor. This is

equivalent to the condition that for each submodule N of a module M we have that

σ(N) = N ∩ σ(M). That σ is a left exact preradical it is also equivalent to that σ

is an idempotent preradical and Tσ is a hereditary class.

We will denote R-id, R-rad, R-lep, R-radid the collections of idempotent prerad-

icals, of radicals, of left exact preradicals, and of idempotent radicals, respectively.

Each preradical σ has associated the class Tσ = {M ∈ R-Mod | σ(M) = M}.
This class is closed under quotients and direct sums and it is called the σ-pretorsion

class.

Let us recall that a class of R-modules is a pretorsion free class if it is closed

under taking submodules and direct products. Each σ ∈ R-pr has associated the

pretorsion free class Fσ = {N ∈ R-Mod | σ(N) = 0}.
We say that a moduleM splits in a preradical σ ifM = σ(M)⊕M ′ for someM ′ ≤

M . Notice that in this case, σ(M ′) = 0, σ(σ(M)) = σ(M) and σ(M/σ(M)) = 0.
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σ ∈ R-pr is stable (costable) if for each injective (projective) module Q, Q splits

in σ. This implies that σ(Q) is an injective (projective) module. We say that σ

centrally splits if for each R-module M we have that M = σ(R)M ⊕ M ′, with

M ′ = {m ∈ M | σ(R)m = 0}, for further information, see [5], Chapter I.

We say that a two sided ideal I of a ring R is pure if IJ = I ∩J for every ideal J

of R. For a two sided ideal I we have that I is a pure ideal ⇔ for each M ∈ R-Mod

and N ≤ M , IN = N ∩ IM ⇔ R/I is a flat module (see [14] Chap. I, §11) ⇔ for

all a ∈ I, a ∈ Ia. Notice that if I is a pure ideal, then the preradical I · − is exact.

Remark 2.1. ([14], page 157) Take σ ∈ R-pr. The following conditions are equiv-

alent:

(1) σ is a t-radical.

(2) σ preserves epimorphisms.

(3) σ is a radical and Fσ is closed under quotient modules.

If σ is an exact preradical, then σ is a t-radical and σ(R) is a pure ideal because

for each M ∈ R-Mod and N ≤ M we have that σ(R)N = σ(N) = N ∩ σ(M) =

N ∩ σ(R)M .

If I ≤ R is a pure ideal, then I defines an exact preradical σ by σ(M) = IM .

2.2. Classes of modules. A lattice L is bounded if it has a smallest element

(usually denoted by 0) and a largest element (usually denoted by 1). In a lattice L

with 0, an element a∗ is a pseudocomplement of a ∈ L, if a∧a∗ = 0 and a∗ is maximal

in L with respect to this property. We say that a∗ is a strong pseudocomplement

of a if it is the largest element in L with respect to a ∧ a∗ = 0.

We will denote Skel(L) = {a∗ | a ∈ L} and we will call it the skeleton of L. In a

bounded lattice L, we will say that a∗ ∈ L is a complement of a ∈ L if a∗ ∧ a = 0

and a∗ ∨ a = 1.

If L is a proper class instead of a set, we will say that L is a big lattice.

A class of left R-modules is called an abstract class if it is closed under tak-

ing isomorphic copies of its members. We consider some closure properties of a

class of modules, like being closed under submodules, quotients, extensions, di-

rect sums, injective hulls, products or projective covers, we will use the symbols

≤, ↠, ext, ⊕, E,
∏
, P respectively, to abbreviate. If A denotes a set of these

closure properties, we denote LA the proper class of classes of modules closed under

each closure property in A. So, L{≤} denotes the proper class of hereditary classes

in R-mod, L{≤,⊕,E} denotes the class of natural classes, and so on.
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We should notice that LA becomes a complete big with inclusion of classes

as the order and with infima given by intersections. We will denote ξA (C ) the

least class in LA containing C and by χA (C ) the largest class in LA contained in

C . Thus ξ{≤} (C ) denotes the hereditary closure of C , and ξ{↠} (C ) denotes the

homomorphic image closure of C . ξ{≤} (C ) will be denoted also S(C ) and ξ{↠} (C )

will be denoted also H(C ).

The big lattice of torsion theories is denoted by R-TORS (see [14], Chapter VI),

and the lattice of hereditary torsion theories is denoted by R-tors (see [9]). Often

it will be convenient to identify each torsion theory with its torsion class, that

is, R-TORS= L{↠,⊕,ext} and R-tors= L{≤,↠,⊕,ext}. We denote R-jtors = {C ∈
R-tors | C ∈ L{

∏
}}.

For a module class a, we denote ξ(a) the least hereditary torsion theory contain-

ing a, and by χ(a) the largest hereditary torsion theory such that each one of its

modules has no nonzero submodules in a.

Remark 2.2. ℘(R-Mod) := {C | C ⊆ R-Mod}. Each σ ∈ R-pr define two assign-

ments:

(1) σ∗ : ℘(R-Mod) → ℘(R-Mod), where σ∗(C ) = {σ(M) | M ∈ C }.
(2)

←
σ : ℘(R-Mod) → ℘(R-Mod), where

←
σ (C ) = {M ∈ R-Mod | σ(M) ∈ C }.

Notice that σ∗(
←
σ (σ∗(C ))) = σ∗(C ) and

←
σ (σ∗(

←
σ (C ))) =

←
σ (C ) for each C ⊆

R-Mod.

3. σ-(R-tors) and σ-(R-TORS)

Let us take a preradical σ. We will say that a class C ⊆ R-Mod is σ-hereditary

(σ-cohereditary) if it has the following two conditions: Fσ ⊆ C , and for each M ∈ C

and N ≤ M (M ↠ N) it happens that σ(N) ∈ C . We denote L{≤σ} (L{↠σ})

the collection of all hereditary σ-hereditary (σ-cohereditary) classes. L{≤σ} is a

bounded pseudocomplemented big lattice, whose least member is Fσ and whose

largest member is R-Mod, where infima is given by class intersections. If σ is an

idempotent preradical then the pseudocomplements are strong and Skel(L{≤σ})

is a boolean lattice. If σ is an idempotent cohereditary preradical, then L{↠σ}

is a strongly pseudocomplemented big lattice. The big lattice of σ-open classes is

denoted by L{≤σ,↠σ}. If σ is an exact preradical, then Skel(L{≤σ,↠σ}) = { ←σ
(C ) | C ∈ Skel(L{≤,↠})} (see [6]).

Definition 3.1. Let σ be a preradical.

(1) R-(σ-TORS) := L{↠σ,⊕,ext}.
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(2) R-(σ-tors) := L{≤σ,↠σ,⊕,ext}.

(3) L{σP} = {C ⊆ R-Mod | ∀ M ∈ C , and for each projective cover g :

P (M) → M , σ(P (M)) ∈ C }.
(4) L{σE} = {C ⊆ R-Mod | ∀ M ∈ C , σ(E(M)) ∈ C }.

Remark 3.2. If C ⊆ R-Mod, then

ξ{≤}(C ) = {N ∈ R-Mod | ∃ N ↣ M, M ∈ C },

ξ{↠}(C ) = {L ∈ R-Mod | ∃ M ↠ L, M ∈ C }.

Lemma 3.3. Let σ be a radical and C ∈ L{ext} with C ⫆ Fσ, then
←
σ (C ) ⫅ C .

Proof. Take σ and C as in the statement. If A ∈ ←σ (C ) then we have the exact

sequence

0 → σ(A) → A → A/σ(A) → 0

with σ(A) ∈ C and with A/σ(A) ∈ Fσ ⊆ C . Thus A ∈ C . □

Lemma 3.4. If C ∈ L{≤}, then C ⊆ ←
σ (C ).

Proof. Let C ∈ L{≤} and M ∈ C , if N ≤ M then N ∈ C , thus σ(M) ∈ C so that

M ∈ ←σ (C ). □

From the two previous lemmas it follows the following remark.

Remark 3.5. If C ∈ L{≤,ext} and σ is a radical with Fσ ⊆ C , then C =
←
σ (C ).

Theorem 3.6. Let σ ∈ R-pr:

(1) C ∈ L{≤σ} ⇔ ξ≤(C ) ⊆ ←
σ (C ),

(2) C ∈ L{↠σ} ⇔ ξ↠(C ) ⊆ ←
σ (C ).

Proof. (1) (⇒): Suppose that C ∈ L{≤σ} and N ∈ ξ≤(C ). Then there is a

monomorphism N ↣ M with M ∈ C . Thus σ(N) ∈ C , and N ∈ ←σ (C ).

(⇐): Suppose that N ≤ M with M ∈ C , then N ∈ ξ≤(C ) ⊆ ←
σ (C ). Hence

σ(N) ∈ C . As it is clear that Fσ ⊆ C , we have that C ∈ L{≤σ}.

(2) (⇒): Let us take C ∈ L{↠σ} and L ∈ ξ↠(C ), there is an epimorphism

M ↠ L with M ∈ C . Then σ(L) ∈ C , hence L ∈ ←σ (C ).

(⇐): Let us assume ξ↠(C ) ⊆←σ (C ) and take an epimorphism M ↠ L with

M ∈ C . Then L ∈←σ (C ), thus σ(L) ∈ C . Also, it is clear that Fσ ⊆ C , thus we

have that C ∈ L{↠σ}. □

Theorem 3.7. If σ is a radical then L{≤σ,ext} = {C ∈ L{≤,ext} | C ⊇ Fσ}.
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Proof. (⊇): If C ∈ L{≤,ext} and C ⊇ Fσ, then C =
←
σ (C ), by Remark 3.5. Thus

ξ{≤}(C ) = C =
←
σ (C ). Then C ∈ L{≤σ}, by Theorem 3.6.

(⊆): If C ∈ L{≤σ,ext}, then Fσ ⊆ C and C ⊆ ξ{≤}(C ) ⊆ ←σ (C ) ⊆ C , by Theorem

3.6 and Lemma 3.3. Thus C = ξ{≤}(C ) and C ∈ L{≤,ext}. □

Next corollary follows immediately.

Corollary 3.8. If σ is a radical then L{≤σ,ext,⊕} = {C ∈ L{≤,ext,⊕} | C ⊇ Fσ}.

Theorem 3.9. If σ is a radical then

L{≤σ,ext,↠σ} = {C ∈ L{≤,ext,↠} | C ⊇ Fσ}.

Proof. (⊇): It suffices to show that a class C belonging to the left class is cohered-

itary. If M ↠ N is an epimorphism with M ∈ C , then σ(N) ∈ C . From the exact

sequence

0 → σ(N) → N → N/σ(N) → 0,

where N/σ(N) ∈ Fσ ⊆ C , we see that N ∈ C .

(⊆): Suppose C is a module class with the following properties: hereditary,

cohereditary, closed under extensions and containing Fσ. We want to prove that

C is σ-hereditary and σ-cohereditary. First, we show that it is σ-hereditary. If

N ≤ M with M ∈ C , then σ(N) ≤ N ≤ M , thus σ(N) ∈ C. Now we are going to

see that C is also σ-cohereditary. If M ↠ N is an epimorphism with M ∈ C , then

N belongs to C and so does σ(N). □

Corollary 3.10. If σ is a radical, then

R-(σ-tors) = {C ∈ R-tors | C ⊇ Fσ}.

Proof. As R-(σ-tors) := L{≤σ,↠σ,⊕,ext}, we have that R-(σ-tors) consists of the

module classes belonging to

{C ∈ L{≤,ext,↠} | C ⊇ Fσ}

which are closed under direct sums. Thus the result follows immediately from the

preceding theorem. □

Example 3.11. If R = S × T with S and T two rings. Define σ ∈ R-pr by

σ(M) = eM , where e = (1, 0). If (T,F) is a torsion theory in S-Mod, then (T ×
T -Mod,F× T -Mod) is a σ-torsion theory in R-Mod.

Lemma 3.12. Let σ be a preradical. Then L≤σ ⊇ {←σ (C ) | C ∈ L≤}.
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Proof. Let C be a hereditary module class, we want to show that
←
σ (C ) is a

σ-hereditary class. If N → M is a monomorphism with M ∈ ←σ (C ) then σ (N)

embeds in σ (M). As σ (M) ∈ C . then σ (N) and σ (σ (N)) belong to C . Therefore

σ (N) ∈ ←σ (C ). □

Theorem 3.13. Let σ be an exact preradical. Then

R-(σ-TORS) = {←σ (C ) | C ∈ R-TORS}.

Proof. (⊇): Let us assume C ∈ R-TORS, we are going to show that
←
σ (C ) ∈

R-(σ-TORS).

If M
f

↠ N is an epimorphism with M ∈ ←σ (C ), let us see that σ (N) ∈ ←σ (C ).

As M ∈ ←σ (C ) , then σ (M) ∈ C . As f is an epimorphism, σ is a radical and

C is closed under quotients, then σ (M) ∈ C . As σ is idempotent, then σ (N) =

σ (σ (N)) ∈ C . Hence σ (N) ∈ ←σ (C ) .

To show that
←
σ (C ) is closed under extensions, let us assume that

0 → A → B → C → 0

is an exact sequence with A,B ∈ ←σ (C ). Then

0 → σ (A) → σ (B) → σ (C) → 0

is also exact with σ (A) , σ (C) ∈ C . As C ∈ R-TORS, then σ (B) ∈ C . I.e. B ∈ ←σ
(C ) .

If {Mi}I is a family in
←
σ (C ) then σ (

⊕
Mi) =

⊕
σ (Mi) ∈ C , thus

⊕
Mi ∈

←
σ

(C ) .

(⊆): If C ∈ R-(σ-TORS), we are going to show that C =
←
σ (σ∗ (C )) , and that

σ∗ (C ) ∈ R-TORS.

Clearly, C ⊆ ←
σ (σ∗ (C )) . If σ (M) = σ (C) with C ∈ C , then σ (C) ∈ C .

As σ (M) ,M/σ (M) both belong to C because σ is a radical and Fσ ⊆ C , from

0 → σ (M) → M → M/σ (M) → 0 we obtain that M ∈ C .

It remains to show that σ∗ (C ) ∈ R-(σ-TORS).

If M ∈ C and σ (M) ↠ N is an epimorphism, from the diagram

σ (M)
f // // N

σ (σ (M))
f↾
⇂ // //

?�

Id

OO

σ (N) ,
?�

OO

we get that σ (N) = N ∈ C . Hence N = σ (N) ∈ σ∗ (C ) .
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If 0 → σ (A) → σ (B) → σ (C) → 0 is an exact sequence with A,C ∈ C , then we

have also σ (A) , σ (C) ∈ C and we obtain that σ (B) ∈ C . Then σ (B) = σ (σ (B)) ∈
σ∗ (C ) .

If {σ (Mi)}I is a family with Mi ∈ C ∈ R-(σ-TORS),∀i ∈ I, then also σ (Mi) ∈
C ,∀i ∈ I. Then σ (⊕Mi) = ⊕σ (Mi) ∈ C , with ⊕Mi ∈ C . Hence ⊕σ (Mi) ∈
σ∗ (C ) . □

Recall that for each C ∈ R-Mod, if we define

l(C ) = {M ∈ R-Mod | HomR(M,E(N)) = 0,∀ N ∈ C } and

r(C ) = {N ∈ R-Mod | HomR(M,E(N)) = 0,∀ M ∈ C },

then l(C ) is a hereditary torsion class and r(C ) is its corresponding hereditary

torsion free class (see [14] Chap. VI).

Recall that R-Simp denotes a set of representatives of isomorphism classes of

simple modules.

An R-module M is semiartinian if and only if M is of ξ(R-Simp)-torsion if and

only if each one of its nonzero homomorphic images has a nonzero socle. R is a left

semiartinian ring if it is semiartinian as a left R-module (See [9], Chap. 36).

Theorem 3.14. ([9], Chap. 36, Prop. 36.4) The following conditions are equiva-

lent for a ring R.

(1) R is a left semiartinian ring.

(2) Each hereditary torsion theory in R-Mod is generated by a family of simple

modules.

(3) R-tors is a boolean lattice.

Remark 3.15. If R-tors = Skel(L{≤,↠}) (which happens if and only if R is left

semiartinian), then for each T ∈ R-tors there exists a ⊆ R-Simp such that T =

Tχ(a). Thus, if R-(σ-tors) = Skel(L{≤σ,↠σ}), then R-(σ-tors) = {←σ (Tχ(a)) | a ⊆
R-Simp}.

Furthermore, for each a ⊆ R-Simp we have that Tξ(a) = Tχ(R-Simp\a).

Remark 3.16. For each centrally splitting preradical σ, we have that Tσ =

σ(R)-Mod.

For each M ∈ Tσ there exists an epimorphism R(X) → M for some set X. As

σ is centrally splitting we have that σ(R)(X) → σ(M) is an epimorphism, thus

M = σ(M) ∈ σ(R)-Mod. So Tσ ⊆ σ(R)-Mod.

For the other inclusion, notice that for each M ∈ σ(R)-Mod there exists an

epimorphism g : σ(R)(X) → M for some set X, thus M = g(σ(R(X))) ≤ σ(M).

Hence M ∈ Tσ. Therefore σ(R)-Mod ⊆ Tσ.
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Furthermore, for each C ∈ R-(σ-tors)we have that σ∗(C ) ⊆ σ(R)-Mod and

σ∗(C ) ∈ σ(R)-tors.

Proposition 3.17. Let σ be a centrally splitting preradical. The assignment σ∗ :

R-(σ-tors) → R-tors satisfies σ∗(C ∩ D) = σ∗(C ) ∩ σ∗(D) for each C ,D ∈
R-(σ-tors). Then σ∗ : R-(σ-tors) → σ(R)-tors is a ∧-isomorphism.

Proof. Take C ,D ∈ R-(σ-tors). We have that σ∗(C ∩ D) ⊆ σ∗(C ) ∩ σ∗(D). If

M ∈ σ∗(C ) ∩ σ∗(D), then M ∈ σ∗(C ) and M ∈ σ∗(D). Hence there exist C ∈ C

and D ∈ D such that M = σ(C) and M = σ(D), besides M = σ(C) ∈ C and

M = σ(D) ∈ D . Hence M ∈ C ∩ D , which implies that M = σ(M) ∈ σ∗(C ∩ D).

We conclude that σ∗(C ∩ D) = σ∗(C ) ∩ σ∗(D).

If T ∈ σ(R)-tors, then we have that σ∗(
←
σ (T)) ⊆ T. If M ∈ T, then σ(M) ∈

T, this implies that M ∈ ←
σ (T), from this we obtain σ(M) ∈ σ∗(

←
σ (T)). As

M/σ(M) ∈ Fσ we have that M/σ(M) ∈ σ∗(
←
σ (T)) because Fσ ⊆ σ∗(

←
σ (T)). We

get M ∈ σ∗(
←
σ (T)), because Fσ ⊆ σ∗(

←
σ (T)) is closed under taking extensions.

Hence T ⊆ σ∗(
←
σ (T)). We conclude that σ∗(

←
σ (T)) = T.

Analogously it can be shown that C =
←
σ (σ∗(C )) for all C ∈ R-(σ-tors). We

conclude that σ∗ : R-(σ-tors) → σ(R)-tors is a ∧-isomorphism. □

The following result is a generalization of Theorem 3.13.

Theorem 3.18. Let I ≤ R an ideal generated by a central idempotent in R and

take the preradical σ defined as σ(M) = IM . R-(σ-tors) = Skel(L{≤σ,↠σ}) if and

only if I is a semiartinian ring.

Proof. From Remark 2.1 σ is an exact radical.

(⇒): Suppose that R-(σ-tors) = Skel(L{≤σ,↠σ}). As R-Mod ∈ R-(σ-tors)

we have that Tσ = σ∗(R-Mod) ∈ R-tors and σ∗(R-Mod) is the largest class in

Im(σ∗) = {σ∗(T) | T ∈ R-(σ-tors)} (see Remark 2.2). Moreover, from Proposition

3.17, Im(σ∗) = I-tors, this implies, by Proposition 3.17 that I-tors is a boolean

lattice and I is a semiartinian ring.

(⇐):) Let us take a semiartinian factor I of R. We show that R-(σ-tors) =

Skel(L{≤σ,↠σ}). As I is semiartinian, we have that for each M ∈ R-Mod that

σ(M) is semiartinian, this implies that I-tors = Skel(L I
{≤,↠}). By Proposition

3.17 we have that R-(σ-tors) = Skel(L{≤σ,↠σ}). □

3.1. σ-torsion theories. Since their introduction by Dickson [8] of torsion the-

ories for Abelian categories, there have been defined several generalizations. We

introduce a new extension of this concept.
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Definition 3.19. Let σ be a preradical. Let us define the assignments Lσ, Rσ :

℘(R-Mod) → ℘(R-Mod) as

(1) Lσ(C ) = {M ∈ R-Mod | HomR(σ(M), σ(N)) = 0, ∀ N ∈ C },
(2) Rσ(C ) = {N ∈ R-Mod | HomR(σ(M), σ(N)) = 0, ∀ M ∈ C }.

It is immediate that for C ⊆ R-Mod we have that Lσ(C ) =
←
σ (L(σ∗(C ))) and

Rσ(C ) =
←
σ (R(σ∗(C )).

Notice that Lσ and Rσ are order reversing assignments and that LσRσ and RσLσ

are closure operators. Besides, LσRσLσ = Lσ and RσLσRσ = Rσ.

When σ = 1R-Mod (see [14] Chap. VI), we have that

Lσ(C ) = L(C ) = {M ∈ R-Mod | HomR(M,N) = 0, ∀ N ∈ C },

Rσ(C ) = R(C ) = {N ∈ R-Mod | HomR(M,N) = 0, ∀ M ∈ C }.

It is known that there exists a bijective correspondence between torsion theories

and idempotent radicals, then for all C ⊆ R-Mod we have that L(C ) = Tτ and

R(C ) = Fν for some idempotent radicals τ, ν, respectively.

Remark 3.20. Let σ be a preradical and M ∈ R-Mod, then M ∈ Lσ(Rσ({M}))
because

Rσ({M}) = {N ∈ R-Mod | HomR(σ(M), σ(N)) = 0}, and

Lσ(Rσ({M})) = {L ∈ R-Mod | HomR(σ(L), σ(N)) = 0,∀ N ∈ Rσ({M})}.

If σ is idempotent, then σ(M) ∈ Lσ(Rσ({M})) because for each N ∈ Rσ({M}) we
have that HomR(σ(σ(M)), σ(N)) = HomR(σ(M), σ(N)) = 0.

Analogously, N ∈ Rσ(Lσ({N})) and if σ is an idempotent preradical, then

σ(N) ∈ Rσ(Lσ({N})).

Proposition 3.21. Let σ be a preradical. For each C ⊆ R-Mod, Rσ(C ) ∈
L{≤σ,

∏
}.

Proof. As Rσ (C ) =
←
σ (R (σ∗ (C ))) and R (σ∗ (C )) is a torsion free class, then by

Lemma 3.12 we obtain that Rσ(C ) ∈ L{≤σ}.

Take {Nα}α∈X ⊆ Rσ(C ) and M ∈ C , then HomR(σ(M), σ(Nα)) = 0 for

each α ∈ X, and σ(
∏

α∈X
Nα) ≤

∏
α∈X

σ(Nα). Thus, we have a monomorphism

HomR(σ(M), σ(
∏

α∈X
Nα)) → HomR(σ(M),

∏
α∈X

σ(Nα)) = 0 with

HomR(σ(M),
∏
α∈X

σ(Nα)) ∼=
∏
α∈X

HomR(σ(M), σ(Nα)) = 0.

We conclude that HomR(σ(M), σ(
∏

α∈X
Nα)) = 0, thus

∏
α∈X

Nα ∈ Rσ(C ). Therefore

Rσ(C ) ∈ L{≤σ,
∏
}. □
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Proposition 3.22. Let σ be a left exact preradical. For each C ⊆ R-Mod, Rσ(C ) ∈
L{≤σ,

∏
,ext}.

Proof. From Proposition 3.21 we have that Rσ(C ) ∈ L{≤σ,
∏
}. Let us see that it

is also closed under extensions.

Let 0 → N ′ → N → N ′′ → 0 be an exact sequence with N ′, N ′′ ∈ Rσ(C ) and

take M ∈ C . Then 0 → σ(N ′) → σ(N) → σ(N ′′) is an exact sequence, thus the

sequence

0 → HomR(σ(M), σ(N ′)) → HomR(σ(M), σ(N)) → HomR(σ(M), σ(N ′′))

is exact with HomR(σ(M), σ(N ′)) = 0,HomR(σ(M), σ(N ′′)) = 0. This implies that

HomR(σ(M), σ(N)) = 0. Hence N ∈ Rσ(C ). Therefore Rσ(C ) ∈ L{≤σ,
∏

,ext}. □

Proposition 3.23. Let σ be an exact preradical. For each C ⊆ R-Mod, Lσ(C ) ∈
R-tors.

Proof. Assume that C ⊆ R-Mod. As Lσ (C ) =
←
σ (L (σ∗ (C ))) and L (σ∗ (C )) ∈

R-tors and L (σ∗ (C )) ⊇ Fσ then the conclusion follows from Corollary 3.10. □

Definition 3.24. Let σ be an exact preradical. A σ-torsion theory is a pair of

R-module classes (T,F) such that T = Lσ(F) and F = Rσ(T).

When σ = 1R-Mod the 1R-Mod-torsion theories are the usual torsion theories.

4. σ-retractable modules

Definition 4.1. A left R-module M is called retractable if for each 0 ̸= N ≤ M

we have that HomR(M,N) ̸= 0.

In [10], it is proved that the class of mod-retractable commutative rings coincides

with the class of commutative semiartinian rings. It is shown in [13] that every

projective module over a right V -ring is retractable.

We mention some examples: free modules and semisimple modules are retractable.

Any direct sum of modules of the form Zpi is retractable, where p is a prime number.

The Z-module Zp∞ is not retractable.

Let us recall that there is a one to one correspondence between the class of left

exact radicals and the class of hereditary torsion theories (See [14] Chap. VI).

The following theorem is proved in [10], we include a proof as an illustration.

Theorem 4.2. ([10]) R-tors = R-TORS if and only if each R-module is retractable.
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Proof. (⇒): Assume that R-tors = R-TORS and take T ∈ R-tors. Take M ∈ T
and 0 ̸= N ≤ M .

Let T be the least torsion containing M , then N ∈ T implies that N ̸∈ F hence

HomR(M,N) ̸= 0. We conclude that M is retractable.

(⇐): Suppose that each R-module is retractable and take Tσ ∈ R-TORS. Take

M ∈ Tσ and N ≤ M .

If N ̸∈ Tσ, let us take the exact sequence 0 → σ(N) → N → N/σ(N) → 0. In

the diagram

0 // σ(N) // N // N/σ(N) // 0

M
π // M/σ(N)

f

OO

we have that M/σ(N) ∈ Tσ and N/σ(N) ≤ M/σ(N). Then there exists a

nonzero f : M/σ(N) → N/σ(N). This implies that f(M/σ(N)) ∈ Tσ.

Let us take N ′/σ(N) = f(M/σ(N)). We have the exact sequence

0 → σ(N) → N ′ → N ′/σ(N) → 0

with σ(N), N ′/σ(N) ∈ Tσ. From this, we have that N ′ ∈ Tσ con N ′ ≤ N . This

implies that N ′ = σ(N ′) ≤ σ(N), thus N ′ = σ(N) (because σ is left exact).

It follows that f(M/σ(N)) = N ′/σ(N) = 0, contradicting that f ̸= 0. Hence

σ(N) = N .

Hence N ∈ Tσ, and Tσ is closed under taking submodules. □

Definition 4.3. Let σ be a preradical. AnR-moduleM is called left σ-retractable

if for each N ≤ M with σ(N) ̸= 0, one has that HomR(M,σ(N)) ̸= 0. A ring R

will be called σ-(R-Mod)-retractable if each R-module is σ-retractable.

Remark 4.4. Notice that each retractable R-module is σ-retractable, but a non

retractable R-module M can be σ-retractable for some σ ∈ R-pr.

As an example, let t ∈ Z-pr denote the torsion functor and take the Z-module

Q. For each N ≤ Q we have that t(N) = N ∩ t(Q) = N ∩ 0 = 0. Hence by vacuity,

Q is t-retractable, but it is not retractable, because for a
bZ ↪→ Q, with a, b ∈ Z and

a, b ̸= 0 it happens that HomZ(Q, a
bZ) = 0.

Remark 4.5. For each preradical σ, each M ∈ R-Mod and N ≤ M , if σ(M/N) =

0, then σ(M) ≤ N (see [5] Prop. I.1.1).

Theorem 4.6. Let σ be a left exact preradical. If each R-module is σ-retractable,

then R-(σ-tors) = R-(σ-TORS).
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Proof. Let us assume that T ∈ R-(σ-TORS) and M ∈ T. Assume also that

0 ̸= σ(N) ≤ N ≤ M. We will show that σ(N) ∈ T.
If there exists a nonzero homomorphism f : M → σ(N), then σ(f(M)) ∈ T,

so there exists a nonzero submodule L of σ(N) with L ∈ T. Let us denote U =

{L ≤ σ(N) | L ∈ T}. We have that
⊕
L∈U

L ∈ T and that there is an epimorphism⊕
L∈U

L ↠
∑
L∈U

L. Hence σ(
∑
L∈U

L) ∈ T and σ(
∑
L∈U

L) is the largest submodule of

σ(N) belonging to T. Let us denote V = σ(
∑
L∈U

L).

We have that σ(N)/V ≤ N/V ≤ M/V . We have two cases: σ(σ(N)/V ) = 0

and σ(σ(N)/V ) ̸= 0.

In the former case, σ(σ(N)/V ) = 0, we have that σ(N) = σ(σ(N)) ≤ V (see

Remark 4.5), this implies that σ(N) = V ∈ T.
If σ(σ(N)/V ) ̸= 0, then σ(M/V ) ̸= 0 and we have that there exists a nonzero

homomorphism h : M/V → σ(σ(N)/V ). From this, we have that h(M/V ) =

σ(h(M/V )) ∈ T. Taking U ≤ σ(N) such that U/V = h(M/V ), we obtain the

exact sequence 0 −→ V −→ U −→ U/V −→ 0 which has V, U/V ∈ T. We get that

U ∈ T.
Then U is a submodule of σ(N) such that U ∈ T, this implies that U ≤ V . We

conclude that U = V and from this, that 0 = U/V = h(M/V ), a contradiction.

Hence σ(N) = V ∈ T and T is σ-hereditary. □

Proposition 4.7. Let σ be a left exact preradical. If R-(σ-TORS) = R-(σ-tors),

then for each T ∈ R-(σ-TORS), σ∗(T) is a hereditary torsion class.

Proof. Take T ∈ R-(σ-TORS), M ∈ σ∗(T) and N ≤ M . We will show that

N ∈ σ∗(T).
By hypothesis there exists L ∈ T such that σ(L) = M . As σ(L) ∈ T, N ≤ M =

σ(L) and σ is left exact, we have that N = σ(N) ∈ T, because it is a σ-hereditary

class, this implies that N = σ(N) ∈ σ∗(T). Hence σ∗(T) is hereditary. □

Proposition 4.8. Let σ be an exact preradical. If R-(σ-TORS) = R-(σ-tors) then

each R-module M ∈ Tσ is σ-retractable.

Proof. Let us assume that R-(σ-TORS) = R-(σ-tors), take M ∈ Tσ and N ≤ M .

We show that M is a σ-retractable module. Let us suppose that HomR(M,σ(N)) =

0. We will show that σ(N) = 0.

From Proposition 3.23 we have that R-(σ-TORS) = {Lσ(C ) | C ⊆ R-Mod}.
Then Lσ(Rσ({M})) ∈ R-(σ-TORS) and σ(M) = M ∈ Lσ(Rσ({M})) (see Remark

3.20). As Lσ(Rσ({M})) is a σ-hereditary class, we have σ(N) ∈ Lσ(Rσ({M})), and
HomR(σ(M), σ(σ(N))) = HomR(σ(M), σ(N)) = 0 implies that σ(N) ∈ Rσ({M}).
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This means that σ(N) ∈ Lσ(Rσ({M})) ∩ Rσ({M}) = Fσ, from this σ(N) =

σ(σ(N)) = 0 follows. It follows that M is a σ-retractable module. □

Example 4.9. Let I ≤ R be a two sided pure ideal and let t(αR
I ) ∈ R-pr be defined

by t(αR
I )(M) = {m ∈ M | Im = 0}, the annihilator of I on M . Notice that there is

a natural isomorphism t(αR
I )

∼= R/I ⊗R −. Then t(αR
I ) is an exact preradical (R/I

is flat). Thus, for all M ∈ R-Mod we have that t(αR
I )(M) ∼= M/IM . Notice that

(1) t(αR
I )(M) = 0 ⇔ M = IM .

(2) t(αR
I )(M) = M ⇔ IM = 0 ⇔ M ∈ R/I-Mod.

M is a t(αR
I )-retractable module if for all N ≤ M with IN ̸= N , we have

that HomR(M,N/IN) ̸= 0. By Proposition 4.6, if each R-module M is t(αR
I )-

retractable, then R-(t(αR
I )-TORS) = R-(t(αR

I )-tors). By Proposition 4.8, if R-

(t(αR
I )-TORS) = R-(t(αR

I )-tors), then each R/I-module is t(αR
I )-retractable.

Example 4.10. If R = S × T with S and T two rings. Define σ ∈ R-pr by

σ(M) = eM , where e = (1, 0). Then R-(σ-TORS) = R-(σ-tors) if and only if each

R-module σ-retractable, which is equivalent to each S-module be retractable and

S-TORS = S-tors.

5. σ-open and σ-stable classes

The big lattice of σ-open classes is denoted by L{≤σ,↠σ}.

Remark 5.1. If σ is an idempotent preradical, then for each M,N ∈ R-Mod and

each epimorphism g : σ(M) ↠ N we have that σ(N) = N , because

N = g(σ(M)) = g(σ(σ(M))) ≤ σ(N) ≤ N.

Proposition 5.2. Let σ be a cohereditary idempotent preradical. There is an as-

signment ρ↠σ : L{≤σ,↠σ} → R-(σ-TORS) defined by

ρ↠σ
(C ) = {M ∈ R-Mod | ∀ M ↠ L, (σ(L) ∈ C ⇒ σ(L) = 0)} ∪ Fσ.

Proof. If C ∈ L{≤σ,↠σ}, we will show that ρ↠σ
(C ) ∈ R-(σ-TORS). To get

started, we show that if M ∈ ρ↠σ (C ), then σ(M) ∈ ρ↠σ (C ).

Let us take M ∈ ρ↠σ
(C ) and g : M ↠ N . We will show σ(N) ∈ ρ↠σ

(C ).

Further take f : σ(N) ↠ L and let us suppose that σ(L) ∈ C and σ(L) ̸= 0. We

have that σ(L) = L (see Remark 5.1). We have the following commutative diagram:
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M N N/Nuc(f)

σ(M) σ(N) L σ(N)/Nuc(f)

σ(σ(M)) σ(L)

g h

σ(g) f φ

fσ(g)

where φ is an isomorphism. As σ is cohereditary and f̄ is an epimorphism then

σ(f̄) : σ(N) → σ(N/Nuc(f)) is an epimorphism, σ(N/Nuc(f)) = σ(N)/Nuc(f) ∼=
L ∈ C and 0 ̸= L ∼= σ(N/Nuc(f)). This is a contradiction since f̄ ◦ g : M ↠

N/Nuc(f) is an epimorphism with M ∈ ρ↠σ
(C ). Therefore σ(L) ∈ C implies

σ(L) = 0, then σ(N) ∈ ρ↠σ
(C ).

Now, let 0 −→ M ′
f−→ M

g−→ M ′′ −→ 0 be an exact sequence with M ′,M ′′ ∈
ρ↠σ (C ). We are going to show that M ∈ ρ↠σ (C ). As σ is idempotent and cohered-

itary, then it is an idempotent radical and Fσ is closed under taking extensions.

If h : M ↠ L is an epimorphism with σ(L) ̸= 0, we are going to show that

σ(L) ̸∈ C . We have the following commutative diagram:

0 // M ′
f // M

g //

h
����

// M ′′ //

t

����

0

σ(L) �
� ////

σ(π)
����

L

π
����

σ(L/hf(M ′)) �
� // L/hf(M ′),

where π denotes the natural epimorphism, and t : M ′′ ↠ L/hf(M ′) is an epimor-

phism. Notice now that hf : M ′ ↠ hf(M ′) is an epimorphism with M ′ ∈ ρ↠σ
(C ).

Let us first consider the case where M ′ /∈ Fσ and M ′′ ̸∈ Fσ. If 0 ̸= σ (L) ∈ C ,

we have the exact sequence

0 → hf (M ′) → L → L/hf (M ′) → 0,

from which we obtain the exact sequence

σ (hf (M ′)) → σ (L) → σ (L/hf (M ′)) → 0.

Since σ (L) ∈ C , σ is idempotent and C ∈ L{↠σ}, then σ(L/hf(M ′)) ∈ C .

But since L/hf (M ′) is a quotient of M ′′, then σ(L/hf(M ′)) has to be 0. Thus

σ(hf (M ′)) = σ (L) , contradicting than M ′ ∈ ρ↠σ (C ) .

Now consider the case M ′ ∈ Fσ and M ′′ ̸∈ Fσ. As in the previous case, we obtain

σ (L/hf (M ′)) = σ (L) ̸= 0, in contradiction to the hypothesis that M ′ ∈ Fσ
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IfM ′ /∈ Fσ andM ′′ ∈ Fσ then σ (L/hf (M ′)) = 0, so σ (L) ⊆ hf (M ′) ⊆ L. Using

that σ is idempotent, we obtain that σ (L) = σ (hf (M ′)) = 0. This contradicts the

hypothesis.

Finally, if M ′,M ′′∈ Fσ, as in the previous case, we have σ (L) = σ (hf (M ′)) = 0,

since M ′ ∈ Fσ. This is a contradiction. We conclude that M ∈ ρ↠σ (C ).

Now, take a family {Mα}α∈X ∈ ρ↠σ
(C ). We are going to show

⊕
α∈X

Mα ∈

ρ↠σ
(C ). Let us suppose there is an epimorphism

⊕
α∈X

Mα ↠ L with σ(L) ∈ C and

σ(L) ̸= 0.

Note that we always have an epimorphism h :
⊕
l∈L

Rl ↠ L, then σ(h) :
⊕
l∈L

σ(Rl) ↠

σ(L) is an epimorphism. As σ(L) ̸= 0, there exists 0 ̸= l ∈ σ(L) such that

σ(Rl) ̸= 0, furthermore σ(Rl) ∈ C . ⊕
α∈X

Mα
// // L

⊕
α∈X

σ(Mα)
?�

OO

// // σ(L)
?�

OO

σ(Rl)? _oo

We have that l = mα1
+ mα2

+ · · · + mαk
with mαj

∈ Mαj
con 1 ≤ j ≤ k.

Then for each j there exists an epimorphism Mαj ↠ Rmj with σ(Rmj) ∈ C ,

this implies σ(Rmj) = 0 for each j. Then σ(L) = 0 (because of the epimorphism

0 =
k⊕

j=1

σ(Rmαj ) = σ(
k⊕

j=1

Rmαj ) ↠ σ(L)), contradicting that σ(L) ̸= 0. Hence

σ(L) ∈ C implies that σ(L) = 0. We conclude that
⊕
α∈X

Mα ∈ ρ↠σ
(C ). □

Proposition 5.3. Let σ be an idempotent preradical. We have the assignment

ρ↠σ : L{≤σ,σE} → L{≤σ}.

Proof. Take M ∈ ρ↠σ (C ) and N ≤ M . We prove that σ(N) ∈ ρ↠σ (C ). If

g : σ(N) ↠ L is an epimorphism, with σ(L) ∈ C and σ(L) ̸= 0, then we have that

σ(L) = L (see Remark 5.1). We have the following commutative diagram:

σ(N) �
� //

����{{{{

N � � // M

����
σ(L) L // h // Q

Let Q′ ≤ Q be a pseudocomplement of h(L) ≤ Q, then h(L)+Q′ ≤e Q and there

exists an essential monomorphism L
ess
↣ Q/Q′, then there also exists a monomor-

phism Q/Q′ ↣ E(L).
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σ(L) L Q

E(L) Q/Q′

h

ess

Thus, we have that E(L) ∼= E(Q/Q′). As σ(L) ∈ C , it follows that

σ(E(Q/Q′)) ∈ C because σ(E(Q/Q′)) ∼= σ(E(L)) = σ(E(σ(L))). As σ(Q/Q′) ≤
σ(E(Q/Q′)), we have that σ(Q/Q′) = σ(σ(Q/Q′)) ∈ C , thus as M ∈ ρ↠σ

(C )

and σ(Q/Q′) ∈ C we have that σ(Q/Q′) = 0 because M ↠ Q/Q′ is an epimor-

phism. Hence σ(Q/Q′) = 0 implies that σ(Q) ≤ Q′. As h(L) ≤ σ(Q), we have that

h(L) ∩ Q′ = 0 implies that L ∼= h(L) = 0, contradiction. Hence σ(L) ∈ C implies

σ(L) = 0. We conclude that σ(N) ∈ ρ↠σ
(C ) and ρ↠σ

(C ) ∈ L{≤σ}. □

From Propositions 5.2 and 5.3 we have the following result:

Corollary 5.4. If σ is a cohereditary preradical, we have the following assignments.

(1) ρ↠σ : L{≤σ,↠σ} → R-(σ-TORS).

(2) ρ↠σ
: L{≤σ,↠σ,σE} → R-(σ-tors).

(3) If besides σ is a left exact stable preradical, then we have the assignment

ρ↠σ : σ-(R-Nat) → R-(σ-tors).

In [12] is given an assignment between R-Nat and R-tors. From the preceding

proposition, for σ = 1R-Mod, we have the following assignments.

Corollary 5.5. There exist assignments:

(1) ρ↠ : L{≤,↠} → R-TORS.

(2) ρ↠ : L{≤,↠,E} → R-tors.

(3) ρ↠ : R-Nat → R-tors.

(4) Furthermore, we have the commutative diagram:

L{≤,↠,E}

ξnat

��

ρ↠ // R-tors

R-Nat.

ρ↠

99

Recall that we denote R-jtors the collection of all hereditary jansian torsion the-

ories, i.e., the collection of hereditary torsion classes closed under taking products.

Notice that R is a left perfect ring if and only if every hereditary right torsion

class is closed under taking products and it is generated by a family of right simple

modules (notice the change of side). Thus, it could happen that R-tors ̸= R-jtors

even if R is left perfect.
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Proposition 5.6. If R is a left perfect ring, then we have the following assignment

ρ≤ : L{≤,↠,P} → R-jtors, defined by

ρ≤(C ) = {M ∈ R-Mod | L ↣ M, L ∈ C ⇒ L = 0}.

Proof. Let C ∈ L{≤,↠,P}, we prove that ρ≤(C ) ∈ R-jtors. Further, take M ∈
ρ≤(C ) and N ≤ M . We prove that N ∈ ρ≤(C ).

Let us assume that there exists a monomorphism L ↣ N with L ∈ C and

L ̸= 0. Then we have that the composition L ↣ N ↣ M is a monomorphism with

M ∈ ρ≤(C ) and L ∈ C . This implies that L = 0, a contradiction. It follows that

N ∈ ρ≤(C ).

Now, take M ∈ ρ≤(C ) and g : M ↠ N . We are going to show that N ∈ ρ≤(C ).

Suppose that there exists f : L ↣ N with L ∈ C and L ̸= 0. Suppose there is

a projective cover f : P (L) ↠ L of L, thus P (L) ∈ C . We have the following

commutative diagram

M N

g−1(L) L

P (L)

g

f
h

There is a homomorphism 0 ̸= h : P (L) → g−1(L) making the diagram com-

mutative, and we have that 0 ̸= h(P (L)) ∈ C , as h(P (L)) ≤ M we have that

h(P (L)) = 0, a contradiction. Hence P (L) = 0, thus L = 0, contradicting that

L ̸= 0. Hence L ∈ C implies that L = 0. It follows that N ∈ ρ≤(C ).

Now, let 0 → M ′ → M → M ′′ → 0 be an exact sequence with M ′,M ′′ ∈ ρ≤(C ).

We are going to show that M ∈ ρ≤(C ). Let us take a monomorphism L ↣ M with

L ∈ C and L ̸= 0.

0 M ′ M M ′′ 0

f−1(h(L)) L

f g

h
t

AsM ′ ∈ ρ≤(C ) and f−1(h(L)) ≤ M ′, then f−1(h(L)) = 0, because f−1(h(L)) ∼=
L ∈ C . Then

f−1(f(M ′) ∩ h(L)) = M ′ ∩ f−1(h(L)) = M ′ ∩ 0 = 0.

Hence there exists a monomorphism t : L ↣ M ′′ which implies that L = 0, a

contradiction. We conclude that L ∈ C implies that L = 0, thus M ∈ ρ≤(C ).
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Finally, suppose that {Mα}α∈X ⊆ ρ≤(C ). We are going to show that
∏

α∈X
Mα ∈

ρ≤(C ). Assume that f : L ↣
∏

α∈X
Mα is a monomorphism with L ∈ C and L ̸= 0.

Take πβ :
∏

α∈X
Mα ↠ Mβ such that πβ ◦ f ̸= 0, thus 0 ̸= πβ(f(L)) ≤ Mβ .

If 0 ̸= Rl ≤ L, then Rl ∈ C . Let us take 0 ̸= l = mα1 + · · ·+mαk
with the least

possible k. Then there exists a monomorphism Rl ↣ Mα1
with Rmα1

∈ C (see

Proposition 6 in [6]). This implies that Rα1
= 0, and thus mα1

= 0, a contradiction

to the choice of k. Hence L ∈ C and L = 0. We conclude that
∏

α∈X
Mα ∈ ρ≤(C ).

Hence ρ≤(C ) ∈ R-tors ∩ L{
∏
}. □

Let σ be a preradical, we have the assignment

ρ≤σ
(C ) = {M ∈ R-Mod | L ↣ M,σ(L) ∈ C ⇒ σ(L) = 0}.

Notice that Fσ ⊆ ρ≤σ
(C ). We denote R-(σ-jtors) := R-(σ-tors) ∩ L{

∏
}.

Proposition 5.7. Let R be a left perfect ring. Let σ be an exact and costable

preradical. We have an assignment ρ≤σ : L{≤σ,↠σ,σP} → R-(σ-jtors).

Proof. Let C ∈ L{≤σ,↠σ,σP}. We are going show that ρ≤σ
(C ) ∈ R-(σ-jtors).

Take M ∈ ρ≤σ (C ) and N ≤ M . We are going to show that σ(N) ∈ ρ≤σ (C ).

If L ↣ σ(N) is a monomorphism with σ(L) ̸= 0, then as σ(M) ∈ ρ≤σ
(C ) and the

composition σ(L) ↣ σ(N) ↣ σ(M) is a monomorphism with σ(σ(L)) = σ(L) ̸= 0,

we have that σ(L) = σ(σ(L)) ̸∈ C . Hence σ(N) ∈ ρ≤σ
(C ).

Now, take M ∈ ρ≤σ
(C ) and g : M ↠ N . We are going to show that σ(N) ∈

ρ≤σ (C ). Let us suppose that f : L ↣ σ(N) is a monomorphism with σ(L) ∈ C

and σ(L) ̸= 0. Notice that σ(L) ∼= σ(f(L)) = f(L) ∩ σ(N) = f(L) ∼= L. Let h :

P (L) → L be a projective cover of L. We have that h(σ(P (L))) = σ(L) ̸= 0, from

this it follows σ(P (L)) ∈ C and σ(P (L)) ̸= 0. We have the following commutative

diagram:

M N

σ(M) σ(N)

σ(g)−1(L) L

σ(t(P (L))) P (L)

g

σ(g)

σ(g)

f

h
t

As σ(P (L)) ̸= 0 we have that σ(t(P (L))) ̸= 0 and σ(t(P (L))) ∈ C , because

σ(t) : σ(P (L)) → σ(t(P (L))) is an epimorphism. As σ(M) ∈ ρ≤σ (C ) we have that
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σ(t(P (L))) ̸∈ C , a contradiction. Hence, σ(t(P (L))) = 0, thus σ(t) = 0. This

implies that σ(P (L)) = 0, a contradiction.

Then we have that σ(L) ∈ C implies that σ(L) = 0. We conclude that σ(N) ∈
ρ≤σ

(C ).

Now, let 0 → M ′
f−→ M

g−→ M ′′ → 0 be an exact sequence with M ′,M ′′ ∈
ρ≤σ (C ). We show that M ∈ ρ≤σ (C ).

Let h : L ↣ M be a monomorphism with σ(L) ̸= 0. We have the following

commutative diagram.

0 M ′ M M ′′ 0

h−1(Im(h) ∩ Im(f)) L

f g

h

If Im(h) ∩ Im(f) = 0, then there exists a monomorphism L ↣ M ′′ with

σ(L) ̸= 0, thus σ(L) ̸∈ C . In this case we conclude that M ∈ ρ≤σ (C ). If

Im(h)∩Im(f) ̸= 0, then there exists h−1(Im(h)∩Im(f)) ↣ M ′, a monomorphism

with 0 ̸= σ(h−1(Im(h) ∩ Im(f))). It follows that σ(h−1(Im(h) ∩ Im(f))) ̸∈ C ,

which implies that σ(L) ̸∈ C . In this case we conclude that M ∈ ρ≤σ
(C ).

Finally, take {Mα}α∈X ⊆ ρ≤σ (C ). Let us suppose that f : L ↣
∏

α∈X
Mα is a

monomorphism with σ(L) ∈ C and σ(L) ̸= 0. We will show that
∏

α∈X
Mα ∈ ρ≤σ (C ).

We have that σ(L)
σ(f)
↣ σ(

∏
α∈X

Mα)
i
↪→

∏
α∈X

σ(Mα) is a monomorphism. Let πβ :∏
α∈X

σ(Mα) → σ(Mβ) denote the canonical projection such that πβ ◦ (i ◦ σ(f)) ̸= 0.

For each 0 ̸= Rl ∈ σ(L) such that 0 ̸= πβ((i ◦ σ(f))(Rl)), as Rl → πβ(σ(f)(Rl))

is an epimorphism with Rl ∈ C then πβ((i ◦ σ(f))(Rl)) ∈ C . This implies that

πβ((i ◦ σ(f))(Rl)) = 0. Thus πβ ◦ (i ◦ σ(f)) ̸= 0 implies Rl = σ(Rl) = 0, a

contradiction. Hence σ(L) = 0. We conclude that
∏

α∈X
Mα ∈ ρ≤σ (C ). Hence

ρ≤σ
(C ) ∈ R-(σ-jtors). □

The lattice R-(σ-Conat) = Skel(L{↠σ}), for an exact and costable preradical σ,

is defined in [6] . Where the strong pseudocomplement of C ∈ L{↠σ} is given by

C⊥{↠σ} = {M ∈ R-Mod | ∀ M ↠ L, σ(L) ∈ C ⇒ σ(L) = 0} ∪ Fσ.

Proposition 5.8. Let R be a left perfect ring. Let σ be an exact and costable

preradical. Then for each C ∈ L{↠σ}, one has that C⊥{↠σ} ∈ L{σP}.

Proof. Take D = C⊥{↠σ} . Let us see that if M ∈ D , then σ(M) ∈ D .

Let us suppose that g : σ(M) ↠ L is an epimorphism with σ(L) ∈ C and

σ(L) ̸= 0. We can complete the diagram:
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M T

σ(M) L

h

g

It follows that σ(h) : σ(M) ↠ σ(T ) is an epimorphism, thus σ(T ) = L = 0

because σ(L) ∈ C , a contradiction. Hence σ(M) ∈ D .

Let M ∈ D and let g : P (M) → M be a projective cover of M . We are going to

show that σ(P (M)) ∈ D .

Notice that σ(P (M)) is a projective module. Let us suppose that

h : σ(P (M)) ↠ L is an epimorphism with σ(L) ∈ C and σ(L) ̸= 0. Denote

K = ker(σ(g)), thus we have the following commutative diagram:

K �
� // σ(P (M))

σ(g)
// //

h
����

σ(M)

t

����

L

π
����

L/h(K)

As σ is exact we have that σ(L) = L and σ(L/h(k)) = L/h(K), it follows that

σ(L) ∈ C implies that L/h(K) = σ(L/h(K)) ∈ C . As M ∈ D and σ(L/h(K)) ∈
C , it follows L/h(K) = σ(L/h(K)) = 0. Thus L = h(K). As ker(h) + K =

σ(P (M)), we have that ker(h) = σ(P (M)), which implies that h = 0 and L = 0,

a contradiction. Hence σ(L) ∈ C implies that L = σ(L) = 0. We conclude that

σ(P (M)) ∈ D . □

R is a left Max ring if and only if every conatural class is closed under direct sums

(see [2], Theorem 30). Recall that a ring R is left perfect if each left R-modules has

a projective cover. If R is a left perfect ring, then each conatural class in R-Mod is

generated by a family of simple R-modules (see Corollary 43 of [1]).

Proposition 5.9. Let R be a left perfect ring. Let σ be an exact and costable

preradical. Then the following statements are equivalent:

(1) C ∈ R-(σ-Conat).

(2) C ∈ L{↠σ,ext,σP}.

(3) C ∈ L{↠σ,⊕,ext,σP}.

Proof. (1) ⇒ (2) We have that if C ∈ R-(σ-Conat), then C ∈ L{↠σ,ext,σP} (see

Corollary 4 of [6]).

(2) ⇒ (1) Let C ∈ L{↠σ,ext,σP}. We have that C ⊆ (C⊥{↠σ})⊥{↠σ} . Take

M ∈ (C⊥{↠σ})⊥{↠σ} . We are going to show that M ∈ C .
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We have that for each M ∈ (C⊥{↠σ})⊥{↠σ} and each epimorphism 0 ̸= g : M ↠

L with σ(L) ̸= 0, there exists an epimorphism 0 ̸= h : σ(L) ↠ T with σ(T ) ∈ C

and σ(T ) ̸= 0. Firstly, we show that σ(M) ∈ C .

Assume that 0 ̸= g : σ(M) ↠ L is an epimorphism with σ(L) ̸= 0, then there

exists an epimorphism 0 ̸= h : σ(L) ↠ T with σ(T ) ∈ C and σ(T ) ̸= 0. As σ is

exact, we have that σ(L) = L, because L ≤ g(σ(M)) ≤ σ(L). Besides, σ(T ) = T .

Let f : P (T ) → T be a projective cover, then as σ is costable, then σ(P ) is

projective and there exists f : P (T ) → σ(M) such that f = hgt:

σ(M)
g // // L

σ(σ(M))
g // // σ(L)

h // // T B? _oo

P (T )

f

OOOO

t

ii

σ(P (T ))? _oo

f

OO

We have that σ(P (T )) ∈ C , then t(σ(P (T ))) = σ(t(σ((P (T ))) ∈ C , besides

t(σ(P (T ))) ≤ σ(M). Let us take B = f(σ(P (T ))) ≤ T , it follows that B = σ(B) ∈
C . We have that B = hg(t(σ(P (T )))), i. e., B is a quotient of σ(M), and we

get the exact sequence 0 → t(σ(P (T )) → σ(M) → B → 0, with t(σ(P (T )) ∈ C .

This implies that σ(M) ∈ C . Besides, we also have the exact sequence 0 →
σ(M) → M → M/σ(M) → 0, with σ(M),M/σ(M) ∈ C (because σ is a rad-

ical and M/σ(M) ∈ Fσ ⊆ C ), which implies that M ∈ C . We conclude that

(C⊥{↠σ})⊥{↠σ} ⊆ C .

Hence C = (C⊥{↠σ})⊥{↠σ} . It follows that C ∈ R-(σ-Conat). We conclude that

R-(σ-Conat) = L{↠σ,ext,σP}.

(2) ⇒ (3) Since every left perfect ring is left Max, in this case, every conatural

class C is closed under direct sums, this implies that
←
σ (C ) is closed under direct

sums (see [6], Proposition 4).

As R-(σ-Conat) = {←σ (C ) | C ∈ R-Conat} (see [6], Proposition 15) we have

that all σ-conatural class is closed under direct sums.

(3) ⇒ (2) It is clear. □

6. σ-V-rings and σ-Max-rings

We generalize the concept of Max-rings and V-rings.

Definition 6.1. Take σ an idempotent preradical. An R-module M is σ-coatomic

if each quotient L of M with σ(L) ̸= 0 has a simple quotient S with σ(S) = S.
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Definition 6.2. Take σ an idempotent preradical. A ring R is left σ-Max if each

R-module M is σ-coatomic.

Definition 6.3. Take an idempotent preradical σ. A ring R is a left σ-V-ring if

each simple R-module in Tσ is injective.

Theorem 6.4. Let σ be a left exact preradical. If R is a left σ-V -ring, then R is

a left σ-Max-ring.

Proof. Let f : M → N an epimorphism where σ(N) ̸= 0. Let us take 0 ̸= x ∈
σ(N), then Rx has a simple quotient S which is σ-torsion because σ is a left exact

preradical. Thus, we have a diagram Rx �
� //

����

σ(N) �
� // N

S

, where RS is an

injective simple module. Then there is a morphism N → S ̸= 0. Hence M is

σ-coatomic and consequently, R is a σ-Max-ring. □

Given a class C of R-modules, we denote ξconat(C ) the least conatural class

containing C (see [3]), where

ξconat(C ) = {M ∈ R-Mod | ∀ M ↠ N ̸= 0, ∃ N ↠ L ̸= 0 with L quotient of some

element of C }.

Proposition 6.5. Let σ be an exact and costable preradical. If R is a left σ-Max-

ring, then every σ-conatural class is closed under direct sums.

Proof. Let C a σ-conatural class and let {Mi}i∈I be a class in C . We are going to

show that for each quotient L of
⊕
i∈I

Mi such that σ(L) ̸= 0 there exists a quotient

U of σ(L) with 0 ̸= U ∈ C .

Suppose that
⊕
i∈I

Mi ↠ L is an epimorphism with σ(L) ̸= 0. As R is σ-Max,

then L has a simple quotient S with σ(S) = S. As S is also quotient of
⊕
i∈I

Mi,

then S is quotient of one Mj , for some j ∈ I. As Mj ∈ C , which is a σ-cohereditary

class, and σ(S) = S, then S ∈ C . Now L ↠ S, and σ-cohereditary imply that

σ(L) ↠ σ(S) = S, with 0 ̸= S ∈ C . □

Proposition 6.6. Let σ be a left exact preradical. If each R-module M is σ-

retractable, then R is a left σ-Max-ring.

Proof. We have to prove that each module M is σ-coatomic. Take M ∈ R-Mod

and let us suppose that L is a quotient of M such that σ(L) ̸= 0. We will prove

that L has a simple quotient S such that σ(S) = S.
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Let 0 ̸= Rx ≤ σ(L) be a cyclic module and let us take an epimorphism g : Rx →
S, with a simple quotient S. As σ is left exact, then both of Rx and S are of

σ-torsion, i.e., S = σ(S). Notice that we have a commutative diagram

Rx
� � //

g
����

σ (L)
� � // L

ḡ
����

S // // // L/Nuc(g).

As L/Nuc(g) is σ-retractable and σ(S) = S then there exists a nonzero morphism

L/Nuc(g) → S, which composed with ḡ provides a nonzero R-morphism f : L → S.

We conclude that M is σ-Max. □
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