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 Abstract 

Two-wheeled robots are popular in transportation applications because of their high 

manoeuvrability. In this research, the oscillation attenuation performance of the control moment 

gyroscope (CMG) for the two-wheeled robot was studied. This CMG is also more reactionless 

than other conventional absorbers by transforming the impact of angular momentum to 

unidirectional thrust along the center of gravity. The gimbals can precess while providing the 

angular momentum under the gravitational force. The CMG to be used for balancing the robot 

can maintain its stability in the desired frequency band. Because increasing the flywheel speed 

can produce the thrust force much more easily against the undesired oscillation forces that 

disrupt the balance of the robot. There is a relation between the gimbal amplitude and the 

flywheel speed of CMG, in which the required flywheel speed can be reduced if the higher 

gimbal amplitude is chosen. It can be also concluded from the study that the oscillation 

amplitudes at the target frequency can decrease as much as flywheel speed increases.  There 

was also a mathematical model using ANSYS software. The simulation results using ANSYS 

matched well with the theoretical results of the Lagrangian model. 
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1. INTRODUCTION 

Due to their high maneuverability, two-wheeled robots are popular in transportation applications 

(http://segway.com) despite the stability problem of an inverted pendulum [1]. The stability of the 

inverted pendulum-like robot has attracted significant interest over the past years [2,3].  There are 

apparent techniques for both the dynamics and control of these robots. An inverted pendulum-like robot  

is an unstable nonlinear vehicle that strongly depends on the center of gravity. [4,5]. However, two-

wheeled robots can be balanced with appropriate control despite their being naturally unstable. For the 

sake of example, moving the wheel(s) of the robot [6,7], exerting a gyroscopic moment (CMG) [1], and 

riding a reaction wheel [8]. A common control strategy is to turn the wheels of the robot to move the 

center of a body mass forward and rear respectively. A two-wheeled robot requires a roll angle to be able 

to control the robot’s balance under certain conditions such as the inertia forces of gravity, which 

significantly reduces its mobility in the upright position.  Therefore, maintaining the equilibrium of forces 

brings interesting challenges to the researchers discussing different more realistic dynamical models to 

stabilize robots [4-8].  

A reaction wheel is a simple and low-cost momentum actuator that can produce torque to balance the 

robot in the absence of ground reaction [8]. However, a primary challenge in conventional reaction 

wheels is that they have to change flywheel velocity to generate angular momentum to compensate the 

robot against constant falling-down force, which results in low momentum storage capacity. This is the 

main problem of reaction wheels that limits their application when the body mass is subject to continuous 

roll disturbances. However, compared with reaction wheels, a CMG is able to produce large amounts of 

torque per unit mass against continuous moments using a constant flywheel velocity. In recent years, 

http://dergipark.gov.tr/gujsc
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various studies have shown that the inertial forces of a structure can be controlled reactionless by using 

the gyroscopic torque produced by a rotating flywheel  [9-11].  

In this paper, the vibration attenuation performance of a CMG for a two-wheeled robot (an inverted 

pendulum problem) is investigated under the harmonic excitation torque of wheels. The angular 

momentum of a gyroscope stabilizer can provide weight and volume savings and ground-independent 

damping compared to conventional vibration absorbers [9-11]. Conventional vibration dampers generally 

operate on the principle of energy transfer from the main structure to the damper in the low frequency 

band [12]. However, the gyroscope can oscillate and precess while converting the angular momentum to 

linear along the center of body mass under the gravitational force within a wide range of excitation 

frequencies [9-11]. 

 

2.OVERVIEW OF ROBOT 

Sinusoidal driving torque of =0cos(t) is applied to the robot wheels using forcing amplitudes (0) and 

different forcing frequencies  (). Table 1 gives the technical parameters of the robot model. Gyroscopes 

consist of a flywheel, which is assumed to have a certain rotational speed , inside a gimbal that can 

rotate (θ)  freely around its geometric axis in the body of the robot, as shown in Figures 1 and 2. 

 

 

Figure 1. The two-wheeled robot with gyroscopes 
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Figure 2. Two-wheeled robot with the length of the centroid (G) and head (pitch) displacement () at the 

free end 

 

Table 1. Physical descriptions of the two-wheeled robot 

Symbol Numerical  properties Definition 

g 9.80665 m/s2 Acceleration due to gravity 

r 0.15 m Radius of the wheel 

L 0.47693741 m Length of the centroid 

mb 169.216910 kg Body mass 

mg 1.10344600 kg Gimbal mass 

mw 14.2471463 kg Wheel mass 

md 2.52182131 kg Flywheel mass 

Ip 0.00849 kg.m2 Inertia of each flywheel 

Io 0.00432 kg.m2 Inertia of each flywheel 

Igx 0.00402 kg.m2 Inertia of each gimbal 

Igy 0.00410 kg.m2 Inertia of each gimbal 

Igz 0.00049 kg.m2 Inertia of each gimbal 

Ibx 4.90519 kg.m2 Inertia of body 

Iw 0.20413 kg.m2 Inertia of the wheel 

 0-3000 rad/s Flywheel speed 

 1 N.m Torque for each wheel 
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2.1. Equations of Motion 

The equations describing the robot motion can be derived by the Lagrange formula.  Fortunately, the 

fundamental equations of the two-wheeled robot using CMG are obtained by Ünker [1] as 

 

(𝑀𝑡 +
2𝐼𝑤

𝑟2 ) 𝑧̈ + 𝑚𝑏𝐿𝜑̈ cos 𝜑 − 𝑚𝑏𝐿𝜑̇2 sin 𝜑 =
2𝜏

𝑟
;      (1) 

 

(𝐼𝑜 + 𝐼𝑔𝑧)𝜃̈ + (𝐼𝑜 − 𝐼𝑝 + 𝐼𝑔𝑥 − 𝐼𝑔𝑦)𝜑̇2 cos 𝜃 sin 𝜃 − 𝐼𝑝Ω𝜑̇ cos 𝜃 = 0 ;        (2) 

 

(2𝐼𝑜 cos2 𝜃 + 2𝐼𝑝 sin2 𝜃 + 2𝐼𝑔𝑥 cos2 𝜃 + 2𝐼𝑔𝑦 sin2 𝜃 + 𝐼𝑏𝑥 + 𝑚𝑏𝐿2)𝜑̈ +  4(𝐼𝑝 − 𝐼𝑜 + 𝐼𝑔𝑦 −

𝐼𝑔𝑥)𝜑̇𝜃̇ sin 𝜃 cos 𝜃 + 2𝐼𝑝Ω𝜃̇ cos 𝜃 + 𝑧̈𝑚𝑏𝐿 cos 𝜑 − 𝑚𝑏𝑔𝐿 sin 𝜑 = −2𝜏;   (3) 

 

In which 

 

𝑀𝑡 = 2𝑚𝑑 + 2𝑚𝑔 + 2𝑚𝑤 + 𝑚𝑏.         (4) 

 

2.2. Balance Locations for Small Oscillations 

Let’s assume that the acceleration of the head motion of the robot is negligible (̈ 0) for a low 

frequency with a small amplitude of the pitch vibrations (0, sin =   and cos = 1). Also, if we 

make another assumption for the balanced position of the gimbal body, it has zero kinetic energy at a very 

small precession. (θ0, sin = , and cos θ = 1). Thus, the equations of the mathematical model of 

motion can be simplified using θ ̇ 0  and   ̇ 0 assumptions in Equations (1), (2), and (3). Hence, 

ignoring the terms of a higher power of angular velocities at the equilibrium position for a very small 

amplitude of precession (θ0 sin = , and cos θ = 1), the differential equations of motion can be 

simplified to;  

 

(𝑀𝑡 +
2𝐼𝑤

𝑟2 ) 𝑧̈ =
2𝜏

𝑟
;          (5) 

 

(𝐼𝑜 + 𝐼𝑔𝑧)𝜃̈ − 𝐼𝑝Ω𝜑̇ = 0;            (6) 

 

2𝐼𝑝Ω𝜃̇ + 𝑧̈𝑚𝑏𝐿 − 𝑚𝑏𝑔𝐿𝜑 = −2𝜏.         (7) 

 

2.3. Required Flywheel Speeds corresponding to the Operating Frequencies 

Let the wheels of the robot be stimulated with a harmonic distortion torque as 𝜏 = 𝜏0𝑒𝑗𝑡. The 

displacements of the robot body and gimbal can then be written in terms of angular frequency (): 

 

𝑧 = 𝑧0𝑒𝑗𝑡, 𝜃 = 𝜃0𝑒𝑗𝑡  and 𝜑 = 𝜑0𝑒𝑗𝑡.         (8) 

 



 Faruk ÜNKER/ GU J Sci, Part C, 10(3):547-557(2022)                                                                                                              551 

 

Thus, using Equation (8) in Equations (5-7) to solve these reduced equations of motion simultaneously, 

the following matrix can be written in the form: 

 

[

−2 (𝑀𝑡 +
2𝐼𝑤

𝑟2 ) 0 0

0 −2(𝐼𝑜 + 𝐼𝑔𝑧) −𝑗𝐼𝑝Ω

−2𝑚𝑏𝐿 2𝑗𝐼𝑝Ω −𝑚𝑏𝑔𝐿

] {

𝑧0

𝜃0

𝜑0

} =  {
2𝜏0/𝑟

0
−2𝜏0

}.    (9)   

 

From the determinant of the coefficients (z0, 0, and 0), the characteristic equation is as follow; 

 

[(𝐼𝑜 + 𝐼𝑔𝑧)𝑚𝑏𝑔𝐿 − 2(𝐼𝑝Ω)
2

] = 0.        (10)   

 

Therefore, Equation (10) can be rearranged into the following flywheel speed resonance; 

 

Ω𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = ∓
1

𝐼𝑝

√
(𝐼𝑜+𝐼𝑔𝑧)𝑚𝑏𝑔𝐿

2
.        (11)   

 

Furthermore, the amplitudes of vibrations can be found from Equation  (9)  as follows, respectively; 

 

𝑧0 = −
2𝜏0

2𝑟(𝑀𝑡+
2𝐼𝑤
𝑟2 )

 ;          (12)   

 

|𝜃0| =

2𝜏0𝐼𝑝Ω[1+
𝑚𝑏𝐿

𝑟(𝑀𝑡+
2𝐼𝑤
𝑟2 )

]

−[(𝐼𝑜+𝐼𝑔𝑧)𝑔𝑚𝑏𝐿−2(𝐼𝑝Ω)
2

]
;         (13)   

 

𝜑0 =

2𝜏0(𝐼𝑜+𝐼𝑔𝑧)[1+
𝑚𝑏𝐿

𝑟(𝑀𝑡+
2𝐼𝑤
𝑟2 )

]

(𝐼𝑜+𝐼𝑔𝑧)𝑔𝑚𝑏𝐿−2(𝐼𝑝Ω)
2 .         (14)   

 

Thus, the required flywheel speed can be obtained from Equation (13) such as; 

 

Ω1,2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
;          (15)   

 

in which: 

 

𝑎 = 2|𝜃0|𝐼𝑝
2 ; 
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𝑏 = −2𝜏0𝐼𝑝 [1 +
𝑚𝑏𝐿

𝑟(𝑀𝑡+
2𝐼𝑤
𝑟2 )

] ;          (16)   

 

𝑐 = −|𝜃0|𝑔𝑚𝑏𝐿(𝐼𝑜 + 𝐼𝑔𝑧) .   

 

The lowest flywheel speed that can be used versus a required precession amplitude 0 can be determined 

by the equations obtained above. Equations (13 and 14) illustrate that the amplitudes increase when the 

wheel’s torque increases, which means more inertia force for the body of the robot in the horizontal axis. 

The curves in Figure 3 are plotted with the help of these equations derived above. As the frequency 

increases, the amplitude of the body vibration increases. It is necessary to increase the flywheel speed at 

low-frequency values as seen in Figure 3. Therefore, low angular momentum is needed at high roll 

amplitudes of gyro, according to the relationship between the flywheel speed and the roll amplitude.  

 

Figure 3.  The frequency influence on the flywheel speed, Ω and the pitch amplitude, 0 for 0 = 1 Nm 

 

3.RESULTS AND DISCUSSION 

In this study, Lagrangian equations are solved with the help of MATLAB. The physical parameters to be 

used in solving the equations of motion of the model are given in Table 1. Numerical solutions of model 

equations were run for 0.05 s step intervals.  The theoretical simulations of equations of motion were 

confirmed with the simulations obtained by ANSYS for different speeds of flywheels. The displacements 

are obtained by the Rigid Dynamics tool of ANSYS Workbench. 

3.1. Influence of the Angular Frequencies 

The oscillation amplitudes obtained from the flywheel speed scanning are shown in Figure 4. In which, 

the flywheel speed of the CMG saves the robot from instability as soon as it reaches a certain speed. For 

example, for this model, the required speed is =1000 rad/s, after which the robot moves stably and 
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protects itself with gradually decreasing vibration amplitude. In addition, by increasing the flywheel 

speed of the gyro, the amplitudes for each frequency can be reduced to desired levels. 

In Figure 5, the optimum flywheel speed calculated using Equation (15) to minimize the oscillation 

amplitude of the target frequency at values of 0  = 1 Nm and 0  = 0.3 rad is 2688 rad/s. As can be seen 

from Figure 5, significant decreases were observed in the amplitudes of the vibrations, as the required 

flywheel speed would decrease as the frequency increased. Consequently, for the same angular 

momentum, the vibration amplitudes gradually increase as the frequency decreases. 

 

Figure 4. Influence of the flywheel speed Ω for 0 = 1 Nm and =0.5 rad/s 

 

Figure 5. Influence of the angular frequency  for 0 = 1 Nm and  Ω = 2688 rad/s 
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3.2. Comparisons of Ansys and the Theoretical Results 

It can be seen from the comparisons that the results of the displacements agreed well and the simulations 

of ANSYS and the theoretical results are almost the same as provided in Figures 6 - 8. By increasing the 

gimbal amplitude, the required flywheel speed can be reduced. This means less angular momentum is 

needed for the robot's balance. The damping performance of the CMG was achieved by using low 

flywheel speed at large gimbal amplitude. However, in this case, it caused the oscillation amplitude of the 

robot body to increase. The oscillation amplitudes in Figure (3), plotted with the aid of Equation (15), 

contain minor errors due to the linearized equations. While a gyro’s flywheel is rotating at a certain 

constant speed, the gimbal and body oscillate for the stability of the robot. That is, for the same 

preventing rollover performance, the required flywheel speed can be reduced if a higher roll amplitude of 

the gyro is used, taking into account the stability of the robot.  

 

Figure 6. Comparison of ANSYS software and the theoretical results with the frequency =0.5 rad/s, Ω 

= 2688 rad/s, and 0 = 1 Nm for 0=0.3 rad 
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Figure 7. Comparison of ANSYS software and the theoretical results with the frequency =0.5 rad/s, Ω 

= 2022 rad/s, and 0 = 1 Nm for 0=0.4 rad 

 

Figure 8. Comparison of ANSYS software and the theoretical results with the frequency =0.5 rad/s, Ω 

= 1623 rad/s, and 0 = 1 Nm for 0=0.5 rad 

 

4.CONCLUSIONS 

In this study, the nonlinear dynamic equations of the robot with CMG were obtained using the 

Lagrangian approach. In addition, a CAE software (ANSYS) model was tested to check the damping 

capability of the GMG. As a result, it is seen that Lagrange model and ANSYS simulations are similar. 
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CMG can convert the angular momentum to unidirectional thrust at the center of body mass along the 

forcing excitation axis, which has considerably attenuated the vibration at the target frequency. However, 

the system becomes unstable when descending to low excitation frequencies at a constant speed of the 

flywheel. Since stability is dependent on angular momentum, damping performance improved as the 

flywheel speed of the gyroscope increased. This article demonstrates that there is a correlation between 

the flywheel speed and the gimbal’s precession amplitude. Namely, when a high roll amplitude is used, 

the required angular momentum can be reduced for damping. 
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