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ABSTRACT

The main aim of this paper is to introduce a new kind of Legendre matrix polynomials. Hypergeometric matrix
representation of these matrix polynomials is given. The convergence properties and the integral form for the
Legendre matrix polynomials are derived. The Legendre matrix differential equation of second order is established.
Subsequently, Rodrigues formula, orthogonality property, matrix recurrence relation and types of generating matrix
functions are then developed for the Legendre matrix polynomials. Furthermore, general families of bilinear and
bilateral generating matrix functions for these matrix polynomials are obtained and their applications are presented.
Finally, the composite Legendre matrix polynomials is introduced.
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1. INTRODUCTION

Orthogonal matrix polynomials comprise an emerging
field of study, with important results in both theory and
applications being still is contained to appear in the
literature. Theory of classical orthogonal polynomials
are extended to orthogonal matrix polynomials, see for
example, [2, 4, 5, 18, 19, 20, 24, 28, 29, 30, 34, 36]. In
[1, 6, 9, 11, 14, 35, 37], the authors introduced and
studied Jacobi matrix polynomials. In [3, 13], the
authors introduced the Chebyshev matrix polynomials
of the first and second kind and gave some results with
Chebyshev matrix polynomials. Legendre matrix
polynomials have been introduced and studied in [33].

In the scalar case, Jacobi polynomials P*#)(X) are
a class of classical orthogonal polynomials. They are
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orthogonal  with respect to  the  weight
(1-X)*(1+x)” on the interval [—1,1]. For
a==0, we have the classical Legendre

polynomials. As in the corresponding problem for
scalar polynomials, the problem of development of
polynomials of Legendre matrix polynomials requires
some new results about the matrix operational calculus
not available in the literature. The Legendre ordinary
differential equation is frequently encountered in
physics and other technical fields.

The present investigation is motivated essentially by
several recent works [13, 14]. Our main aim here at
presenting a new class of Legendre matrix polynomials
and their interesting properties. The structure of the
paper is organized as follows: In Section 2 the Legendre
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matrix polynomials is defined and the hypergeometric
matrix representation is given. The convergence, radius
of convergence, an integral form are given and their
connections with Legendre matrix differential equation
of the second order are established. Rodrigues formula
is given then developed for the Legendre matrix
polynomials in Section 3. orthogonality properties of
Legendre matrix polynomials are established in Section
4. Matrix recurrence relation for the Legendre matrix
polynomials is obtained in Section 5. Formulas of
generating matrix functions for the Legendre matrix
polynomials are obtained, bilinear and bilateral
generating matrix functions are derived for the
Legendre matrix polynomials and some applications of
the results obtained are presented in Section 6. Finally,
the composite Legendre matrix polynomials and the
convergence properties are investigated in Section 7.

1.1 Preliminaries

Throughout this study, we concerned with the matrix
polynomials

P(X)=AX"+A X" +. . +AX+A,
where the coefficients Ay, A,..., A, are members

N xN .
of C"™" | the space of real or complex matrices of
common order N, and X is a real number. The matrix

polynomials P, (X) is of degree N if the matrix A,
is not zero matrix. For orthogonal matrix polynomials,
the leading coefficient Ah being nonsingular matrix is
important [15]. Throughout this paper, if A is a matrix
in CN* its spectrum &(A) denotes the set of all

eigenvalues of A . The matrices | and O will denote
the identity matrix and the null matrix (zero matrix) in

CN*™ | respectively. In this expression, R(z) is the
real part of the complex number Z . The two-norm of
A is denoted by || A ||2 , and is defined by

where

_ o HAX]
Al = sup=—==
o [ X1,
1

where || X ||, = (X X)2 denotes the usual Euclidean

. N
norm of a vector X in C" .

Fact 1.1 [16] If f(Z) and g(z) are holomorphic
functions of complex variable Z , which are defined in
an open set €2 of the complex plane,and A, B are

matrices in C" ™" with o(A) = Q and

o(B) c Q, such that AB = BA, then from the

properties of the matrix functional calculus, it follows
that

f(A)g(B) =g(B)f(A).

Definition 1.1 [21] A matrix A in C"™" is called a
positive stable if

R(w) >0, Vueo(A). 1.1)

Fact 1.2 [22, 23] Let us denote the real numbers
M (A), m(A) foramatrix A in C""™ such that

1
[AIN 2t
H tAH<etM(A)NZ_l Ct>0 (12
AL - R TR
and considering that k* = eAInk , one gets
1 i
|AINZInn
N-1
“nA“SnM‘A’Z—; n>1 (@3

M(A) =max{R(z):zea(A)}; m(A) =min{R(z):zec(A)}. @4

Definition 1.2 [21] If P is a positive stable matrix in cNN , then the Gamma matrix function F(P) is defined by

r(P) = '[:e"tp" dt: t°" =exp((P - 1)Int).

Notation 1.1 [22] The reciprocal Gamma function I' ™ () =

(L5)

is an entire function of complex variable Z . Then

for any matrix A in CN*" | the image of T"™"(z) acting on A is denoted by the well-defined matrix T""(A).

Furthermore, if

A +nl isan invertible matrix for every an non —negative integer n (1.6)
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then T"(A) is an invertible matrix in C""™ | its inverse matrix coincide with l—‘fl(A). The Pochhammer symbol
(shifted factorial) is defined as

(A). =AA+1)A+21)...(A+(n-1)I)

-1 .7
=T(A+nD)I'(A); n=1; (A), =1
Notation 1.2 [13] Using (1.7), one gets
—1)¢ n!
(—=nl), :MI,OSkSn. (1.8)
(n—k)!

Theorem 1.1 [21] Let A be amatrixin C" " satisfying 9R(z ) > 0, for every eigenvalue Z € o(A) and N>1
be an integer, then

L(A) = lim(h-1)1[(A),]'n" (1.9)

nN—o0

where (A),, is defined by (1.7).

Definition 1.3 [21] If P and Q are positive stable matrices in C" " | then the Beta matrix function B(P,Q) is
defined as

B(P.Q) = [t™ (1-1)°"dt. (L.10)

Definition 1.4 [22, 23] If A, B ,and C are matricesin C" ™™ for which C+nl is an invertible matrix for every
integer N > 0, then the hypergeometric matrix function ,F, (A, B;C; z) is defined as follows

o ok
z _
R (AB;C2) = ZF(A)k (B)[(C), 1™ (111)
k=0 K-
Also the hypergeometric matrix differential equation is defined as in the form (see Theorem 4 [22] and eq. (38) [23])
z (1_Z)dZ\/ EZ)—ZA dV\é @) +C -z(B +I ))d\/\(/j&—ABW (z)=0;0<|z |<1l.a12)
z Z

Fact 1.3 For any matrix A in cNN , the hypergeometric matrix function Fl (—; A Z) is given as

© k
Z _
FAZ) =Y I (113)
k=0 K!
where A-+KI is an invertible matrix for all integers K >0 (see [22]).
Fact 1.4 [22] The relation
(1-9)" = F(A-2) = Z%(A)nzr‘: |z|<1 (L14)
n=0 n!

is valid for A e CNN

Fact 1.5 [22] If N is large enough so that N > ||C || , then by the perturbation lemma [16], for C in CV™ we have
the following inequality
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1

_ (1.15)
n-|C|

| +ni)|<

Fact 1.6 [17] Let A and B be matrices in CN™ and from (1.7), one can easily obtain the following inequalities

[aB[<[All]. A"

<[[A[", 1A= GAD- (1.16

Theorem 1.2 [13] Let B and C are matricesin C" ™ such that C +nl is an invertible matrix for all integers
N> 0. suppose that C and C — B are positive stable matrices with BC = CB , the relation

,F(-nl,B;C;z)=(1-2)" 2Fl(—nl ,C —B;C;—ﬁj (1.17)

is valid for | Z|<1 and <l

Lemma 1.1 [21] Let P and Q be positive stable matrices in CN"N such that
R(z)>-1 and NR(w)>-1, forall zeo(P), weo(Q)and PQ =QP. (1.18)
By virtue of (1.10), one can obtain

[ @+ (1-x°%"dx = 2" B(P,Q). (L.19)

Lemma 1.2 [22] Let P, Q and Q+ P be positive stable matrices in C" ™ satisfying PQ = QP and P+nl
Q+nl and P+Q+nl are invertible matrices for all nonnegative integers N . Then we have

B(P,Q) =T (P)I(Q)I' '(P + Q). (1.20)

At the end we recall that [12], if A(K,n) and B(k,n) are matrices in C"*" for n>0, k>0, then the
following relations are satisfied

SSBKn) =3 YBk.n-k)

n=0k=0 n:OKFO

© n » M

> Y AK,n) = ZiA(k, n-k), (1.21)
n=0k=0 n:Oka

© © [Hn]

D YAk =) > Ak,n—mk);me N.

n=0k=0 n=0 k=0

Similarly, we can write

o0 0

SYBKn) = SBk.n+k),

nzogfo n=0k=0
o0 [7“] o0 o0
] A(k,n) = A(k,n + 2k), (1.22)
22 AN =3 > A( )
n=0k=0 n=0k=0

S AR =SS AKn+mK)ime N.

n=0 k=0 n=0k=0
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For the purpose of this work, we recall the following definitions of the Jacobi and Legendre matrix polynomials.
Definition 1.5 [14] Let A and B be matrices in cNN satisfying the condition

R(iz)>-1, Vzeo(A) and R(w)>-1, Vweo(B). (1.23)

For N > 0, the Jacobi matrix polynomials PnA’B (X ) is defined by the hypergeometric matrix function

B +1 1-x
PnA’B(x)=¥2F1(A+B +(n+1)1,-nl;B +I;T]. (1.24)
n!
Definition 1.6 [31, 33] The Legendre matrix polynomials is defined by

(1) (@n - 2k)1(x 2A)
Pn(XiA)_é 22n—2k k|(n_k)|(n_2k)l

n-2k

(1.25)

where A be a positive stable matrix in CN "N .
2. LEGENDRE MATRIX POLYNOMIALS

Definition 2.1 Let C be amatrixin C" N satisfying the condition
0<R(1) <1, forall1eo(C). 2.1)

The Legendre matrix polynomials P, (X, C) is defined in the form

P (x,C)= g(‘;!)(n(i:;)!(l_zx J I(C +k1)T(C),n >0 22)

such that C + K| is an invertible matrix for all integers K > 0 and |——| <1.

Theorem 2.1 Let C be a matrixin CN ™™ satisfying the condition (2.1), the hypergeometric matrix representations for
the Legendre matrix polynomials is given as:

o (1-x) B . AmX
P (x,C)=W (Tj—zﬁ( nl,(n+1)I;C; > j

_ ki) (=n1), ((n +I2I ) [C), I" (1—2x jk

(2.3)

where (—nl), isgiven by (1.8).

Proof. This can be proved using (1.7), (1.8) and (2.2) and the above expressions.

We are going to study the convergence properties of Legendre matrix polynomials of degree N . For this aim, we denote

ak)= [C)Y|c +1)?|-|C +®&-D1)?|; k>1. 2.4)

From (1.15), (1.16) and (2.4) for K > ||C || , we have
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1
k!

] en@imn.aeny?

11-x

a5 Enthedas miheete).

1§§_ (=nt e L+ )1 )y (k) as the

<
Using the ratio test and the relation (1.9) for the series ZE
k=0 K-

1-x k+1
0.7
el 2

ol U] (H)k
2

(||—n|||+k)(||(1+n)|||+k)‘1—x|:‘1—x|
2 | | 2|

following

1_X k +1
= lim (”_nl ||)k+1(||(1+n)| ||)k+1a(k +1)k! (2)
| (=t Py @+ m 1y ek )k +2)t (H ]k
2

= ek +D

where

< (=0t P 2+ n)t]py i)

u o

X X
It is easy to see that the power series (2.2) is absolutely convergent for <1, divergent for >1 and

1-x =1 under the condition M(C) > M (—nl)+ M ((1+n)l), where M (—nl),

absolutely convergent for

M ((1+n)I) and m(C) are defined in (1.4).

The radius of convergence R is given from [26]
1

L limsup(lu, ) = fim SUpLHH' ) (@+ M), IC), T ”Jk

R o o || k!
e [ G e K@M, e
—Ilinjgp{‘ k D)1 (k =1)'k k _D)! (k —=1)'k
k—C

e 1
K _1)!(k ~DHC) K

}i

_ IimsupH‘(F_l(—nl Y (L+n))IEC )k ' (k k_ll)!mk < IimsupH‘k I kg ‘Hk =1

k -0 k -

i.e. the radius of convergence of the Legendre series is one and it is regular in a circle of radius one.

To get an integral form for the Legendre matrix polynomials of degree N . Suppose that C is amatrix in CNN , such
that
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(n+1)HC =C((n+1)I) (2.5)
and
(n+1)1,C andC —(n +1)I are positive stable matrices. (2.6)
From (1.7) and (2.6) one gets the following
(n+D)1), [C) T
=T((n+DI +kHT Y ((n+D)D[TC +kHr*C)HJ* 27
=T Y((n+1)DIr*C -(n+1)rC —(n+1)Nr(((n +1+k)INr*cC +k)re).

Using Lemma 2 and the relation (2.13) of [21], we can get

j:t“”)”(k-”' (1-t)¢ ™ dt = B((n+1)1 +kI,C—(n+1)I)

(2.8)
= I'(C—(n+1)DT((n+1+K)NT(C +kI).
From (2.7) and (2.8), we have
((n+D1),[C) I =T ((+1)NT(C ~(n+1)I )(I:t(”+k)' (1) d)r(C)
where R(C—N—-1)>0 foraic—n—-1e o (C—(n+1)I) and R(N+1+k) >0 forall
n+l+k e o((n+1+k)I).
Using the above expressions, we have the proof of the following theorem.
Theorem 2.2 Legendre matrix polynomials has the following integral form
1 a-x - —(n+1)]

P(x,C)= F, | —nl;— =2 gD (g —g)e (D gt

,(x.C) (jolo( , ] (1-t) ) 09

I ((n+1)1)I*C —(n +1)1)I'(C).
Next, we get the matrix differential equation in a different way and prove the following theorem.

Theorem 2.3 Let C be a matrixin CN ™™ satisfying the condition (2.1). For N > 0, the Legendre matrix polynomials
Y (x)=P,(x,C) satisfy the matrix differential equation of second order as the following

X—_l<1'—i (2.10)
5 , . .

A=-x*)Y"(x)+2[1-x)1 =C]Y'(X) +n(n+1)Y(x) = O; 0< »

Proof. From (2.3), it follows

W '{L_X):d_{zlzl(—nl ,(n+1)I ;C;l_—xﬂ = —Zd—Pn (x.C),
2 ) dx 2 dx

W H(l__xj:d_z{zlil(—nl ,(n+1)1 ;C;l_TXH = 4dd—22F’n (x,C).

(2.11)

2 dx X

1-x
The hypergeometric matrix function ,F, (—nl ,(n+1)1;C ;T is a solution of (1.12) with A=-nl,

Xx-1 1-X <1

B=(n+1)l,in 0<|z|<1. For z = , one can see that P, (X,C) satisfies (2.10) in 0 <

Thus the proof is completed.



442 GU J Sci, 29(2):435-457 (2016) / Ayman SHEHATA

1-C
+ X
Postmultiplying (2.10) by (1—j and making up the relation, we have the following corollary.

Corollary 2.1 For N > 0, the Legendre matrix polynomials Y (X ) =P, (X,C) is a solution of the matrix
differential equation

{Y (X )(1—x )(“i} }+n(n+1)Y (X)G+>):j =0:0<

Remark 2.1 From (2.10) it follows that Pn (X, C) is a matrix polynomial in X of degree N precisely and
P(1,C)=1.

3. RODRIGUES FORMULA FOR THE LEGENDRE MATRIX POLYNOMIALS

l—_x <1l (2.12)

Theorem 3.1 Let C be amatrixin C" ™" satisfying the condition (2.1) and let P.(X,C) be the Legendre matrix

polynomials. Then the following formula holds for N > 0 and —X <1
(=D"[C),]" (1+x j h ( j
Px,C) = n 1-x . 3.1
Z(X,C) o 1y " (A-x7)" Ty (3.1)
. —X 1-x
Proof. Since for <1,P (x,C)=,F (—nl ,(n+1)I1;C ,Tj by theorem 2.1 one gets
P (x,C)= (X +1j F( nl,C —(n+1)I:C: X—lj (32)
2 +1

From (1.7), we have

C-M+D), =D (1 =C) (1 =C)ppi 1™ (33)

Equation (3.2) can be written as in the form

P (X.C)= Z (N € (DD, [C), ] (x —1)k (x +1)”k

k! 2 2
-Z(

OC —(+1)1), [C), I (x ~1)" (x +1)""

(3.4)
1 n-
:Zz_(k)(c (M +)1), [C) I (@-x)" (L+x)""
=5 00301 -C), 00 ), PIC) PA-0)f ()™
k=0
. N A _d“f(x) . A NN
Consider the differential operator D" ( f (X)) = e for an arbitrary matrix C in C™ ™" . From (1.7) and
X

routine calculation [13], we have

D*xS*™ =(C +mlI)C +(Mm-1I)...C +(M—s +1)I )x*™" s =0,1,2,....
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or

D X“™ = (C+1),[(C+1), ] X,
for non-negative integers S and M
From (3.5), we obtain

Dk (1+ X)—C+(n+l)l — (I _C)n+1[(| —C) k]—l(l_'_ X)—C+(n+l—k)|

n+1-

and

ank (1_ X)C+(nfl)l = (_l)nfk (C)n [(C)k ]71(1_ X) C+(k-1)I )

From (3.4), (3.6) and (3.7) for <1 one gets

Pn (X,C) = i (_2];]) (E)(I _C)ml[(l _C)MLk]—1[(C)k]—l(_1)n—k (1_|_ X)C—I (1_ X)_C+|
(1-C),. (C),[(C), T*[(1 =C), .1 D¥ (1+ x) S Dk (1 x) ¢+

- x (_1)” (E)(1+ X)C—I (1_ X)—C+I [(C)n]—l Dk (1+ X)—C+(n+l)l Dn—k (1_ X)C+(n—1)l

k=0 2n

- _1)n[2(::)n]—1 (1+ X)C—I (1_ X)—C+I i(E)Dk (1+ X)—C+(n+1)l Dn—k (1_ X)C+(n—l)l .

k=0

Using Leibnitz rule for the N -th derivative of a product, equation (3.8) yields the Rodrigues formula

P (X,C) = —(‘1)n[2(f)n]l (1+x)°™ (1-X)" D" (A=x?)" (1+x)' © (1-x)°")

or equivalently
P,(x.C) = [(Cz)_”n]l (1+x)°7 (1=x)" D" ((x* =1)" (@+x)" (1-x)°").

Thus the formula (3.1) is established.
Remark 3.1 The formula 3.1 is called Rodrigues formula for the Legendre matrix polynomials.
4. ORTHOGONALITY FOR LEGENDRE MATRIX POLYNOMIALS

From Corollary 3.1, the Legendre matrix polynomials satisfied

d
dx
Replaced N by M, we

443

3.5)

3.6)

(3.7)

3.8)

(3.9)

(3.10)

[P/(x,C)(A-x)*(@+x)'° (1-x)°" J+n(n +1)P, (x,C)(1+x)"° (1-x)*" =0O. @)

;—X[Pn; (X,C)(A-x)*(1+x)' ¢ @=x)°" J+m(m +1)P, (x,C)(1+x)"° (1-x)*" =0.¢42)

Premultiplying (4.1) by P, (X,C) and (4.2) by P, (X, C) and subtracting we have

;—X[(Pm (x,C)P/(x,C)—P,(x,C)P,(x,C))(1-x)*(1+x)" " (1-x)"" ]

+(n(n+1)—-m(m +1))P, (x,C)P, (x,C)(1+x)"“(1-x)" =0.

Integrating (4.3) between X =—1 and X =1, we obtain

(4.3)
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(m(m +1)—n(n +1))‘|:11Pm (x,C)P, (x,C)(1+x)"°(1-x)""dx

= 1im [ (P, (X.C)P/(x,C) =P, (x ,C)P; (x ,C))1-x)*(1+x)'° (1-x)°"' ] (4.4)
_ Iim+ I:(Pm (x,C)P/(x,C)-P, (x,C)P,(x ,C))(l—x)2(1+x )'—C (1—x )c_| :I

Lemma 4.1 For the matrix C in CN™N satisfies the condition (2.1), we have

lim (1+ X)2|_c — 22|—c’
x—1"
lim (l— X)C - 20. (4.5)
x—>-1"
Using (4.5), we have
lim (1+x)* (1-x)* (P, (x,C)P/(x,C)-P, (x,C)P/(x,C)) =0,
(e )2 “5)
lim (1-x)" (1+x)™ ™ (P, (x,C)P/(x,C)-P, (x,C)P;(x,C)) =O.
x —>—1t
From (4.4) and (4.6) one gets the property of orthogonality
fle (x,C)P, (X,C)(1+x)'“(1-x)*"'dx=0,n= m, @7

That is, the Legendre matrix polynomials form an orthogonal set over (—1,1) with respect to the weight matrix
function (1+x)' ¢ (1-x)¢".

In case of M =N, we put

6,(C) = [ (1+X)° (1-X°"'[P,(x,C)F dx @)

Using Rodrigues formula and integration by parts, we have a second derivation of the property of orthogonality (4.7).

From (3.1), we obtain

(1+%)' (1= P (x,C) = —(‘1)n[2(nc)“]_l D" (1= x?)" (1+ %) ¢ (1= x)°™) @9)

Therefore, we get

[(@+%°(1-x)°"P,(x C)P, (x,C)dx = (‘1)[2(—0)]1

A (4.10)
LD" (14 x)™D'C (1- x) DY P_(x,C)dx.
Integrate N times by parts on the right-hand side by (4.10), we have
[ @+ (1= P, (x C)P, (x,C)dx
B (4.11)

_1 2n -1
= ( ) 2[(nc)n] J-_ll(l"i' X)(n+1)I—C (1_ X)C+(n—l)l Dn Pm (X, C)dX
If N # M without loads of generality, we obtain

'[711(1+x)'{ (1-x)*"'P (x,C)P, (x,C)dx =O, n>m. 4.12)
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From (4.11), (4.8) and (2.10), we have
P (x,C)= ZFl(—mI (m+1)1:C 1_ij

The formula for the derivative of hypergeometric matrix functions gives

PR X.C)= — )"«gnﬂ)' LlC),I" zFl(O!(Zn +1)1;C +nl 1_ij

from which we have

-1
D"P,(x,C) = % (4.13)

or in the equivalent form
D"P (x,C)=2" n!(%j [(C).T" (4.14)

Now (4.11) with N =M yields

9,(C) = [ (1+%)' (1~ 0[P, (x C)F dz

_[(C)n]_l (zn)![(c)n]_l Lo L2yn (M+1)1-C (1 _ ) C+(n-D)I
T o o L(l x7)"(1+x) (1-x) dx.

Using Lemma 1.1, we get

j_ll(1+ X)D1-C (1 x)CH0DI gy = 2271 B(C 4l (n+ 2)I —C)

22n+1
2n+1)!

Hence, we have

[(C +nl)T((n+2)I —C).

9,(C) = (©)]7 @MUC), I 2" 1 i+ 2)1 -

2" 2" (2n+1)!
. 4 .
9,(C) = @n+1) [(C). I T ((n+2)I -C). (4.15)

From (4.13) and (4.14), we conclude that

P.(x,C) = % X" +11, ,(X)
: (4.16)

1

—_ n -1,n

=2 nI(E)n[(C)n] X +Hn—2(x)

in which Hn_2 (Z) is a matrix polynomial in X of degree N — 2 . Thus we have the proof of the following theorem.

Theorem 4.1 Let C be amatrixin CN ™" satisfying the condition (2.1). Then for any nonnegative integers N and M,
we have
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O, n=m;

J‘_11(1+x)'£(1—x)c‘I P (x,C)P, (x,C)dx = 4.17)

2 . ]
M[(C)n] rC)r(n+2)1 -C), n=m

Remark 4.1 The family {P,(X,C)},., is orthogonal in (—1,1) with respect to the weight matrix function
(1+x)"(1-x)°".

Remark 4.2 The leading matrix coefficient of P, (X,C) for N =0 is | and an invertible matrix
-1)"(2n)!
L—li—l{“%C+nDF«3ifnzl
2"n!
Making use of the hypergeometric matrix representation (2.3) in the familiar property of orthogonality (4.17), and setting
x=1-2t, 0<t<1,weobtain
1
[t @) R (-ml,(m+D)15Ct) R (-0l (n+1)15C 5t )t
O, n=m; (4.18)
= 1
(2n +1)

In view of the hypergeometric matrix function representation (2.3) and the property of orthogonality (4.17) with

[C).T'TC)C((n+2)1 -C), n=m.

X=1—%, 1<t <o, wehave

jl‘” t2@t-1)"° ZFl(—mI .(m +1)I;C;%j2F1(—nl (N +1)I ;C;%jdt

o, n#m; (4.19)
= 1 B
[C),]'TC)I((n+2)1 -C), n=m.
(2n +1)
Thus, if we employ the hypergeometric representation (2.3) on the left-hand side of the property of orthogonality (4.17)
1—
andset X=——, 0<t<oo,weget
1+t

j: (1+t)2tC zFl(—mI,(m +1)I;C;ttle2F1£—nl,(n +1)I;C;ttj]dt
0, n+m; (4.20)
=y 1
(2n +1)

5. MATRIX RECURRENCE RELATION

[C).T'TC)((n+2)l -C), n=m.

For this purpose, let F (X) be a matrix polynomial of degree N as [15]

F(x)=YAP (x,C);A eC"™, 61)
k=0

Using Theorem 4.1 and (5.1), then



GU J Sci, 29(2):435-457 (2016) / Ayman SHEHATA 447

[FOoO@+x)©(@-x)""P,(x,C)dx =O. 52)
From (5.1), we get
(1-x)P. (x,C)=SAP.(x,.C) 53
k=0
Using Theorem 4.1, we have
[[@-%)P,(x,C)(2+x)"°(1-x)""P,(x C)dx =AH,;k +1<n 54)
where
2I'(C)I'(21 -C), k =0;
H, = 2

K +1[(C W] TC)(k+2)1-C), k>0.

since H , is an invertible matrix for K > 0, by (5.4) one gets A, = O for K <n—1 and by (5.3), we have
1-x)P.(x,C)=A_P (x,C)+AP (X,C)+A x,C). (5.5)
From (5.3), one gets

A= [LA-X)P (X C)L+x) (=x)""P,(¢,C)x [H,

n+l Pn +1

Identifying the matrix coefficients of each power of (1+ X) on both sides of (5.5) one gets a more explicit three-terms
matrix recurrence relation for the Legendre matrix polynomials as the following

(1-)R,(xC) = AR (X C) + AR, (X, C) + A, P, (x,C). (5.6)

Identifying equal powers of (l— X) in (5.6), leads to explicit expressions for the recurrence coefficient matrices AH ,

A, and A, asinthe form

n+1 1
= I, A =1, A = n+1)1 —C). 57
= oy \ = o +1(( ) ) (6.7)

Thus we have the following theorem.

Theorem 5.1 Let C be a matrixin C" ™™ satisfying the condition (2.1). Then the Legendre matrix polynomials
satisfies the three-term matrix recurrence relation

A,.P.(x.C)=[+x)I -A ]P.(x,C)-A, P (x,.C)n2LP (x,C)=0P,(x,C)=1. @9

n+l’ n+l

6.GENERATING MATRIX FUNCTIONS FOR THE LEGENDRE MATRIX POLYNOMIALS

In this section, we present some types of generating matrix functions, new matrix polynomials, matrix differential
equation, bilinear and bilateral generating matrix functions for the Legendre matrix polynomials. We first state our results
as the following.

Theorem 6.1 Let C be amatrixin CN ™" satisfying the condition 0 < (1) <1 forall 1 € o(C) . Then

DOP (x,Cr" :(jl__'[)‘l F 1|;C;2t(x -1) It <1, 2t(x 1)
z o (1-t)

> (1—t)2 <1 (6.1)

Proof. From (2.2) and (1.22), we have
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Se e =33 EL AR ey,

n=0k =0 kin!

:z@j A O R HE (X j ‘e

k= (1-t)°

Thus the proof is completed.

Theorem 6.2 Let C be amatrixin CN ™" satisfying the condition 0 < R(1) <1 forall 1 € o(C) . Then the
generating matrix function for the Legendre matrix polynomials is given as

o0

DECESN RS oﬁ[—;zl <L —1)] oFl(—;c;%t(x +1)j;

(6.2)

1t(x -1)<1, t(x +1)[<1.

Proof. From (3.2), (3.3) and (1.22), we get

> (21 -C), IR, (x O

— ZZ o '[( | —C )n]fl (_nl )k (I —C )n+1[(| -C )n+1—k ]_1[(C )k ]_1 (1—X )k (1+X)n—k

n=0k =0 k!

o

n=

=33 L -C) T -0, O -0), L TIC) K 1)

n=0k =0

=33 1 ) TIE)T ) @

=Yoo cmlmm%ﬂi SolCL - |

Thus, the proof is completed.

Theorem 6.3 Let C be amatrixin CN " satisfying the condition 0 < R(1) <1 forall A € &(C) . Then the

derived generating matrix function for new matrix polynomials (Dn (X, C) is given as

oFi(=21=C;xt) (R (- Ci-t) = D @, (x,C)t". (6.3)

n=0

Proof. Let @, (x,C) = %[(2| -C), I'(x +1)"P, (X 1 Cj and from (3.2), we obtain (6.3). Thus, we
n! X

have the proof of the theorem.

d
Consider the differential operator € = Zd— to the matrix function Y = (F (=21 —C; z) as the following
z
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. ookl +1-C)_, 4
001 +1 —-C) F (=2l _C’Z)'g; PRI [(21 -C),]
:i%zk”[@l -C) "=z R(=21 -C;z).

The matrix function 0F1 is a solution of the matrix differential equation
[e@1+1-C)-z1] ,FR(=21-C;z)=0.

d
Put Z= Xt and @ = X— we have
dx

[6@1+1-C)—xtl], F (=21 -C;—xt)=0
or in the equivalent form
(01 +1-C) ,F (=21 —C;—xt) = xt ,F, (=21 —C; xt).
Next we operate with &(6 | +1 —C) ,F (=21 —C;—Xt) on both members of (6.3):
0(01+1-C) (F (521 -C;xt) (F (—C—t) = xt (F (=21 —C; xt) (F (= C;-t)
and

(0 1+1-C)> D, (x,O)t" =xY b, (x,C)t™ = xS b, (x, O)t",

n=0 n=0 n=1

Therefore 8(6 | +1 —C)d,(x,C) =0 and
00 1+1-C)D,(x,C)—xD, ,(x,C)=0;n>1.

These results are summarized in the following theorem.
Theorem 6.4 The new matrix polynomials CDn (X, C) satisfy the following matrix differential equation

0@ 1+1-C)d, (x,C)—xd, ,(x,C)=0;n=>1. (6.4)
This last major properties completes developed here are several families of bilinear and bilateral generating matrix
functions for the Legendre matrix polynomials derived from generating matrix functions (6.2), then using Theorem 6.2
and given explicitly by (2.2) without using Lie algebraic techniques but, with the help of the similar method as considered

in [1]. We state our results as the following.

Theorem 6.5 Corresponding to a non-vanishing matrix function Q# (yl, Yoo ys) consisting of S complex

variables Y;, Y,,..., Y5, S € N and of complex order 1, let

A (Y0 Yaa¥a2) =D, L (V1Yo Y258, #0,4,veC (65)
k=0

and
[E1]
. . N 1 -1 k.
\Pn,m,y,v (X, yll y2l"" ys’n) = Zak [(2| _C)n—mk] IDn—mk (X,C)Qka (y11 y21"" ys)n NMme N
i (n—mk)!

(6.6)



450 GU J Sci, 29(2):435-457 (2016) / Ayman SHEHATA

where C is a matrix in C""" satisfying the condition 0 < 9R(A) <1 for all 1€ o(C) and (as usual) []

represents the greatest integer in aeR. Then we have

S (X :yl,yz,---,ys;tlmjt”
n=0

(6.7)
1 1
= 0Fl(—;ZI _C;Et (x —1)) OFl(—;C ;Et(x +1))Aw(yl,yz,...,ys;n).

Proof. For convenience, let S denote the first member of the assertion (6.7). Then, plugging the matrix polynomials
. . n
\Pn,m,,u,v [X 1 y11y2!"'! ys 1t_mj .

From (6.5) and (6.7), we obtain

S = Z\I]n,m,y,v(x;y17y2""’ys;tlmjtn
(6.8)

~ 1
= a ———[(2] -C *lp X,C 0 , o ktnfmk.
gé “ (n—mk)![( Jn-mic ] P ( ) vk (Y Y, yn

Using (6.8) and (1.22), we can write

Z‘Pn,m,u,v(x;yl,yz,-~-,ys;tlmjt”

n=0

= >>a, ﬁ[(ZI ~C) 1P (X, C)Q i (Y1 Y o Y O
n=0k =0 :

{i%[(zl -C),1"'P, (x,C)t”HiakQ,ﬁvk (yl,yz,---,ys)nk}

1 1
oFl[—;Zl —C:Et(x —1)j oFl(—:C ;Et(x +1)]Ay,v(y1,yz,---,ys;n)

which completes the proof of the theorem.

Expressing the multivariable matrix function € ., (Y1, Yz,..-,Ys), K€ Ny and S€ N in terms of simpler

matrix function of one and more variables, we can give further applications to Theorem 6.5. For example, if we set S = 1

and Q. (Y) = L(}ﬁ’ﬁ() () in Theorem 6.5, where the Laguerre matrix polynomials L** (X) defined as [8, 10]

no(_1Y\K -1 7k ok
L(nA,l)(X) ZZ( 1) (A+I)n[(A+|)k] AX ,nZO (6.9)
k=0 KI(n—k)!
and
1—t) A+ —A Xt — OOL(A,},) t" t R Itl<1
(1-t) 2 DLAAO", (x t) R, |t | (6.10)
- n=0

where A is a matrix in C" N satisfying the condition —K & o(A) for every integer K >0 and A is a complex
parameter with SR(4) > 0.

In the following, we obtain the result which provides a class of bilateral generating matrix functions for the Laguerre
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matrix polynomials and modified Laguerre matrix polynomials.

Corollary 6.1 Let A, (Y;2) =D _a, L8P (y)z 8, #0,41,v €N, and

LK

(]

1
nmyv(x y 77)_ Zak

1+1k

k)l[(ZI ~C)omed P (R C)LER (7 snme N

where C is amatrixin C" " satisfying the condition 0 < 3(A) <1 forall 1 € &(C) . Then we have

i\yn,m,y,v [x y; —jtn =,F (—;ZI —C;%t(x —1)) 0F{—;C;%t(x +l)jAW(y;77) (6.11)

n=0

provided that each member of (6.11) exists.

Remark 6.1 Using the generating matrix function (6.10) for the Laguerre matrix polynomials and taking @, = 1,

#=0and v =1, wehave

35 @ O P (6 OLE

= 0Fl(—;ZI —C;Et(x —1)) oF ( t(x +1)j(1 n)” (A”)exp( —4 yfij
1-n

Let us consider the modified Laguerre matrix polynomials

£ () = Z": (A) (X" _ Z”: (A i (2 %)

6.12
STKM-K & K(n—k)! 612)

where A is amatrixin C""" satisfying the condition —K & o"(A) for every integer K >0 and A is a complex
parameter with iR(ﬂ) > 0. Here the modified Laguerre matrix polynomials fn(A'/l) (X) are generated as [10, 32]

(1-t) e = F A0t (x 1) e R, [t]< 1. (6.13)
n=0

Corollary 6.2 Let A, (Y;2) = Zfzoak f;f;f)(y)zk;ak #0,u,ve N, and

[on]
1 -
nm,uv(x Ys 77)_ Z k k)l[( I _C)n—mk] lP mk(X C)f;fvf)(y)nk;n,me N.
Then
Zo‘f’n,m,y,v X;Y; —t oF| =21 - ,Et(x -1) [R| = ,Et(x +1) |A,, (Y ;7) (6.14)

if each member of (6.14) exists.

Remark 6.2 Using the generating matrix function (6.13) for the modified Laguerre matrix polynomials and taking
a, =1, =0 and v =1, wehave
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T NS R O
= OFl(—;ZI —C;Et(x —1)} oF ( t(x +1)j(1 n) etV
Corollary 63 Let A, (Y;Z) = Za (2| B)k]le’Mvk (y,B)z*;a, #0,u,veN, and

[n]
1

nmyv(x Y, 77)_ z km[( I_C)n—mk]il[(ZI B) ]71P mk(X C) +vk(y’ B)77 ;n,meN

where B isamatrixin C*" satisfying the condition 0 < 3(A) <1 forall A € o(B). Then
N v N = . 1 oL :
ZOT”"“’”’V XY t" = F| -2l —C,Et(x -1) | R —,C,Et(x +1) |A,, (y;n). (615

if each member of (6.15) exists.

Remark 6.3 Using the generating matrix function (6.2) for the Legendre matrix polynomials and taking @, = 1,

=0 and v =1, we have

>3 o mio @ Ol 12 ~BYIR (OB (7. Bt

: . o1
OFl(—,ZI -C ,Et(x —1)] 0Fl(—,c: St +1)j

. A r.1
OFl(_’ZI -B 577()/ _1)j OFl(_'B’EU(y +1)j-

Corollary 6.4Let A, (Y;2) =Y~ a®,., (y,B)z ;8 #0,1,v € N, and

[n]
1

nmyv(x y 77) = Z k k)l[( I _C)n—mk]_lpn—mk (X’C)q),qulk(y’ B)ﬂk;nam € N

where B isamatrixin C" ™" satisfying the condition 0 < 93(A) <1 forall A € o(B). Then

Z\I’n'm'#yv (x;y;tlmjtn = OFl(—;ZI —C;%t (x —1)) OFl[—;C;%t (x +l)jAW(y;77) (6.16)

n=0

if each member of (6.16) exists.

Remark 6.4 Using the generating matrix function (6.3) for @, (Y, B) and taking @, =1, z=0 and v =1, we
have
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> F @ -0 TR (K O, (Y B

n=0k=0 ( k)
{i%{(zl cm-an(x,cﬂ[i@k(y,smk}

= oFl(—;ZI -C ;%t (x —1)) 0Fl(—;c ;%t (x +1)j (=21 =Byn) JF(=B;-n).

7. COMPOSITE LEGENDRE MATRIX POLYNOMIALS

Let us introduce in the following notations [27]
K=(Ky,Kyponk),  (K)=k +K,+...4k,,
(K)'=ktk,l..k]!,  C=(C,C,....C,),
©C). = (Cl)kl(CZ)kz "'(Ci)ki

and P=(R,P,,...,P).

Suppose that
1 1_X| kl -
P(x,.C)= Z k (-n I)k ((n, +1)I)k [(C, )kl] A =1,2,...1, (7.1)
K| ~o (k))! 2
are | Legendre matrix polynomials with square complex matrices C;, C, ,...,C, in CN™ such that the condition
(2.1) is valid.

Consider the Legendre matrix polynomials P, (X, C) , which is defined as

K

En(&,C_):zF( nl,(n+HI:C; 17)() ZW( nb), ((1+m1), [C), ]_l( j . (72)

We call this function the composite Legendre matrix polynomials of several complex variables Z,, Z,, ..., Z; .

For calculating the radius of convergence R of the series (7.2). We recall the relation (1.3.10) of [26] and keeping in
mind that o, >1. Hence
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Lo, [HUkHJ“’_- [H(—ﬂ'h((lm)l)k[(c_)k]1\\]“’{1]@
— =limsup| — | =limsup +

R Ko | O () (k)! Oy
1
_ (=) - D)+ DD, (D)D), |
< limsup
(K)o Kk, k!
1
(e 1 1), 1h®
klnll (_nll )k | ki_niI (_ni I )k |
< limsupl || ————2 |(k =Dk, ™ .| ——— L |(k, —D)k, "
(DQJ) (k, —1)! ( s (k, —1)! (e Dk,
1
—(n1+1)l —(ni +1)1
Ky ((n,+1)1 )kl - ki ((n; +1)!1 )ki oy
(k, —1)tk, " (k, —1)'k
(k, —1)! (k. —1)!
k1 c k' c 1 %
L (k,~DIIC) Tk, r..o———(k, -DIC), Tk, | ———— |
(kl—l)!( 1 ) [( l)kl] 1 (kl _1)!( i ) [( I)kl] i kl!kz!,,,ki!j
< ﬁmamthcmﬂﬂyﬂrlcmﬂ)wr1«m+1ﬂﬂpﬂrl«m+4nﬂb
i 1 (7.3)
(Ir€---ren©
R O Skl | 1l O PSRl | 'S I ' ©
|im3up 1 i 1 i 1 i
() kk,...k,
where
Y kp ki
2 2 2
. [k1+...+ki] (kl+...+kiJ m[k1+...+ki] K %0
k k, k, Kk,
1 k=0

If k, |(I and L K are positive numbers, we can write

K =gk, 1=1,2,...,i

Substitute from (1.3), (1.4) into (7.3) one gets
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1 ] 1 i

1 Nl(”—nl' [N2In ﬂlkj Nl£||—ni 1[N 21In Mkj
— < limsup (/ulk)M(_nll)z ...(,uik)M(_nil)Z
i=0

< T

k(/ﬁ+...+‘ui ) j=0 Jl

1 i 1 i
Nl(”(”ﬁl)'”’\'zmﬁﬁkj (ll(n +I|N Zlnﬂ.kJ
( M((n +l)l)z

(1K )M (n+0)1)

j=0 j! J!
1 . 1 i
2 2
k)mcmzl[”cl”N nak | )m@iwzl('p”” k] o
j=0 L 1= j! (ASINN AL
(7.4)
Since
i
N1|%HN2mﬂk (A
i <(N In gk )™ Z—: (N In uk )N el
~ ! =L

Thus, we have

1
l < Iimsup M (=n D+ +M (=n; 1) K M ((ng+D)1 )+ +M ((n; +1)|)k —m(Bl)—...fm(Bi)}ik (i)
R

K (g + i )

k(g +.+p; )0

limsup
k (,ul+...+/1i )

limsup ((N In gk )" el (N In k) el |)k(;,1+ )
((N |n,u,lk) A H(n1+1)IH (N |n,uk) a1 H(n +1)|)k(;,1+ )

1

- N 1[04 N 1[G |KGacta) _

limsup ((N Ingk)” 7™ (N Ingk) “e™ =1,
k (,ul+...+/1i )

i.e. the radius of convergence of the composite Legendre matrix polynomials is one and it is regular in the hypersphere

Sq: R =1 (cf. [26]).
8. CONCLUDING COMMENTS

The material developed in Sections 2-7 provides several important properties of the Legendre matrix polynomials
introduced in (2.2), under the condition 0 < R(1) <1 forall A € &(C) on the matrix C in C"*" . The Legendre

matrix polynomials F’n (X, C) are first shown to satisfy the second-order matrix differential equation (2.10). Rodrigues
formula and the property of orthogonality of Legendre matrix polynomials are established (Theorem 3.1 and Theorem
4.1). The matrix recurrence relation for the Pn (X,C) is derived (Theorem 5.1). New families of matrix generating

functions, new matrix polynomials and identities concerning the Legendre matrix polynomials are derived (Theorem 6.1,
Theorem 6.2 and Theorem 6.3). The families of bilinear and bilateral generating matrix functions in the sense provided by
Theorem 6.5 are established.

Definition 8.1 1f C is amatrixin C" ™ satisfying the condition 0 < R(A) <1 forall A € &(C) . We will define
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the associated Legendre matrix polynomials in the form

P"(x,C)=(-1)"(1-x)*

or, equivalently,

P"(x.C)= 1 (1+x

I'd—m)\1-x

m m

dx ™

P (x,C)

Jz ZFl[—nI (N +1)1:C +ml 1—ij

In the forthcoming investigation, we will discuss further associated Legendre matrix polynomials and discuss future
direction of the present line of work. We will more deeply analyze in the matrix theory of the so far introduced matrix

polynomials and discuss in detail their properties.
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