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Abstract. In this paper we study the isomorphisms of generalized Hamilton

quaternions
(

a,b
R

)
where R is a finite unital commutative ring of odd char-

acteristic and a, b ∈ R. We obtain the number of non-isomorphic classes of

generalized Hamilton quaternions in the case where R is a principal ideal ring.

This extends the case R = Z/nZ where n is an odd integer.
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1. Introduction

The origin of quaternions dates back to 1843, when William Rowan Hamilton

considered a 4-dimensional vector space over R with basis {1, i, j, k} and defined an

associative product given by the now classical rules i2 = j2 = −1 and ij = −ji = k.

This construction admits a very natural extension like the following. Let R be

a commutative and associative ring with identity and let H(R) denote the free

R-module of rank 4 with basis {1, i, j, k}. That is,

H(R) = {x0 + x1i+ x2j + x3k : x0, x1, x2, x3 ∈ R}.

Now, let a, b ∈ R and define an associative multiplication in H(R) according to the

following rules:

i2 = a,

j2 = b,

ij = −ji = k.

(1)

Thus, we obtain an associative unital ring that will be denoted by
(
a,b
R

)
and that

we call ring of generalized Hamilton quaternions over R. If both a and b are units

and the underlying ring R is a field F of characteristic different from 2, the structure

of the corresponding quaternion algebra is well-known1. Indeed, such a quaternion

algebra is either a division ring or isomorphic to the full matrix ring M2(F) [11, p.

1The analogues of the quaternion algebras over fields of characteristic 2 requires a slight modifi-

cation in the definition of multiplication. See [11, p. 16], for example.
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19]. Thus, if F is finite, it follows from Wedderburn’s little theorem [17, p. 1] that

M2(F) is the only quaternion algebra over F.

The structure of quaternion algebras over a commutative base ring R has been

considered by Kanzaki [6], Knus [7], Tuganbaev [14], Hahn [5], Gross and Lucianovic

[4], and most recently by Voight [15,16], Miguel and Serodio [9], Grau et al. [2] or

Savin [12].

In this paper we study the isomorphism classes of generalized Hamilton quater-

nions
(
a,b
R

)
where R is a finite unital commutative ring of odd characteristic with

a, b ∈ R. In particular, we obtain the number of non-isomorphic Hamilton quater-

nions in the case where R is a principal ideal ring. As we will see, this number

depends only on the degree of nilpotence of the radical and our results extend the

case R = Z/nZ (odd n) which was considered in [3].

2. Ring-theoretical preliminaries

In this section we present some ring-theoretical tools that will be useful in order

to prove our results.

The first tool is the well-known structure of finite commutative rings with iden-

tity. Let R be a a finite commutative ring with identity 1 6= 0. It is well known

that R can be uniquely expressed as a direct sum of local rings [8, p. 95]. That is,

R ∼= R1 ⊕ · · · ⊕Rl, (2)

where each Ri is a local ring. If mi is the maximal ideal of Ri, and the residue field

Ri/mi has order psii , then the ring R is said to be of type

((R1,m1, p
s1
1 ), (R2,m2, p

s2
2 ), . . . , (Rl,ml, p

sl
l )) .

In this paper we assume that the primes pi are odd for every i = 1, . . . , l. In other

words, that the ring R has odd characteristic.

From decomposition (2) it follows that each element of R can be identified with

an l-tuple (r1, . . . , rl), where ri ∈ Ri. With this notation it is easy to see that

decomposition (2) induces a natural isomorphism(
a, b

R

)
∼=
(
a1, b1
R1

)
⊕ · · · ⊕

(
al, bl
Rl

)
. (3)

Consequently, we may restrict ourselves to the case where the base ring is a local

ring.

The second tool is a simple yet powerful result. Assume that R is a finite local

ring and let m be its maximal ideal. Then m is precisely the nilradical of R and,

since for every finite ring the nilradical is nilpotent, it follows that m is a nilpotent
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ideal. Moreover, if k is the index of nilpotence of m, we have the following filtration

0 = mk ⊂ mk−1 ⊂ mk−2 ⊂ . . . ⊂ m ⊂ m0 = R. (4)

Now, consider the following sequence of epimorphisms

R
ϕk−1−→ R/mk−1 ϕk−2−→ R/mk−2 ϕk−3−→ . . .

ϕ2−→ R/m2 ϕ1−→ R/m, (5)

where ϕi(a+ mi+1) = a+ mi. For each 1 ≤ s ≤ k − 1, we can use sequence (5) to

define an epimorphism γs : R −→ R/ms by γs = ϕs ◦ ϕs+1 ◦ . . . ◦ ϕk−1.

Moreover, for every a ∈ R, let us denote by w(a) the largest integer i ∈
{0, 1, . . . , k} such that a ∈ mi. Then ker(γs) = ms = {x ∈ R : w(x) ≥ s} and

it is clear that γs induces an epimorphism

γs :

(
a, b

R

)
−→

(
γs(a), γs(b)

R/ms

)
. (6)

The third tool is an extension to finite local rings of the following well-known

result [13, p. 103].

Lemma 2.1. Let F be a field of odd characteristic and let a and b be nonzero

elements of F. Then, for every c ∈ F, there exist x, y ∈ F such that c = ax2 + by2.

In order to extend this result to finite local rings we first need to introduce the

following result, which is a particular case of an extension of Hensel’s lemma to

polynomials in several variables that was proved in [10, Theorem 3].

Lemma 2.2. Let R be a finite local ring with maximal ideal m, n ≥ 1 and f ∈
R[X1, . . . , Xn]n. If there exists a ∈ Rn such that det(Jac f(a)) is a unit in R and

f(a) ∈ mn, then there exists a unique b ∈ Rn such that b− a ∈ mn and f(b) = 0.

We can now provide the required extension of Lemma 2.1 to finite local rings

that will be used in the sequel.

Lemma 2.3. Let R be a finite local ring of odd characteristic. Let a, b, c be units

in R. Then, the equation

ax2 + by2 = c, (7)

has a solution in R, with either x or y a unit in R.

Proof. Let ψ : R→ R/m be the canonical epimorphism. Let (z1, z2) ∈ (R/m)2 be

a solution of equation ψ(a)x2 + ψ(b)y2 = ψ(c) in the field R/m. Since ker(ψ) = m

and m is the set of all non units of R it follows that ψ(c) 6= 0. Consequently, z1 6= 0

or z2 6= 0. Assume without loss of generality that z1 6= 0. Let us choose elements

w1, w2 ∈ R such that ψ(w1) = z1 and ψ(w2) = z2 and consider

f = (ax2 + by2 − c, y − w2) ∈ R[x, y]2.
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Note that, f(w1, w2) ∈ m2 and det(Jacf(w1, w2)) = 2aw1 is a unit. Hence, the

result follows immediately from Lemma 2.2. �

3. Basic results about generalized Hamilton quaternions

In this section, for the sake of completeness, we present some basic definitions

and results regarding generalized Hamilton quaternions that will be used in the

sequel. The proofs of these results can be found in [3].

The basis {1, i, j, k} of the R-module H(R) that satisfies relations (1) is not

unique. For example {1,−i,−j, k} is also a basis of the R-module H(R) that

satisfies the same relations (1). Thus, we make the following definition.

Definition 3.1. A quaternionic basis of
(
a,b
R

)
is any basis B = {1, I, J,K} of the

free R-module H(R) such that

I2 = a,

J2 = b,

IJ = −JI = K.

Given a quaternionic basis {1, i, j, k}, the elements of the submodule 〈i, j, k〉, gen-

erated by i, j, k, are called pure quaternions. Note that the square of any pure

quaternion is an element of R.

Remark 3.2. Given q ∈
(
a,b
R

)
and a fixed quaternionic basis, there exist x0 ∈ R

and a pure quaternion q0 such that q = x0 + q0. Observe that both x0 and q0 are

uniquely determined and also that the only pure quaternion in R is 0.

The following classical concepts are not altered by the fact that a and b are not

necessarily units.

Definition 3.3. Consider the quaternionic basis {1, i, j, k} and let q ∈
(
a,b
R

)
. Put

q = x0 + q0 with x0 ∈ R and q0 = x1i+ x2j + x3k a pure quaternion. Then,

(i) The conjugate of q is: q = x0 − q0 = x0 − x1i− x2j − x3k.

(ii) The trace of q is tr(q) = q + q = 2x0.

(iii) The norm of q is n(q) = qq = x2
0 − q2

0 = x2
0 − ax2

1 − bx2
2 + abx2

3.

Note that n(q), tr(q) ∈ R and n(q1q2) = n(q1)n(q2).

Remark 3.4. Observe that, if q is a pure quaternion, then q = −q and tr(q) = 0.

The converse also holds if R has odd characteristic.

In what follows, we assume that a homomorphism f between two quaternion

rings is also an R-module homomorphism. Hence, f(1) = 1 and it fixes ev-

ery element of the base ring R. For the sake of simplicity we will call them
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R-homomorphisms and an R-isomorphism is just a bijective R-homomorphism.

Now, let f :
(
a,b
R

)
→
(
c,d
R

)
be a linear map and let us consider quaternionic

bases {1, i, j, k} and {1, I, J,K} of
(
a,b
R

)
and

(
c,d
R

)
, respectively. It is clear that if

f(1) = 1, f(i2) = a, f(j2) = b and f(ij) = −f(ji) = f(k), then f induces a well-

defined R-homomorphism between both quaternion rings. We will make extensive

use of this fact in the next section.

The next result [3, Th. 2, Cor. 1] shows that isomorphisms preserve conjugation

and, consequently, also traces and norms.

Theorem 3.5. Let f :
(
a,b
R

)
→
(
c,d
R

)
be an algebra isomorphism. Then, for every

q ∈
(
a,b
R

)
the following hold.

(i) f(q) = f(q).

(ii) tr (f(q)) = tr(q).

(iii) n (f(q)) = n(q).

Remark 3.6. Theorem 3.5 implies in particular that the conjugate, the trace and

the norm of an element are independent from the quaternionic basis of
(
a,b
R

)
used

to compute them. Moreover, according to Remark 3.4, Theorem 3.5 implies that,

in the odd characteristic case, every isomorphism preserves pure quaternions.

Finally, the following proposition [3, Prop. 1] provides information about the

isomorphisms between quaternion rings of a specific kind.

Proposition 3.7. Let R be a ring with odd characteristic and let f :
(
a,b
R

)
→
(
a,c
R

)
be an algebra isomorphism. Then, for some pair of quaternionic bases the matrix

of f has the form 
1 0 0 0

0 1 α1 α2

0 0 β1 β2

0 0 γ1 γ2

 ,

with α1a = α2a = 0.

4. Isomorphisms of generalized Hamilton quaternions over finite local

rings

For any ring R the matrix ring M2(R) is isomorphic to
(−1,1

R

)
. Any quaternion

algebra isomorphic to M2(R) is called a split quaternion algebra over R. It is well-

known [11, p. 19] that every quaternion algebra
(
a,b
F

)
over a finite field F of odd

characteristic with ab 6= 0 is split. In the following lemma we extend this result to

finite local rings and, due to decomposition (3), also to finite rings.
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Lemma 4.1. Let R be a finite local ring of odd characteristic. If a, b ∈ R are units,

then (
a, b

R

)
∼= M2(R).

Proof. Let a, b be units in R. Due to Lemma 2.3 we can find u, v ∈ R such that

b = u2 − av2.

Now, let us consider the matrices

I =

(
1 0

0 1

)
, A =

(
0 a

1 0

)
, B =

(
u −av
v −u

)
.

Clearly we have that A2 = aI, B2 = bI and AB = −BA.

Moreover, if α, β, γ, δ ∈ R and we solve the linear system of equations associated

to

x0I + x1A+ x2B + x3AB =

(
α β

γ δ

)
we get that it has a unique solution which is given by:

x0 =
α+ δ

2
,

x1 =
β + aγ

2a
,

x2 =
α u− δu+ βv − aγv

2b
,

x3 =
−βu+ aγu− aαv + aδv

2ab
.

Consequently, the set {I,A,B,AB} is a basis of M2(R) and the result follows. �

The rest of this section is devoted to the study of isomorphisms between gener-

alized Hamilton quaternions over finite local rings.

The following result gives us a technique to prove that two rings of generalized

Hamilton quaternions over a ring R are not isomorphic. Roughly speaking, we

replace the ring R by one of its quotients.

Lemma 4.2. Let R be a finite local ring with odd characteristic with maximal ideal

m with index of nilpotence k. Let ai, for i = 1, ..., 4, be elements of R such that(a1, a2

R

)
∼=
(a3, a4

R

)
.

Then, for s = 1, . . . , k we have(
γs(a1), γs(a2)

R/ms

)
∼=
(
γs(a2), γs(a3)

R/ms

)
.
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Proof. Let f be an isomorphism from
(
a1,a2
R

)
to
(
a3,a4
R

)
, and let A = [aij ] be

the coordinate matrix of f with respect to some quaternionic bases. Consider the

matrix γs(A) = [γs(aij)] over R/ms. Since γs preserves isomorphisms of R, it

follows that

det (γs(A)) = γs [det(A)] . (8)

If x is a unit in R, then γs(x) is a unit in R/ms. Then, it follows from (8) that

det (γs(A)) is a unit. Consequently, the homomorphism from
(
γs(a1),γs(a2)

R/ms

)
to(

γs(a3),γs(a4)
R/ms

)
defined by the matrix γs(A) is an isomorphism, which proves the

result. �

Lemma 4.3. Let R be a finite local ring of odd characteristic and let 0 6= a, b ∈ R.

Then, the quaternion algebras R1, R2, R3 defined by

R1 =

(
a, b

R

)
, R2 =

(
a, 0

R

)
, R3 =

(
0, 0

R

)
are pairwise non-isomorphic.

Proof. For each i ∈ {1, 2} let us define the set Pi := {q ∈ Ri : tr(q) = 0}.
Note that, Pi is precisely the set of pure quaternions and is hence preserved by

isomorphisms. Now, for every element q ∈ P3 it holds that q2 = 0, while P1 and P2

contain elements whose square is non-zero. This implies that R3 is not isomorphic

to R1 or R2.

Assume that R1
∼= R2. We apply Proposition 3.7 and thus we can consider

{1, i, j, k} and {1, I, J,K} quaternionic bases of R1 and R2, respectively, such that

the matrix of the isomorphism f with respect to these bases is
1 0 0 0

0 1 α1 α2

0 0 β1 β2

0 0 γ1 γ2

 .

with α1a = α2a = 0. Then

b = j2 = f(j2) = f(j)2 = (α1I + β1J + γ1K)2 = α1I
2 + β2

1J
2 + γ2

1K
2 = 0,

a contradiction. �

Lemma 4.4. Let R be a finite local ring of odd characteristic with maximal ideal

m, and let a1, a2, a3 ∈ R such that w(a2) 6= w(a3). Then(a1, a2

R

)
�
(a1, a3

R

)
.
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Proof. The main idea behind the proof is to exploit the epimorphism defined in

(6) and then apply Lemma 4.3. Recall that ker(γs) = ms = {x ∈ R : w(x) ≥ s}.
Let us assume that both rings are isomorphic. Without loss of generality we can

assume that w(a2) < w(a3) and three different situations arise:

(i) w(a1) ≤ w(a2) < w(a3). In this case, if we consider the isomorphism

γw(a3) : R −→ R/mw(a3) given by Lemma 4.2:(
γw(a3)(a1), γw(a3)(a2)

R/mw(a3)

)
∼=
(
γw(a3)(a1), γw(a3)(a3)

R/mw(a3)

)
.

Now, γw(a3)(ai) is nonzero for i = 1, 2 but γw(a3)(a3) = 0, which contradicts

Lemma 4.3.

(ii) w(a2) < w(a1) < w(a3). In this case, we consider again the isomorphism

γw(a3) : R −→ R/mw(a3) given by Lemma 4.2:(
γw(a3)(a1), γw(a3)(a2)

R/mw(a3)

)
∼=
(
γw(a3)(a1), γw(a3)(a3)

R/mw(a3)

)
.

Now, γw(a3)(ai) is nonzero for i = 1, 2 while γw(a3)(a3) = 0, which contra-

dicts Lemma 4.3.

(iii) w(a2) < w(a3) ≤ w(a1). In this case, if we consider the isomorphism

γw(a3) : R −→ R/mw(a3) given by Lemma 4.2:(
γw(a3)(a1), γw(a3)(a2)

R/mw(a3)

)
∼=
(
γw(a3)(a1), γw(a3)(a3)

R/mw(a3)

)
.

Now, γw(a3)(a2) is nonzero, while γw(a3)(ai) = 0 for i = 1, 3; which contra-

dicts Lemma 4.3.

So, in every case we reach a contradiction, and the result follows. �

Lemma 4.5. Let R be a finite local ring of odd characteristic with maximal ideal

m, and let ψ : R → R/m be the canonical epimorphism. Let s and t be units of R

such that ψ(st) is a quadratic residue in the field R/m. Then, for every a, b ∈ R
we have that

L =

(
ta, b

R

)
∼=
(
sa, b

R

)
= S.

Proof. Let y ∈ R/m be such that y2 = ψ(st). By Hensel’s lemma [1, p. 115], there

is an element z ∈ R such that z2 = st. Now if w = zs−1 we have w2 = s−1t. Let

us consider {1, i, j, k} and {1, I, J,K} quaternionic bases of L and S, respectively.

Then, the linear map L −→ S whose matrix with respect to these bases is

A =


1 0 0 0

0 w 0 0

0 0 1 0

0 0 0 w


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induces an isomorphism because (wI)2 = w2I2 = ts−1sa = at and A is invertible

over R. �

Lemma 4.6. Let R be a finite local ring of odd characteristic with maximal ideal

m, and let ψ : R→ R/m be the canonical epimorphism. Let s ∈ R be a unit. Then,

for any r ∈ R we have

L =
(r, r
R

)
∼=
(sr, sr

R

)
= S.

Proof. From Lemma 2.3 it follows that any unit of R can be written as a sum of

two squares. So, let x, y ∈ R be such that x2 + y2 = s−1. Now let us consider

{1, i, j, k} and {1, I, J,K} quaternionic bases of L and S, respectively. Then, the

linear map L −→ S whose matrix with respect to these bases is

A =


1 0 0 0

0 x −y 0

0 y x 0

0 0 0 s−1


induces an isomorphism because

(xI + yJ)2 = (x2 + y2)sr = r,

(−yI + xJ)2 = (x2 + y2)sr = r,

(xI + yJ)(−yI + xJ) = (x2 + y2)K = s−1K

and A is invertible over R. �

Lemma 4.7. Let R be a finite local ring of odd characteristic with maximal ideal

m and let ψ : R → R/m be the canonical epimorphism. Let s, t, u ∈ R be units.

Then,

(i) For every m ∈ R:(
1, sm

R

)
∼=
(

1,m

R

)
and

(u,m
R

)
∼=
(
u, tm

R

)
.

(ii) If m is a zero divisor and ψ(u) is a quadratic nonresidue in the field R/m:(
1,m

R

)
6∼=
(u,m
R

)
.

Proof. We proceed case by case:

(i) To see that L =

(
1,m

R

)
∼=
(

1, sm

R

)
= S, let us consider {1, i, j, k} and

{1, I, J,K} quaternionic bases of L and S, respectively. Using Lemma 2.3
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there are x, y ∈ R, such that x2 − y2 = s−1. Then, the linear map L −→ S

whose matrix with respect to these bases is

A =


1 0 0 0

0 1 0 0

0 0 x y

0 0 y x


induces an isomorphism because

(xJ + yK)2 = x2J2 + y2K2 = x2sm− y2sm = sm(x2 − y2) = m

and A is invertible over R.

The other isomorphism can be proved in a similar way.

(ii) To see that

(
1,m

R

)
6∼=
(u,m
R

)
it is enough to observe that

(
1,m

R

)
does

not contain any pure quaternion q with q2 = u. In fact, if {1, i, j, k} is

a quaternionic basis, q = ai + bj + ck and q2 = a2 + (b2 − c2)m. Hence,

ψ(u) = ψ(a)2 in the field R/m, which is a contradiction. �

Lemma 4.8. Let R be a finite local ring of odd characteristic with maximal ideal

m. Let ψ : R→ R/m be the canonical epimorphism. Let u ∈ R be a unit such that

ψ(u) is a quadratic nonresidue in R/m and let m ∈ R be a nonzero zero divisor.

Then,

(i) R1 =
(um,m

R

)
6∼=
(m,m

R

)
= R2.

(ii) S1 =

(
um, 0

R

)
�
(
m, 0

R

)
= S2.

Proof. We proceed case by case:

(i) Let {1, i, j, k} and {1, I, J,K} be quaternionic bases of R1 and R2, respec-

tively. Let us consider the following sets:

N1 := {q = x1i+ x2j + x3k ∈ R1 : n(q) = 0, and xl is a unit for l = 1, 2, 3},

N2 := {q = y1I + y2J + y3K ∈ R2 : n(q) = 0, and yl is a unit for l = 1, 2, 3}.

Note that q = x1i+ x2j + x3k ∈ N1 if and only if

x2
1um+ x2

2m− x2
3um

2 = 0, (9)

and xl is a unit for l = 1, 2, 3.

On the other hand, q = y1I + y2J + y3K ∈ N2 if and only if

y2
1m+ y2

2m− y2
3m

2 = 0, (10)

and yl is a unit for l = 1, 2, 3.
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Equation (9) is equivalent to (x2
1u + x2

2 − x2
3um)m = 0. Since m is

nonzero it follows that x2
1u+ x2

2 − x2
3um is a zero divisor. Hence,

ψ(x1)2ψ(u) + ψ(x2)2 = 0. (11)

Similarly we have

ψ(y1)2 + ψ(y2)2 = 0. (12)

Moreover, we can see that:

(a) If −1 is a quadratic residue in R/m (i.e., if char(R/m) ≡ 1 (mod 4)),

then equation (12) has non-zero solutions while equation (11) has not.

(b) If−1 is a quadratic nonresidue inR/m (i.e., if char(R/m) ≡ 3 (mod 4)),

then equation (11) has non-zero solutions while equation (12) has not.

Now, if there was an isomorphism φ : R1 −→ R2, then we would have

φ(N1) = N2 which we just saw is not possible by comparing their non-zero

elements.

(ii) For this case, it is enough to observe that S2 does not contain pure quater-

nions q such that q2 = um, while S1 obviously does contain such type of

elements. To do so, just note that the equation x2m = um implies that

x2 − u is a zero divisor, and hence

ψ(x)2 = ψ(u). (13)

But equation (13) has no solutions because ψ(u) is a quadratic nonresidue

in the field R/m. �

Lemma 4.9. Let R be a finite local ring of odd characteristic with maximal ideal m.

Let ψ : R→ R/m be the canonical epimorphism. Let u ∈ R be a unit such that ψ(u)

is a quadratic nonresidue in R/m. Let m1,m2 ∈ R be two nonzero zero divisors

such that w(m1) < w(m2). Then, the quaternion rings R1 =
(um1, um2

R

)
, R2 =(m1, um2

R

)
, R3 =

(um1,m2

R

)
and R4 =

(m1,m2

R

)
are pairwise non-isomorphic.

Proof. Let us see that R1 � R2, R1 � R4, R2 � R3 and R3 � R4. If they were iso-

morphic, then due to Lemma 4.2 and considering the homomorphism γw(m2) : R −→

R/mw(m2) we would have that

(
γw(m2)(um1), 0

R/mw(m2)

)
∼=
(
γw(m2)(m1), 0

R/mw(m2)

)
, which con-

tradicts Lemma 4.8.

Now, let us see that R1 � R3. Assume that R1
∼= R3. Then, due to Proposition

3.7, we can consider {1, i, j, k} and {1, I, J,K} quaternionic bases of R1 and R3,

respectively such that the matrix of the isomorphism f with respect to these bases
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is 
1 0 0 0

0 1 α1 α2

0 0 β1 β2

0 0 γ1 γ2

 ,

with α1um1 = 0. In particular,

um2 = j2 = f(j2) = f(j)2 = (α1I + β1J + γ1K)2 = α2
1um1 + β2

1m2 − γ2
1um1m2 =

= β2
1m2 − γ2

1um1m2.

In other words, β2
1m2 − γ2

1um1m2 = um2. Therefore, (β2
1 − γ2

1um1 − u)m2 = 0,

and hence β2
1 − γ2

1um1 − u is a zero divisor. Thus ψ(β1)2 = ψ(u) in the residue

field R/m, which is a contradiction because ψ(u) is a quadratic nonresidue.

The remaining case, namely R2 � R4, can be proved in the exact same way. �

Now, we close this section with the main result that summarizes all the previous

work.

Theorem 4.10. Let R be a finite local ring of odd characteristic with maximal ideal

m. Let ψ : R→ R/m be the canonical epimorphism. Let u ∈ R be a unit such that

ψ(u) is a quadratic nonresidue in R/m. Let s, t ∈ R be units and let m,m1,m2 ∈ R
be nonzero zero divisors such that w(m1) < w(m2). Then, the following hold

(i)
(
s,t
R

) ∼= ( 1,1
R

)
.

(ii)
(
s,tm
R

) ∼=

(
u,m
R

)
, if ψ(s) is a quadratic nonresidue ;(

1,m
R

)
, if ψ(s) is a quadratic residue .

(iii)
(
sm,tm
R

) ∼=

(
um,m
R

)
, if ψ(st) is a quadratic nonresidue ;(

m,m
R

)
, if ψ(st) is a quadratic residue .

(iv)
(
sm1,tm2

R

) ∼=


(
um1,m2

R

)
, if only ψ(t) is a quadratic residue;(

m1,um2

R

)
, if only ψ(s) is a quadratic residue.(

m1,m2

R

)
, if both ψ(s) and ψ(t) are quadratic residues.(

um1,um2

R

)
, if both ψ(s) and ψ(t) are quadratic nonresidues.

Proof. (i) Just apply Lemma 4.1.

(ii) We make use of the well known fact that in a finite field the product of two

non-square elements is a square. If ψ(s) is a quadratic nonresidue:(
s, tm

R

)
∼=

Lem. 4.7

(s,m
R

)
∼=

Lem. 4.5

(u,m
R

)
.
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Now, if ψ(s) is a quadratic residue:(
s, tm

R

)
∼=

Lem. 4.5

(
1, tm

R

)
∼=

Lem. 4.7

(
1,m

R

)
.

Finally,
(
u,m
R

)
and

(
1,m
R

)
are not isomorphic due to Lemma 4.7.

(iii) If ψ(st) is a quadratic nonresidue, only one among ψ(s) and ψ(t) is a

quadratic residue. We can assume without loss of generality that ψ(s) is

a quadratic residue and that ψ(t) is a quadratic nonresidue (so ψ(ut) is a

quadratic residue) and then:(
sm, tm

R

)
∼=

Lem. 4.5

(sm, um
R

)
∼=

Lem. 4.5

(m,um
R

)
.

Now, if ψ(st) is a quadratic residue:(
sm, tm

R

)
∼=

Lem. 4.5

(
tm, tm

R

)
∼=

Lem. 4.6

(m,m
R

)
.

Finally,
(
m,m
R

)
and

(
um,m
R

)
are not isomorphic due to Lemma 4.8.

(iv) Like in the previous points, it is enough to apply Lemma 4.5 repeatedly.

The four different cases that arise are non-isomorphic due to Lemma 4.9.

�

5. Counting non-isomorphic generalized Hamilton quaternions over

principal ideal rings of odd characteristic

When the maximal ideal m is principal, we will be able to count the total number

of generalized Hamilton quaternion rings over R. This number depends only on the

degree of nilpotence of m. Assume that the degree of nilpotence of m is k and let

g be a fixed generator of m. Then, every element x of R can be represented in the

form

x = agw(x),

where a ∈ R is a unit. Moreover, we have the following partition of the ring R

R = {0} ∪ U(R) ∪ U(R)g ∪ U(R)g2 ∪ . . . ∪ U(R)gk−1.

Note that this partition corresponds to the equivalence relation in R defined by

x ∼ y if and only if w(x) = w(y).

In order to count the total number of generalized Hamilton quaternion rings(
x,y
R

)
, we divide the problem into four cases. We will repeatedly make use of the

well-known fact that (
a, b

R

)
∼=
(
b, a

R

)
. (14)
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(1) Both x and y are units.

In this case, it follows from Lemma 4.1 that there is only one generalized

Hamilton quaternion ring.

(2) Both x and y are nonzero zero divisors.

Let g be as above. Then,

x = agw(x) and y = bgw(y),

where a and b are units in R.

We subdivide into two subcases:

(a) w(x) = w(y).

In this subcase, it follows from Theorem 4.10 (iii) that for any unit

u ∈ R,

(x, y
R

)
∼=


(
ugw(x),gw(y)

R

)
, if ψ(ab) is a quadratic nonresidue ;(

gw(x),gw(y)

R

)
, if ψ(ab) is a quadratic residue.

Therefore, as the degree of nilpotence of m is k, we have 2(k − 1)

different non isomorphic generalized Hamilton quaternion rings, one

for each value of w(x).

(b) w(x) < w(y).

In this subcase, it follows from Theorem 4.10 (iv) that for any unit

u ∈ R,

(x, y
R

)
∼=



(
ugw(x),gw(y)

R

)
, if only ψ(b) is a quadratic residue;(

gw(x),ugw(y)

R

)
, if only ψ(a) is a quadratic residue;(

gw(x),gw(y)

R

)
, if both ψ(a) and ψ(b) are quadratic residues;(

ugw(x),ugw(y)

R

)
, if both ψ(a) and ψ(b) are quadratic nonresidues.

Therefore, as the degree of nilpotence of m is k, and taking (14) into

account, we have 2(k − 2)(k − 1) different non isomorphic generalized

Hamilton quaternion rings, one for each value of w(x).

(3) x is a unit and y is a nonzero zero divisor.

We subdivide into two subcases:

(a) ψ(x) is a quadratic residue in R/m.

From Theorem 4.10 (ii) it follows that(x, y
R

)
∼=
(

1, y

R

)
.

Note that
(

1,y
R

) ∼= (
1,y′

R

)
if and only if w(y) = w(y′). The “only if”

part follows from Lemma 4.4. On the other hand, if w(y) = w(y′) then
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there is a unit e ∈ R such that y = ey′. Therefore, the result follows

from Lemma 4.7.

Thus, as the degree of nilpotence of m is k, and taking (14) into ac-

count, we have k − 1 different non isomorphic generalized Hamilton

quaternion rings, one for each value of w(x).

(b) ψ(x) is a quadratic nonresidue in R/m.

As in the previous subcase, from Theorem 4.10 (ii) it follows that

(x, y
R

)
∼=
(u, y
R

)
,

where u ∈ R is a unit such that ψ(u) is a quadratic non-residue in

R/m.

As in the previous subcase we have that
(
u,y
R

) ∼= (u,y′R )
if and only if

w(y) = w(y′).

So, as the degree of nilpotence of m is k, and taking (14) into account,

we have k − 1 non isomorphic generalized Hamilton quaternion rings,

one for each value of w(x).

(4) x = 0 or y = 0.

In this case we have the ring
(

0,0
R

)
and for y 6= 0 it follows from Lemma

4.4 that
(

0,y
R

)
�
(

0,y′

R

)
if w(y) 6= w(y′). Now, if w(y) = w(y′) we have

y = uy′, for a unit u. If ψ(u) is a quadratic residue, then it follows from

Lemma 4.5 that
(

0,y
R

) ∼= (
0,y′

R

)
. On the other hand, if ψ(u) is a quadratic

non-residue, then it follows from Lemma 4.8 that
(

0,y
R

)
�
(

0,y′

R

)
.

Hence, as the degree of nilpotence of m is k, we have 2k + 1 different

non isomorphic generalized Hamilton quaternion rings, one for each value

of w(x).

Finally, taking into consideration all the previous information, we conclude that

there exist

2(k − 1) + 2(k − 2)(k − 1) + (k − 1) + (k − 1) + 2k + 1 + 1 = 2k2 + 2

non-isomorphic generalized Hamilton quaternions over R.

As a consequence of all the previous computations we obtain the following result.

Theorem 5.1. Let R be a finite unital principal ideal ring of odd characteristic of

type

((R1,m1, p
s1
1 ), (R2,m2, p

s2
2 ), . . . , (Rl,ml, p

sl
l ))
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and let ki be the index of nilpotence of mi. Then, the number of non-isomorphic

generalized Hamilton quaternions over R is

2l
l∏
i=1

(k2
i + 1).

Finally, we close this section, giving two applications of the previous result. The

first one is the case R = Z/nZ for an odd n, which was given in [3, Corollary 5].

Corollary 5.2. Let n be an odd integer. Let us denote by P (n) the number of

different primes dividing n and by wp(n) the p-adic order of n. Then, the number

of non-isomorphic generalized Hamilton quaternions over Z/nZ is

2P (n)
∏
p|n

(wp(n)2 + 1).

Finally, if R = F is a finite field of odd characteristic we get the following

corollary.

Corollary 5.3. Let F be a finite field of odd characteristic and let a ∈ F be a

quadratic nonresidue. Then, up to isomorphism, there exist exactly four generalized

Hamilton quaternions over F. Namely,(
1, 1

F

)
,

(
a, 0

F

)
,

(
1, 0

F

)
and

(
0, 0

F

)
.
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[9] C. Miguel and R. Serôdio, On the structure of quaternion rings over Zp, Int.

J. Algebra, 5(27) (2011), 1313-1325.

[10] S. Priess-Crampe and P. Ribenboim, A general Hensel’s lemma, J. Algebra,

232(1) (2000), 269-281.

[11] R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Berlin, 1982.

[12] D. Savin, About Special Elements in Quaternion Algebras Over Finite Fields,

Adv. Appl. Clifford Algebr., 27(2) (2017), 1801-1813.

[13] C. Small, Arithmetic of Finite Fields, Marcel Dekker, New York, 1991.

[14] A. A. Tuganbaev, Quaternion algebras over commutative rings, Math. Notes,

53(1-2) (1993), 204-207.

[15] J. Voight, Characterizing quaternion rings over an arbitrary base, J. Reine

Angew. Math., 657 (2011), 113-134.

[16] J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and

quadratic forms, Quadratic and Higher Degree Forms, Dev. Math., vol. 31,

Springer, New York, 2013, 255-298.

[17] A. Weil, Basic Number Theory, Die Grundlehren der Mathematischen Wis-

senschaften (Band 144), Springer-Verlag, New York-Berlin, 1974.

José Maŕıa Grau
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