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Abstract—In this paper, we generate new hardware efficient involutory 32 × 32 binary Maximum Distance Separable (MDS)
diffusion layers with branch number 5. In our construction method, the idea used in Generalised Hadamard (GHadamard)
matrix form is applied when generating these diffusion layers. We construct lightweight circuits by applying Boyar’s global
optimization heuristic (BP) to these diffusion layers. Hence, new 32 × 32 binary involutory MDS matrices with the best-known
implementation cost (78 XORs) and depth 4 are generated. The obtained result is the same with the previous result given in
[1], and we show that the diffusion layer given in [1] can also be obtained directly by using our construction method. As a
result, we give thirteen more new involutory 32 × 32 binary MDS matrices with the best-known result.

Keywords—GHadamard matrix form, 32 × 32 binary MDS matrix, Global optimization, Involutory matrix

1. Introduction

Diffusion layers are one of the important struc-
tures used in the design of block ciphers. These
structures satisfy the principle of diffusion pro-
posed by Shannon [2]. The metric branch number
[3] shows the power of a diffusion layer. In this
respect, Maximum Distance Separable (MDS)
matrices providing the maximum diffusion are
used as the main component of a diffusion layer
in many ciphers [4]–[8] and have the maximum
branch number (an n × n MDS matrix over
F2m has branch number n + 1). Although MDS
matrices provide the best diffusion, they can be
compared with other diffusion layers in view of
implementation cost. Therefore, the construction
of MDS matrices, especially low cost-involutory

ones (the same matrix can be used in the process
of encryption and decryption), is a challenging
open problem in the literature [1]. The implemen-
tation cost of MDS matrices is evaluated by two
important metrics; XOR (Exclusive-OR) count
[3] and circuit depth [3]. On the other hand,
there are two important optimization methods
for the design of low-cost involutory MDS matri-
ces; local optimization and global optimization.
Local optimization focuses on the elements of
the matrix and selects matrix elements with a
minimum XOR count whereas the main focus in
global optimization is the entire diffusion matrix.
The aim of the global optimization is to find
the shortest linear Straight Line Program (SLP)
which implements the circuit of linear functions of
a diffusion matrix. In other words, we search the
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diffusion layer circuits with the minimum depth and
the minimum XOR count by using SLP.

There are two different global optimization tech-
niques: cancellation-free technique and heuristic
methods. When calculating the shortest SLP pro-
gram in the cancellation-free technique, it is not
allowed to cancel the same elements in the cir-
cuit function by adding (XORing) them (e.g. if
a = x1 ⊕ x3, b = x3 ⊕ x4, a ⊕ b is not allowed
because the element x3 is located in both a and
b). Heuristic methods find the optimum circuit by
allowing cancellations.

PAAR1 and PAAR2 optimization algorithms [9]
are cancellation-free methods. These methods give
quick results, especially when dealing with large-
sized matrices, but they do not guarantee the optimal
solution. In 2010, Boyar and Peralta proposed a
heuristic optimization method consisting of two
steps [10]: nonlinear components (AND gate) are
optimized in the first step while linear components
(XOR gate) are optimized in the second step. In
2013, Boyar and et. al. proposed a new heuristic
[11]. It consists of two steps but in this method,
nonlinear components are optimized with an ad-
hoc algorithm. The heuristic optimization method
given in [12] is similar to the ones given in [10],
[11]. But, the method given in [12], as distinct
from these heuristics, includes the See-Saw method
which is used to obtain lower-depth circuits. The
aim of the heuristic method presented in [13] is to
produce optimum circuits with respect to the given
depth limit value. In order to achieve this purpose,
it repeats the See-Saw method steps given in [12].

RNBP (Random-Boyar Peralta), A1, and A2
heuristics are presented in [14]. RNBP heuristic
is obtained by adding randomness to the method
given in [10]. A1 and A2 algorithms are proposed
for low-depth and low XOR circuit optimizations,
especially in low-dimensional (e.g. 16×16) matrices.

In addition to local and global optimization tech-
niques for circuit optimization, synthesizers such as
Yosys [15], ABC [16] and formative tools (e.g. the
satisfiability (SAT) [17] and LIGHTER [18] tools)
are also used.

The development of global optimization algo-
rithms, especially for 32×32 binary MDS matrices,
become a major field of study [19]. In [19], the
authors constructed matrices with depth 6 and 67
XORs, addressing 32 × 32 binary MDS matrices
with branch number 5. In [14], the authors proposed
32×32 binary MDS matrices implemented with just
depth 5 and 67 XORs, improving the result for depth
6 and 67 XORs given in [19]. However, the matrices
given in these studies are not involutory MDS
matrices. In [1], Li and et al. proposed a generalized
construction method by using Companion matrices
to generate 32×32 binary involutory MDS matrices
and they presented a new 32× 32 binary involutory
MDS matrix with depth 4 and 78 XORs, which is
the best-known XOR count for depth 4.

In this study, we focus on the construction of invo-
lutory 32× 32 binary MDS matrices with minimum
XOR count, especially for depth 4. Basically, we
use the idea of applying the subfield construction
method to the involutory MDS matrix given in
[1]. The 4 × 4 GHadamard [20] and involutory
MDS matrices over F2m are used as generator
matrices. Then, we generalize these matrices in
M4(GL(8,F2)) form to find new lightweight in-
volutory 32 × 32 binary MDS matrices. Moreover,
we obtain lightweight circuits by using the global
optimization technique given in [13], and refer to
BP heuristic in this study. Finally, we identify some
new involutory 32 × 32 binary MDS matrices with
branch number 5, which can be implemented by 78
XORs and depth 4.

This paper is organized as follows, the preliminar-
ies on GHadamard matrix form and MDS matrices
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are given in Section 2. In Section 3, we show how to
construct lightweight involutory 32×32 binary MDS
matrices by generalizing the GHadamard matrices
as a matrix in M4(GL(8,F2)) form and give the
experimental results. The conclusion is given in
Section 4.

2. Preliminaries

The finite field F2m consisting of 2m elements is
defined by an irreducible polynomial p(x) of degree
m over F2 and denoted by F2[x]/p(x). In this paper,
we use F2m/p(x) notation to express the finite
field for simplicity. Note that F2m/p(x) notation
expresses a finite field having 2m elements. Also,
we use hexadecimal notation to denote irreducible
polynomial p(x) when expressing F2m/p(x). For
example, 0x13 stands for the irreducible polynomial
p(x) = x4 + x + 1.

Let C be an [n, k, d] code and let G = [I ∣A] be a
generator matrix of C, where A is a k × (n − k)
matrix. Then, A is an MDS matrix, if and only
if every square sub-matrix of A is nonsingular.
Moreover, if A also satisfies that A = A−1, then A

is called involutory MDS matrix.

Mk(GL(n,F2)) defines the set of all k×k matri-
ces and all elements of these matrices are taken from
the general linear group GL(n,F2) [7]. The matrix
A in GL(n,F2) can be denoted as an nk×nk binary
matrix which is the binary representation of A. We
also use I8 to indicate the 8 × 8 identity matrix.

Definition 1. (Companion Matrix) [3] Let g(x) =
a0+a1x+a2x2+⋅ ⋅ ⋅+ak−1xk−1+xk ∈ Fq[x] be a monic
polynomial of degree k. The k×k Companion matrix
Cg is defined as follows (1):

Cg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
⋮ ⋮ ⋱ ⋮ ⋮
0 0 . . . 1 −ak−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

A recursive MDS matrix is an MDS matrix and
can be expressed as a power of a companion matrix.
For example, let Ak be a recursive MDS matrix,
then Ak is obtained by recursively implementation
(k times) of the companion matrix A.

The construction of MDS matrices, especially in-
volutory ones, is a challenging issue. The construc-
tion methods of MDS matrices can be grouped into
three groups: direct construction methods, search-
based methods, and hybrid construction methods. In
direct construction methods, MDS matrices are con-
structed directly (e.g. companion matrices, Vander-
monde matrices, Cauchy matrices, and a new matrix
form given in [21] to generate all 3 × 3 involutory
and MDS matrices). Search-based methods simply
use special matrix forms (such as circulant matrices,
Toeplitz matrices, and Hadamard matrices) to search
for MDS matrices. However, the cost of checking
a matrix is an MDS matrix or not would be expen-
sive, especially for larger dimensions. In the hybrid
construction methods, the previous two construction
techniques, direct construction, and search-based
construction are merged (e.g. GHadamard matrix).
In addition to the previous construction methods,
a new method based on ground field structure was
proposed to generate isomorphic (involutory) MDS
matrices in [22].

Definition 2. (GHadamard Matrix) [20] Let H

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3
a1 a1 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

be a 4 × 4 Hadamard ma-
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trix. The 4 × 4 GHadamard matrix form GH =
Ghad(a0, a1; b1, a2; b2, a3; b3) with additional pa-
rameters b1, b2 and b3 ∈ F2m − {0} can be given
as follows (2):

GH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1b1 a2b2 a3b3
a1b−11 a0 a3b−11 b2 a2b−11 b3
a2b−12 a3b−12 b1 a0 a1b−12 b3
a3b−13 a2b−13 b1 a1b−13 b2 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

GHadamard matrix form starts with an (involu-
tory) Hadamard MDS matrix over F2m , and then
constructs new (involutory) MDS matrices directly.
By using GHadamard matrix form, one can generate
(2m − 1)k−1 k × k (involutory) MDS matrices over
F2m in total from starting with a k × k (involutory)
Hadamard MDS matrix over F2m (see the proof in
[20]).

3. Our New Construction

In this paper, we first generate 4 × 4 involutory
and MDS matrices in GHadamard matrix form
over F2m/0x13 and use these matrices as gener-
ator matrices. We utilize the companion matrix
A1 ∈ GL(8,F2) given in (3) with characteristic
polynomial x8 + x2 + 1 (= (x4 + x + 1)2). Then, we
generalize the generator matrices in the GHadamard
matrix form by using the companion matrix A1 and
construct matrices in M4(GL(8,F2)) with 32 × 32

binary matrix representations. Finally, lightweight
32 × 32 binary MDS matrices with branch number
5 are obtained. One of these lightweight matrices is
given in (5).

A1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Example 1. Let the finite field F24 be generated
by the primitive element α, which is a root of
the primitive polynomial 0x13 (x4 + x + 1). Con-
sider the involutory 4 × 4 Hadamard MDS matrix

H1 = had(1, α,α2, α5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α2 α5

α 1 α5 α2

α2 α5 1 α

α5 α2 α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

over

F24/0x13. Then, the 4×4 GHadamard matrix GH1 =
Ghad(1, α; 1, α2;α14, α5;α14) corresponding to H1

with the parameters b1 = 1, b2 = α14 and b3 = α14

can be obtained as shown in (4):

GH1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α α α4

α 1 α4 α

α3 α6 1 α

α6 α3 α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

which is also an involutory MDS matrix with naive
XOR count 80 (= 32 + 4 × 3 × 4). Then, we gen-
eralize the generator matrix GH1 by using the
matrix A1 and it can be regarded as a matrix in
M4(GL(8,F2)) in the following matrix form (5):

GenGH1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I8 A1 A1 A1
4

A1 I8 A1
4 A1

A1
3 A1

6 I8 A1

A1
6 A1

3 A1 I8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where I8 is the 8 × 8 identity matrix. GenGH1 can
be transformed into 32× 32 involutory binary MDS
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matrix of branch number 5 with naive XOR count 128 XORs, which is given in (6).

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Moreover, we use BP heuristic for the global
optimization of GenGH1 and achieve the lowest
bound with 78 XORs and circuit depth 4. The global
optimization results of GenGH1 with 78 XORs
and depth 4 is given in Table 1 where xi, yi and
tj represent input bits, output bits and temporary
variables, respectively, and the values are given in
parentheses represent the related circuit depth.

Example 2. Let the finite field F24 be gen-

erated by the primitive element α, which is
a root of the primitive polynomial 0x13. Con-
sider the involutory 4 × 4 Hadamard MDS matrix

H2 = had(1, α2, α,α5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 α2 α α5

α2 1 α5 α

α α5 1 α2

α5 α α2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

over

F24/0x13. Then, the 4×4 GHadamard matrix GH2 =
Ghad(1, α2;α13, α;α14, α5;α14) corresponding to
H2 with the parameters b1 = α13, b2 = α14, b3 = α14
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TABLE 1
The global optimization result of GenGH1 with 78 XORs and depth 4

No Operation No Operation No Operation
1 t1 = x7 + x20 (1) 27 t27 = t3 + t14(2) 53 t53 = t1 + t40(2)
2 t2 = x10 + x31(1) 28 t28 = t11 + t27[y28](3) 54 t54 = t38 + t53[y20](3)
3 t3 = x15 + x28(1) 29 t29 = t4 + t26(3) 55 t55 = t2 + t52(3)
4 t4 = x2 + x23(1) 30 t30 = t8 + t29[y26](4) 56 t56 = t6 + t55[y18](4)
5 t5 = x3 + x14(1) 31 t31 = t12 + t27(3) 57 t57 = t37 + t53(3)
6 t6 = x5 + x18(1) 32 t32 = t29 + t31[y2](4) 58 t58 = t55 + t57[y10](4)
7 t7 = x6 + x11(1) 33 t33 = t18 + t31[y23](4) 59 t59 = t44 + t57[y31](4)
8 t8 = x13 + x26(1) 34 t34 = t18 + t20(3) 60 t60 = t44 + t46(3)
9 t9 = x0 + x21(1) 35 t35 = t29 + t34[y13](4) 61 t61 = t55 + t60[y5](4)
10 t10 = x8 + x29(1) 36 t36 = x21 + t34[y21](4) 62 t62 = x29 + t60[y29](4)
11 t11 = x6 + x19(1) 37 t37 = x7 + x22(1) 63 t63 = x1 + x16(1)
12 t12 = x15 + x30(1) 38 t38 = x14 + x27(1) 64 t64 = t10 + t63[y1](2)
13 t13 = t11 + t12[y15](2) 39 t39 = t37 + t38[y7](2) 65 t65 = x9 + x24(1)
14 t14 = x4 + x9(1) 40 t40 = x1 + x12(1) 66 t66 = t9 + t65[y9](2)
15 t15 = x24 + t7(2) 41 t41 = x16 + t5(2) 67 t67 = x22 + t5(2)
16 t16 = x17 + t15[y17](3) 42 t42 = x25 + t41[y25](3) 68 t68 = t10 + t67[y22](3)
17 t17 = x4 + x15(1) 43 t43 = x7 + x12(1) 69 t69 = x30 + t7(2)
18 t18 = x23 + t3(2) 44 t44 = x31 + t1(2) 70 t70 = t9 + t69[y30](3)
19 t19 = x0 + t18[y0](3) 45 t45 = x8 + t44[y8](3) 71 t71 = t9 + t11(2)
20 t20 = x13 + t4(2) 46 t46 = x5 + t2(2) 72 t72 = t24 + t71[y19](4)
21 t21 = x24 + t20[y24](3) 47 t47 = x16 + t46[y16](3) 73 t73 = t10 + t38(2)
22 t22 = x21 + t8(2) 48 t48 = x29 + t6(2) 74 t74 = t50 + t73[y27](4)
23 t23 = x6 + t22[y6](3) 49 t49 = x14 + t48[y14](3) 75 t75 = t13 + t15(3)
24 t24 = x11 + t22(3) 50 t50 = x3 + t48(3) 76 t76 = t17 + t75[y4](4)
25 t25 = t20 + t24[y11](4) 51 t51 = t46 + t50[y3](4) 77 t77 = t39 + t41(3)
26 t26 = x17 + t17(2) 52 t52 = x25 + t43(2) 78 t78 = t43 + t77[y12](4)

can be obtained as shown in (7):

GH2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 α4

α4 1 α6 α2

α2 α4 1 α2

α6 1 α2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

which is also an involutory MDS matrix with naive
XOR count 80 (= 32 + 4 × 3 × 4). Then, we gen-
eralize the generator matrix GH2 by using the
matrix A1 and it can be regarded as a matrix in
M4(GL(8,F2)) in the following matrix form (8):

GenGH2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I8 I8 I8 A1
4

A1
4 I8 A1

6 A1
2

A1
2 A1

4 I8 A1
2

A1
6 1 A1

2 I8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

GenGH2 is equal to the matrix given in [1]
(see the matrix H with 78 XORs and depth 4).
Therefore, this shows that our new construction
method based on the GHadamard matrix form can
generate the lightest matrices directly. Note that
in [1], the authors searched through a range of
matrices generated by 6 parameters, which increases
the search cost.
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TABLE 2
The new generator matrices in GHadamard

matrix form

No Parameters
a0, a1; b1, a2; b2, a3; b3

1 Ghad (1, α;α,α2; 1, α5;α14)
2 Ghad (1, α;α14, α2;α13, α5;α14)
3 Ghad (1, α; 1, α5;α14, α2;α14)
4 Ghad (1, α;α,α5;α14, α2; 1)
5 Ghad (1, α;α14, α5;α14, α2;α13)
6 Ghad (1, α2;α2, α;α,α5;α)
7 Ghad (1, α2;α2, α5;α,α;α)
8 Ghad (1, α2;α13, α5;α14, α;α14)
9 Ghad (1, α5;α14, α;α14, α2;α13)
10 Ghad (1, α5;α,α2;α2, α;α)
11 Ghad (1, α5;α14, α2;α13, α;α14)
12 Ghad (α,1; 1, α5;α14, α2;α14)
13 Ghad (α,1; 1, α2;α14, α5;α14)

3.1. Experimental Results

In this section, we present thirteen more involu-
tory 32×32 binary MDS matrices of branch number
5 (implemented by 78 XORs and depth 4) generated
by our construction method. In Table2, we list
generator GHadamard matrices (with the parameters
ais and bis) of these involutory 32 × 32 binary
MDS matrices. After generalizing these generator
matrices by using the matrix A1, each of them
can be regarded as a matrix in M4(GL(8,F2)).
Moreover, they can be implemented by 78 XORs
and depth 4 after optimizing with BP heuristic. The
optimization results of these matrices are given in
[23].

In Table 3, we give a summary of results for
involutory and non-involutory 32 × 32 binary MDS
matrices given in the literature. These results show
that our new matrices in M4(GL(8,F2)) form have
the best-known results for the circuit depth 4. Note
that the matrix H given in [7] can be generated
by our new construction method (recall the matrix
GenGH2). We also give thirteen more matrices,

TABLE 3
The summary of results for involutory and

non-involutory 32 × 32 binary MDS matrices
given in the literature

Matrix inv. / XOR Depth
non-inv. Count

AES [14] non-inv. 94 6
M9,3

4,5 , (A8,−,−) [14] non-inv. 67 5

M8,4
′′

4,4 ,(A8,−,−) [14] non-inv. 69 4
MKLSW [24] inv. 84 4
G [1] inv. 80 4
H [1] inv. 78 4
GenGH1 (Eq.(6)) inv. 78 4

which can be implemented by 78 XORs and depth
4. Hence, this shows the efficiency of our new
construction method.

4. Conclusion

In this paper, we focus on direct construction
of lightweight involutory 32 × 32 binary MDS ma-
trices. Moreover, we consider a new construction
method from GHadamard matrix form perspective
and give new lightweight involutory 32 × 32 binary
MDS matrices that can be implemented by only 78
XORs and depth 4. This result is the same with
the previous result given in [1] and we show that
this matrix can be obtained with our new construc-
tion method directly, whereas in [1] the authors
searched through a range of matrices generated by
6 parameters. Therefore, our construction method
actually minimizes the average search complexity.
Additionally, we give thirteen more new involutory
32 × 32 binary MDS matrices with the best-known
result. Hence, the obtained matrices can be used in
the design of lightweight and low-latency diffusion
layers in symmetric-key encryption.

It is still an open problem to design new global
SLP heuristics, especially for larger dimensions.
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As future work, it would be interesting to focus
on designing a new global optimization algorithm,
especially for 32 × 32 matrices.
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