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ABSTRACT 
 
Common vector approach (CVA), discriminative common vector approach (DCVA), and linear regression classification (LRC) 
are subspace methods used in pattern recognition. Up to now, there were two well-known algorithms to calculate the common 
vectors: (i) by using the Gram-Schmidt orthogonalization process, (ii) by using the within-class covariance matrices. The 
purpose of this paper is to introduce a new implementation algorithm for the derivation of the common vectors using the linear 
regression idea. The derivation of the discriminative common vectors through LRC is also included in this paper. Two 
numerical examples are given to clarify the proposed derivations. An experimental work is given in AR face database to 
compare the recognition performances of CVA, DCVA, and LRC. Additionally, the three implementation algorithms of 
common vector are compared in terms of processing time efficiency. 
 
Keywords: Common vector, Discriminative common vector, Linear regression classification, Subspace methods, Face 
recognition 
 

 
1. INTRODUCTION 
 
The dimension of the feature space is very important in face recognition (FR) problems. An n-by-m 
sized face image corresponds to a point in nm-dimensional space. This situation raises some difficulties 
such as computational cost, increasing measurement and storage requirements, curse of dimensionality, 
etc. [1]. Many subspace methods are proposed to reduce dimensionality and increase the recognition 
performance of FR systems [1-5].  

 
In this work, we propose a new algorithm to obtain the common vectors using linear regression 
classification (LRC) method [4]. We provide a numerical example to show the equivalence of the 
proposed derivation with the previous two derivations of the common vectors [2,6]. We also express a 
new derivation of the discriminative common vectors using LRC. In this section, brief reviews of the 
common vector approach (CVA), discriminative common vector approach (DCVA) [3], and linear 
regression classification (LRC) are given. Derivation of common vector (CV) using LRC approach and 
a numerical example are given in Section 2. Derivation of discriminative common vector (DCV) using 
LRC approach with a numerical example is given in Section 3. A real life application of face recognition 
is given in Section 4 and the conclusion of the work is given in Section 5.  
 
1.1. Common Vector Approach 
 
There are two basic algorithms to calculate the common vector of a class [2,6]. The first approach is 
based on Gram-Schmidt orthogonalization and the other is based on covariance matrix of a class. 
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(i) Gram-Schmidt Orthogonalization Approach: Let ൛ࢇଵ

 , ଶࢇ
 , … , ࢇ ൟ be the n-dimensional feature 

vectors used in the ith class training set. And let the total number of classes be ܥ, that is, ݅ ൌ 	1,2, … ,  .ܥ
The difference vectors for each class are obtained as 
 

ଵ࢈ 
 ൌ ଶࢇ

 െ ଵࢇ
 ,

ଶ࢈
 ൌ ଷࢇ

 െ ଵࢇ
 ,

⋮
ିଵ࢈
 ൌ ࢇ െ ଵࢇ

 .

 (1)

 
The orthonormal vector set ࢆ ൌ ሾࢠଵ ⋮ ଶࢠ ⋮ ⋯ ⋮  ିଵሿ that spans the difference subspace of the ith classࢠ
can be obtained by applying the Gram-Schmidt orthogonalization procedure to the difference vectors 
given in Eq.(1). Then the common vector of the ith class can be obtained by subtracting the projection 
of any feature vector onto the difference subspace from itself as it is shown below 

 
ࢇ ൌ ࢇ

 െ ൫ࢠ
ࢇ்

൯ࢠ

ିଵ

ୀଵ

, ݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉ (2)

 
Due to the above formula, common vector is considered to be the projection of any feature vector in a 
class onto the indifference subspace.  The indifference subspace in here is the complementary subspace 
of the difference subspace.  That is, let the projection matrix onto the difference subspace be the matrix 
ࡼ where ࡼ ൌ ∑ ࢠࢠ

்ିଵ
ୀଵ . Then the projection matrix onto the indifference subspace, ୄࡼ, will be found 

from ࡼ  ୄࡼ ൌ  .ࡵ
 

(ii) Covariance Matrix Approach: The within-class covariance matrix is used to calculate the common 
vector of a class. Let the within-class covariance matrix be defined as  ൌ 

் where  is a matrix 
of the form 
 

  ൌ ଵࢇൣ
 െ ࣆ ⋮ ଶࢇ

 െ ࣆ ⋮ ⋯ ⋮ ࢇ െ ,൧ࣆ ݅ ൌ 1,… , (3) ܥ
 
and  ࣆ is the mean of the ith class. Let the pair ሺߣ, ,ሻ࢛ ݅ ൌ ݉,… , ݊ be the zero eigenvalue and 
corresponding eigenvector set.  Then the projection matrix onto the indifference subspace of the ith class 
is ࡼ

ୄ ൌ ∑ ࢛

ୀ ࢛

் where ࢛s are the eigenvectors correspond to the zero eigenvalues. Then the 
common vector of the ith class is calculated from  
 

ࢇ  ൌ ࡼ
ࢇୄ

, ݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉. (4)
 
1.2. Discriminative Common Vector Approach 
 
Discriminative common vector approach is a popular method in face recognition area. Several method 
related with DCVA have been published [7, 10]. In DCVA, similar with CVA, common vectors can be 
calculated with Gram-Schmidt orthogonalization process or by using the within-class covariance 
matrices. 

 
(i) Gram-Schmidt Orthogonalization Approach: Let the difference vectors of the ith class 
࢈
 ൌ ࢇ

 െ ଵࢇ
 , ݆ ൌ 2,… ,݉. The orthonormal vector set ሼࢠሽ, ݅ ൌ 1,2, … , ሺ݉ܥ െ 1ሻ  is obtained by 

applying the Gram-Schmidt orthogonalization process to the difference vectors ࢈
. Then the common 

vector of the ith class is calculated by subtracting the projection of any feature vector from the ith class 
onto the orthonormal vector set ሼࢠሽ, ݅ ൌ 1,2, … , ሺ݉ܥ െ 1ሻ as below: 
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ࢇ ൌ ࢇ

 െ  ൫ࢠ
ࢇ்

൯ࢠ

ሺିଵሻ

ୀଵ

, ݆ ൌ 1,… ,݉ (5)

(ii) Covariance Matrix Approach: Different from CVA, the common vectors are calculated using the 
total within-class scatter matrix, ் ൌ   where ,்
 

  ൌ ଵࢇൣ
ଵ െ ଵࣆ ⋮ ⋯ ⋮ ଵࢇ െ ଵࣆ ⋮ ଵࢇ

ଶ െ ଶࣆ ⋮ ⋯ ⋮ ଵࢇ
 െ ൧ (6)ࣆ

or else ் ൌ ଵ ଶ ⋯ . 
 
After eigen-decomposition, the eigenvectors ሼ࢛ሽ, ݅ ൌ 1,2, … , ሺ݉ܥ െ 1ሻ corresponding to the nonzero 

eigenvalues form the projection matrix ࡼ ൌ ∑ ࢛࢛
்ሺିଵሻ

ୀଵ  onto the difference subspace of ࢀࢶ. Then 
the common vectors are calculated as in Eq.(4). 

 
After the calculation of the common vectors in DCVA, a final attempt must be made for finding what is 
called as the discriminant common vectors (DCVs) [3]. DCVs are obtained by using the subspace 
spanned by the common vectors in Eq.(5). For this reason, the difference between the common vectors 
should be calculated first. Then the difference vectors that span the subspace of the difference of the 
common vectors can be written as 
 

࢈  ൌ ାଵࢇ െ ଵࢇ , ݅ ൌ 1,… , ܥ െ 1, (7)
 
where ࢇଵ  is the common vector of the first class. It can also be the common vector of any other class. 
Then the column vectors of the matrix ࢁ  are the orthonormal basis vector set ሼ࢛ଵ, ,ଶ࢛ … ,  ିଵሽ that࢛
can be obtained by applying the Gram-Schmidt orthogonalization procedure to the difference vectors 
between the commons from Eq. (7), that is,	
ࢁ ൌ ሾ࢛ଵ ⋮ ଶ࢛ ⋮ ⋯ ⋮  can be calculated by simply ࢁ ିଵሿ. As a second method, the projection matrix࢛
applying the PCA to the covariance matrix of the common vectors. The matrix ࢁ in this case is a projection 
matrix from an n-dimensional space to ܥ െ 1 dimensional subspace defined by the difference of the 
common vectors. Finally, the discriminative common vector of a class is calculated as 
 

 ષ ൌ ࢇ்ࢁ
, ݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉. (8)

 
Here, just to emphasize the result, all the vectors are projected onto the ܥ െ 1 dimensional subspace 
formed by an orthogonal base of the differences of all the common vectors. 
 
1.3. Linear Regression Classification 
 
Linear regression classification (LRC) has become very popular lately. Several methods are proposed 
which are inspired by LRC [11-13]. LRC is generally used for face recognition problems. Authors in 
[14].  propose an improved version of LRC which can be applicable to low dimensional datasets.  
 
Let C be the number of classes, m be the number of feature vectors of a class used in training, and let 
൛ࢇଵ

 , ଶࢇ
 , … , ࢇ ൟ be the feature vectors of the ith class training set as it was in the previous section. The 

set of these feature vectors spans a subspace belonging to the ith class.  LRC idea is based on a distance 
metric given by 
 

  ݀ ൌ หࢇ௫ െ ௫ࢇ ห  (9)
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where ࢇ௫ is the test feature vector and ࢇ௫  is its projection onto the subspace spanned by the training set 
of the ith class. Let ࡼ be the projection matrix onto the subspace spanned by the feature vectors of the 
ith class, then the distance metric will become 
 

  ݀ ൌ ௫ࢇ| െ .|௫ࢇࡼ (10)
 
In LRC method, ࡼ is calculated using a linear combination of the feature vectors in the ith class the 
training set under a constraint relation in its optimized form in terms of minimum sum of error squares. 
Let ࢇ௫ ൌ ࢃࢼ be the estimation of ࢇ௫ where ࢃ is a matrix formed from the feature vectors in the ith 
class the training set, i.e.,  
 

  ࢃ ൌ ଵࢇൣ
 ⋮ ଶࢇ

 ⋮ ⋯ ⋮ ࢇ ൧  (11)
 
The projection of a feature vector onto the ith class subspace can be calculated from  
 
  ௫ࢇ ൌ ࢼࢃ  ࢿ  (12)

 
where ࢿ is the error or the remaining part of ࢇ௫ in the rest of the whole space Թ of feature vectors.  The 
sum of the error squares can be formed with ease 
 

  ܵ ൌ ࢿ்ࢿ ൌ ሺࢇ௫ െࢃࢼሻ்ሺࢇ௫ െࢃࢼሻ.  (13)
 
To minimize S, the critical point(s) must be calculated by taking the derivative of S with respect to ࢼ. 
 

  ߲ܵ
ࢼ߲

ൌ  

߲
ࢼ߲

௫ࢇ௫்ࢇൣ െ ࢼ
ࢃ்

௫ࢇ் െ ࢼࢃ௫்ࢇ  ࢼ
ࢃ்

൧ࢼࢃ் ൌ  

െ2ࢃ
௫ࢇ்  ࢃ2

ࢼࢃ் ൌ  

ࢼ ൌ ൫ࢃ
൯ࢃ்

ିଵ
ࢃ

 ௫ࢇ்

(14)

 
Then the distance metric of LRC becomes 
 

 ݀ ൌ หࢇ௫ െ ௫ࢇ ห ൌ ௫ࢇ| െࢃࢼ| ൌ ቚࢇ௫ െࢃ൫ࢃ
൯ࢃ்

ିଵ
ࢃ

௫ቚ. (15)ࢇ்

 
Also, by comparing Eq.(10) with Eq.(15), the projection matrix onto the subspace determined by the ith 

class ࡼ ൌ ࢃ൫ࢃ
൯ࢃ்

ିଵ
ࢃ

் is obtained. If the orthogonal complement of the projection matrix ࡼ is 
shown with ࡼ

ୄ, then the metric given in Eq.(15) is equal to 
 

  ݀ ൌ หࡼ
 .௫หࢇୄ (16)

 
Here ࡼ

 ௫ onto a subspace that complements the subspace of the ith class to theࢇ ௫ is the projection ofࢇୄ
whole space with the relation ࡼ  ࡼ

ୄ ൌ  ௫ to the subspace formedࢇ Therefore ݀ is the distance of . ࡵ
from the feature vectors of the ith class. In that sense if ࢇ௫ belongs to the ith class, ࡼ

 ௫ must beࢇୄ
negligibly small, or ࡼࢇ௫ is almost equal to ࢇ௫. The geometric illustration of the classification is shown 
in Figure 1. Here ܵ and ܵ

ୄ are the subspaces spanned by the training vectors set of the ith class and its 
complementary subspace respectively. As ݀ gets smaller the similarity between ࡼࢇ௫ and ࢇ௫ increases. 
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Also with the above relations it is known that if ࢇ௫	߳	ሼࢇଵ, ,ଶࢇ … ,   ሽ or ifࢇ
௫ࢇ ൌ ଵࢇଵߙ  ଶࢇ	ଶߙ 	… ߙ , whereࢇߙ ∈ Թ , or in other words if  ࢇ௫  is within the subspace of 
the ith class, then ݀ ൌ 0. 
 

 
       (a)           (b) 

 
Figure 1. The geometric illustration of the relation between the components of ࢇ௫. The feature space is 

separated into two complementary subspaces by using the training set of the ith class. 
 
2. COMMON VECTOR APPROACH THROUGH LRC 
 
To calculate the common vectors in CVA using LRC, it is better to start with the difference subspace of 
the ith class. Let ࢇଵ

 , ଶࢇ
 , … , ࢇ , ݅ ൌ 1,… ,  be the feature vectors of ith class used in the training stage ܥ

as defined before. The difference subspace of the ith class is spanned by the difference vectors 
൛ࢇଶ

 െ ଵࢇ
 , ଷࢇ

 െ ଵࢇ
 	… , ࢇ െ ଵࢇ

 ൟ 	ൌ ൛࢈ଵ
 , ଶ࢈

 , … , ିଵ࢈
 ൟ. It is known that the subtrahend vector can be 

any of the feature vectors used in the training set [5].  
 
The ith distance metric of CVA can be written as 
 

  ݀ ൌ ห൫ࢇ௫ െ ଵࢇ
 ൯ െ ൫ࢇ௫ െ ଵࢇ

ప ൯ ห ൌ ห࢈௫ െ ௫࢈ ห.  (17) 

௫࢈  is the projection of ࢈௫ onto the difference subspace of the ith class. If ࡼ is the projection matrix onto 
the difference subspace of the ith class, then the above metric will be 
 

  ݀ ൌ ௫࢈| െ .|௫࢈ࡼ (18) 

  can be determined in a similar way that we used in LRC estimation. Letࡼ ൌ ଵ࢈ൣ
 ⋮ ଶ࢈

 ⋮ ⋯ ⋮ ିଵ࢈
 ൧ 

be a matrix whose columns are the difference vectors of the ith class. 
 

  ௫࢈ ൌ ௪,ࢼ ൌ ଵ࢈ଵߟ
  ଶ࢈ଶߟ

  ⋯ ିଵ࢈ିଵߟ
   (19) 

or  
  ௫࢈ ൌ ௪,ࢼ  .ࢿ (20) 

The sum of error squares is 
 

  ܵ ൌ ࢿ்ࢿ ൌ ൫࢈௫ െ ௪,൯ࢼ
்
൫࢈௫ െ  .௪,൯ࢼ (21)

 
After the minimization process the estimated vector parameters are obtained as 
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  ௪,ࢼ ൌ ൫
൯்

ିଵ

 .௫࢈் (22) 

 
If we combine Eq.(17), Eq.(19) and Eq.(22), we will get 
 

  ࡼ ൌ ൫
൯்

ିଵ

்.  (23) 

 
Let  ࡼ

ୄ denotes the projection matrix onto the indifference subspace. Then Eq.(18) becomes  
 

  ݀ ൌ ௫࢈| െ |௫࢈ࡼ ൌ หࡼ
௫ห࢈ୄ ൌ หࡼ

ୄሺࢇ௫ െ ଵሻหࢇ ൌ หࡼ
௫ࢇୄ െ ࡼ

 ଵหࢇୄ
ൌ หࡼ

௫ࢇୄ െ ࢇ ห										  
(24)

 
where ࢇ  is the common vector of the ith class. Therefore the metric in Eq.(18) gives the distance 
between the projection of the unknown feature vector ࢇ௫ onto the indifference subspace of the ith class 
and its common vector. Whenever ࢇ௫ is one of the feature vectors of the ith class in the training set, then  
ࡼ
ࢇ ௫ is always equal to the common vectorࢇୄ  [5] and ݀ is zero. 

 
Numerical Example 
 
Let ࢇଵ ൌ ሾ1 2 െ1 0ሿ், ࢇଶ ൌ ሾെ1 1 4 1ሿ், ࢇଷ ൌ ሾ3 0 െ1 4ሿ், be the feature vectors of 
a class.  
 
(i) To use the Gram-Schmidt orthogonalization procedure, let the difference vectors be 

 
ଵ࢈ ൌ ଶࢇ െ ଵࢇ ൌ ሾെ2 െ1 5 1	ሿ், 
ଶ࢈ ൌ ଷࢇ െ ଵࢇ ൌ ሾ2 െ2 0 4	ሿ்.				 

 
If the difference vectors are orthonormalized using the Gram-Schmidt orthogonalization procedure, then 
the orthonormal vectors become,  
 

ଵࢠ ൌ ሾെ0.3592 െ0.1796 0.8980 0.1796ሿ் 
ଶࢠ ൌ ሾ0.4358 െ0.3961 െ0.0660 0.8055ሿ் 

 
The common vector of the class is calculated as below: 
 
ࢇ ൌ ࢇ െ ሺࢠଵ

ଵࢠሻࢇ் െ ሺࢠଶ
ଶࢠሻࢇ் ൌ ሾ0.5459 1.5946 0.4324 0.5243ሿ்,  ݅ ൌ 1,2,3 

 
Here the projection matrix onto the difference subspace is the following    
    

ࡼ                     ൌ ଵࢠଵࢠ
்  ଶࢠଶࢠ

் ൌ 

0.3189 െ0.1081
െ0.1081 0.1892

	െ0.3514 0.2865
െ0.1351 െ0.3514

െ0.3514 	െ0.1351
0.2865 െ0.3514

0.8108 0.1081
0.1081 0.6811

.  

 
The projection matrix onto the indifference subspace is given below: 
 

ୄࡼ ൌ ࡵ െ ࡼ ൌ 

0.6811 0.1081
0.1081 0.8108

0.3514 െ0.2865
0.1351 0.3514

0.3514 0.1351
െ0.2865 0.3514

0.1892 െ0.1081
െ0.1081 0.3189
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(ii) Secondly, common vector of the class can be calculated using covariance matrix of that class which 
is called as the within-class covariance matrix.  The within-class covariance matrix of the class is 
 

 ൌ 

			4 െ1
െ1 			1

				െ	5						 		3
			0 െ2

െ5 			0
			3 െ2

			8.33 െ1.67
െ1.67 			4.33

. 

 
 
By applying the eigenvalue-eigenvector decomposition to, we obtain the following pairs: 
 

ଵ࢛ ൌ ሾെ0.8177 െ0.2500 െ0.4339 0.2839ሿ்,																	ߣଵ ൌ 0													 
ଶ࢛ ൌ ሾ0.1113 െ0.8651 െ0.0308 െ0.4882ሿ்,																ߣଶ ൌ 0													 
ଷ࢛ ൌ ሾ0.1151 െ0.4214 0.5105 0.7407ሿ்,																							ߣଷ ൌ 4.7884		 
ସ࢛ ൌ ሾ0.5529 0.1078 െ0.7417 0.3640ሿ்,																						ߣସ ൌ 12.8782 

 
Here the projection matrix of the indifference subspace is  
 

ୄࡼ ൌ ଵ࢛
ଵ்࢛  ଶ࢛

ଶ்࢛ ൌ 

			0.6811 0.1081
			0.1081 0.8108

			0.3514 െ0.2865
			0.1351 			0.3514

			0.3514 0.1351
െ0.2865 0.3514

			0.1892 െ0.1081
െ0.1081 			0.3189

. 

 
The common vector has the same values as before 
 

ࢇ ൌ ࢇୄࡼ ൌ ሾ0.5459 1.5946 0.4324 0.5243ሿ், ݅ ൌ 1,2,3. 
 
(iii) If we form the difference matrix as  ൌ ሾ࢈ଵ ⋮  ଶሿ and substitute it Eq.(23) in LRC method, we࢈
obtain the projection matrix onto the difference subspace of the class: 
 

ࡼ ൌ 

			0.3189 െ0.1081
െ0.1081 			0.1892

	െ0.3514 			0.2865
	െ0.1351 െ0.3514

െ0.3514 െ0.1351
			0.2865 െ0.3514

					0.8108 			0.1081
0.1081 			0.6811

 

 
Then ୄࡼ is calculated using the equality ࡼ  ୄࡼ ൌ  The common vector of the class is calculated  .ࡵ
using ࢇ :ୄࡼ ൌ ்	ࢇୄࡼ ൌ ሾ0.5459 1.5946 0.4324 0.5243ሿ,  ݅ ൌ 1,2,3. 
 
In the example, we see that the projection matrices ࡼ and ୄࡼ, and the common vectors obtained by 
using three algorithms are exactly the same.  
 
3. DISCRIMINATIVE COMMON VECTOR APPROACH THROUGH LRC 

 
Let ܥ is the number of classes and ݉ is the number of feature vectors from each class as before. Then 
the whole set of difference vectors is obtained from all the difference vectors belonging to all the classes 
as below 
 

   ൌ ൛࢈ଵ
ଵ, ଶ࢈

ଵ, … , ିଵ࢈
ଵ , … , ଵ࢈

ଶ, ଶ࢈
ଶ, … , ିଵ࢈

ଶ , … , ଵ࢈
, ଶ࢈

, … , ିଵ࢈
 ൟ  (25) 

where  ࢈
 ൌ ࢇ

 െ ଵࢇ
 , ݅ ൌ 1,… , ,ܥ ݆ ൌ 2,… ,݉.  The difference vectors in the set  span the difference 

subspace in DCVA. Let ࢇ௫ be the unknown feature vector which is going to be classified. Similar with 
CVA, the distance metric can be written as 
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  ݀ ൌ ห൫ࢇ௫ െ ଵࢇ
 ൯ െ ሺࢇ௫ െ ଵࢇ

ప ሻ ห ൌ ห࢈௫ െ ௫࢈ ห.  (26) 

The projection of ࢈௫ onto the difference subspace can be written as ࢈௫ ൌ   can be estimatedࢼ . Hereࢼ
using least squares estimation similar with LRC method,  
 

  ࢼ ൌ ሺ்ሻିଵ࢈௫.  (27) 
 

Then   
  ௫࢈ ൌ  ௫࢈ࡼ (28) 

where ࡼ ൌ ࡼ can becalculated using the equality ୄࡼ Its complement .ሻିଵ்ሺ  ୄࡼ ൌ    .ࡵ
 
Finally the distance in Eq.(26) becomes 
  

  ݀ ൌ ห࢈௫ െ ௫࢈ ห ൌ ห൫ࢇ௫ െ ଵࢇ
 ൯ െ ௫ࢇ൫ሻିଵ்ሺ െ ଵࢇ

 ൯ห 
ൌ หࢇ௫ െ ௫ࢇሻିଵ்ሺ െ ൫ࢇଵ

 െ ଵࢇሻିଵ்ሺ
 ൯ห 

                    					ൌ หࢇୄࡼ௫ െ ࢇ ห.  
(29)

 
In the first step, the common vectors of the classes should be calculated using the following formula  
 

  ࢇ ൌ ࢇ
 െ ࢇሻିଵ்ሺ

 ݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉
											ൌ ࢇ

 െ ࢇࡼ
	݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉

											ൌ ࢇୄࡼ
	݅ ൌ 1,… , ,ܥ ݆ ൌ 1,… ,݉ 

(30)

 
The rest of the derivations of the discriminative common vectors are the same as in Section 1.2. 
 
Numerical Example 
 
In this numerical example we have two classes and each class has two feature vectors in four 
dimensional space. Let ࢇଵ

ଵ ൌ ሾ1 2 െ1 0ሿ், ࢇଶ
ଵ ൌ ሾെ1 1 4 1ሿ் be the feature vectors of class 

ଵࢇ ଵ andܥ
ଶ ൌ ሾ3 െ4 0 2ሿ், ࢇଶ

ଶ ൌ ሾ2 െ3 2 െ1ሿ் be the feature vectors of class ܥଶ.  
 
(i) The difference vectors:࢈ଵ ൌ ଶࢇ

ଵ െ ଵࢇ
ଵ ൌ ሾെ2 െ1 5 1ሿ், ࢈ଶ ൌ ଶࢇ

ଶ െ ଵࢇ
ଶ ൌ ሾെ1 1 2 െ3ሿ். 

After the Gram-Schmidt orthogonalization process, the normalized difference vectors will become  
 

ଵࢠ ൌ ሾെ0.3592 െ0.1796 0.8980 0.1796ሿ், 
ଶࢠ ൌ ሾെ0.1345 0.3498 0.1973 െ0.9059ሿ். 

 
The common vectors of the classes become 
 

ଵࢇ ൌ ࢇ
ଵ െ ൫ࢠଵ

ࢇ்
ଵ൯ࢠଵ െ ൫ࢠଶ

ࢇ்
ଵ൯ࢠଶ ൌ ሾ0.4688 1.5810 0.3791 0.6234ሿ், ݅ ൌ 1,2								 

ଶࢇ ൌ ࢇ
ଶ െ ൫ࢠଵ

ࢇ்
ଶ൯ࢠଵ െ ൫ࢠଶ

ࢇ்
ଶ൯ࢠଶ ൌ ሾ2.5137 െ2.7357 0.7132 െ1.2743ሿ், ݅ ൌ 1,2. 

 
Here the projection matrices of the difference and the indifference subspaces are 
  

ࡼ ൌ 
				0.1471 			0.0175
0.0175 			0.1546

െ0.3491 			0.0574
െ0.0923 െ0.3491

െ0.3491 െ0.0923
			0.0574 െ0.3491

			0.8454 െ0.0175
െ0.0175 			0.8529
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and        

ୄࡼ ൌ 

			0.8529 െ0.0175
െ0.0175 			0.8454

0.3491 െ0.0574
0.0923 			0.3491

			0.3491 			0.0923
െ0.0574 			0.3491

0.1546 			0.0175
0.0175 			0.1471

 

respectively. 
 
(ii) The common vectors of the classes also can be found by using the total within-class covariance 
matrix. Let ଵ and ଶ be the covariance matrices of ܥଵ and ܥଶ respectively. The total within-class 
covariance matrix can be calculated as  
 

 ൌ ଵ ଶ ൌ 

2.5 		0.5
0.5 						1

			െ6 			0.5
െ1.5 			െ2

െ6 െ1.5
0.5 			െ2

	14.5 െ0.5
െ0.5 						5

. 

 
By applying eigenvalue-eigenvector decomposition to  the following pairs will be obtained: 
 
ଵ࢛ ൌ ሾെ0.5632 െ0.7170 െ0.3163 െ0.2621ሿ், 
ଶ࢛ ൌ ሾെ0.7319 0.5756 െ0.2336 0.2801ሿ், 
ଷ࢛ ൌ ሾെ0.0464 0.3822 െ0.0192 െ0.9227ሿ், 
ସ࢛ ൌ ሾെ0.3808 െ0.0924 0.9192 െ0.0383ሿ், 

ଵߣ ൌ 0, 
ଶߣ ൌ 0, 
ଷߣ ൌ 5.8431, 
ସߣ ൌ 17.1569. 

 
The projection matrix onto the indifference subspace is formed using the eigenvectors corresponding to 
the zero eigenvalues. 
 

ୄࡼ ൌ 

			0.8529 െ0.0175
െ0.0175 			0.8454

0.3491 െ0.0574
0.0923 			0.3491

			0.3491 			0.0923
െ0.0574 			0.3491

0.1546 			0.0175
0.0175 			0.1471

 

 
Then the common vectors are, 
 

ଵࢇ ൌ ࢇୄࡼ
ଵ ൌ ሾ0.4688 1.5810 0.3791 0.6234ሿ்,															݅ ൌ 1,2 

ଶࢇ ൌ ࢇୄࡼ
ଶ ൌ ሾ2.5137 െ2.7357 0.7132 െ1.2743ሿ், ݅ ൌ 1,2 

 
(iii)  In the proposed method, the difference matrix  ൌ ሾ࢈ଵ ⋮  ଶሿ is formed as it is substituted in࢈
Eq.(23). Finally the projection matrix onto the difference subspace becomes 
 

ࡼ ൌ 

					0.1471 		0.0175
					0.0175 		0.1546

െ0.3491 			0.0574
െ0.0923 െ0.3491

െ0.3491 െ0.0923
			0.0574 െ0.3491

			0.8454 െ0.0175
െ0.0175 			0.8529

. 

 
The common vectors are 
 

ଵࢇ ൌ ࢇ
ଵ െ ࢇࡼ

ଵ ൌ ሾ0.4688 1.5810 0.3791 0.6234ሿ்,															݅ ൌ 1,2 
ଶࢇ ൌ ࢇ

ଶ െ ࢇࡼ
ଶ ൌ ሾ2.5137 െ2.7357 0.7132 െ1.2743ሿ், ݅ ൌ 1,2 

 
Thus, the same common vectors are obtained using the above three algorithms. The next step is to obtain 
the discriminative common vectors. The difference of the common vectors are obtained as ࢈ଵ ൌ
ଶࢇ െ ଵࢇ ൌ ሾ2.0449 െ4.3167 0.3342 െ1.8978ሿ. 
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Then the projection matrix ࢁ onto the difference subspace of the common vectors ࢁ ൌ
ሾ0.3970 െ0.8381 0.0649 െ0.3685ሿ் which is equal to the normalized difference vector between 

the commons, ࢁ ൌ ࢈
భ

ฮ࢈
భ ฮ

. Then the discriminative common vectors of the classes are one dimensional 

and ષଵ ൌ ࢇ்ࢁ
ଵ ൌ 	െ6.9227, ݅ ൌ 1,2 and ષଶ ൌ ࢇ்ࢁ

ଶ ൌ 	19.6060	, ݅ ൌ 1,2. 
 

 
 

Figure 2. Preprocessed images of two subjects from AR face database 
 

4. EXPERIMENTAL WORK 
 
In addition to the numerical examples, a simple face recognition case study is performed to see the 
equivalence of the different realizations of CVs and the equivalence of the different implementations of 
DCVs using AR face database [15]. As an additional analysis, we compare recognition performances of 
CVA, DCVA, and LRC in this face recognition task. AR face database contains 26 images taken in two 
sessions including different facial expressions (neutral, angry, scream, smile), illumination conditions 
(left light on, right light on, all sides light on), and occlusions (sun glass, scarf) from 126 individuals. 
The original size of the images is 768×576. Images are converted to grayscale, cropped and normalized 
such that eyes of each individual are at the same coordinate and resized to 120×90. In the experiments 
we used 100 subjects (64 male and 36 female). Images of two individuals obtained after the 
preprocessing operations from AR database are shown in Figure 2.We randomly choose 7 images from 
each subject for training set. Thus 700 images are used for training purposes. The rest of the images are 
used for testing. This process is repeated 10 times and the recognition rates are obtained by averaging 
each run. The recognition rates using three different implementations of CVs (DCVs) are the same as 
expected. The recognition performances of LRC, CVA, and DCVA with the standard deviations are 
shown in Table 1. As seen from Table 1, DCVA outperforms LRC and CVA as reported in [3,16]. Also 
DCVA is more robust classification method, since the standard deviation of DCVA is smaller than the others. 
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Table 1. Recognition performances of LRC, CVA, and DCVA in AR face database 
 

LRC CVA DCVA 
90.03 ± 1.10 88.21 ± 1.65 95.97 ± 0.55 

 
We use the above scenario to compare the training and the testing times of the different implementations 
of common vectors. In Table 2, train and test represent the training time of the system and the testing 
time of a query image respectively. The results are given in milliseconds. The training time of LRC-
based algorithm is the best among three. But LRC-based algorithm gives the worst results in terms of 
testing time because of the matrix inversion and additional matrix multiplications in Eq.(23). 
 

Table 2. Training and testing times of three implementation algorithms for common vectors 
 

 Gram-Schmidt-based Covariance matrix-based LRC-based 
Train (ms) 679.2 708.1 514.4 
Test (ms) 14.35 14.64 34.23 

 
5. CONCLUSION 
 
There are two different methods to obtain common vectors and discriminative common vectors, i.e. 
Gram-Schmidt orthogonalization or covariance analysis. In this paper, we proposed third algorithm to 
obtain CVs and DCVs by using the linear regression idea. We gave two synthetic examples to clarify 
the proposed method. In these experiments, the common vectors calculated from three different 
algorithms are exactly the same, so are the recognition rates as expected. Also, we present a face 
recognition experiment in AR face database. In the experiment, it is seen that DCVA has better 
classification performance than CVA and LRC as reported in the literature [16]. We show that the 
proposed implementation algorithm is the faster than the other two in the training phase. But it has 
higher computational complexity when compared with the conventional implementation algorithms in 
the testing stage. 
 
Each method has its own advantages as well as disadvantages. For example for applying the Gram-
Schmidt orthogonalization process a recursive relation is established which may need an extra longer 
time, compared with other methods, for arithmetical operations. Also a residual error may be building 
up at each recursion step.  Covariance matrix based calculations can be used to overcome these 
difficulties.  The calculations of the covariance matrices are not that difficult in the second method, 
eigenvalue-eigenvector decomposition of these matrices can be troublesome due to high 
dimensionalities. There are tricks to overcome this difficulty [3]. Finally one needs to take inverse of 
high dimensional matrices sometimes to calculate the projection matrices in LRC unless 
orthonormalized column vectors are calculated beforehand. 
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