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Abstract. In this paper we dicuss the pair difference cordility of Mirror

graph, Splitting graph, Shadow graph of some graphs.

1. Introduction

We consider only finite, undirected and simple graphs. The origin of graph labeling
is graceful labeling and introduced this concept by Rosa.A [15].Afterwards many
labeling was defined and few of them are harmonious labeling[7], cordial labeling
[1], magic labeling [16], mean labeling [19]. Cordial analogous labeling was studied
in [2,3,4,5,10,11,12,13,14,17,18]. The notion of pair diference cordial labeling of a
graph has been introduced and studied some properties of pair difference cordial la-
beling in [9].The pair difference cordial labeling behavior of several graphs like path,
cycle, star etc have been investigated in [9].In this paper we dicuss the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some graphs.Term
not defined here follow from Harary[8].
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2. Preliminaries

Definition 2.1. [6]. For a bipartite graph G with partite sets X and Y ,let G, be

a copy of G and X
′

and Y
′

be copies of X and Y . The mirror graph M
′
(G) , of a

graph G as the disjoint union of G and G
′

with additional edges joining each vertex
Y to its corresponding vertex in Y

′
.

Definition 2.2. [6].

The splitting graph of G,S
′
(G), is obtained from G by adding for each vertex v

of G a new vertex v
′

so that v
′

is adjacent to every vertex that is adjacent to v.

Definition 2.3. [6].
The shadow graph D2(G) of a connected graph G is constructed by taking two

copies of G,G
′

and G
′′

and joining each vertex u
′

in G
′

to the neighbours of the
corresponding vertex u

′′
in G

′′
.

Definition 2.4. [6].
The ladder Ln is the product graph Pn ×K2.

Theorem 2.1. [9].
If G is a (p, q) pair difference cordial graph then

q ≤

{
2p− 3 if p is even

2p− 1 if p is odd

Theorem 2.2. [9].
The path Pn is pair difference cordial for all values of n except n 6= 3 .

Corollary 2.3. [9].
The cycle Cn is pair difference cordial if and only if n > 3 .

Theorem 2.4. [9].
The ladder Ln is pair difference cordial for all values of n.

3. Mirror Graphs

Theorem 3.1. The mirror graph of the path Pn is pair difference cordial.

Proof. Since M ′(Pn) ∼= Ln,the proof follows from theorem 2.8.
�

Theorem 3.2. M
′
(K1,n) is pair difference cordial if and only if n ≤ 2.

Proof. Let V (M
′
(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and

E(M
′
(K1,n)) = {xxi, yyi, yixi, xy : 1 ≤ i ≤ n}.Since S

′
(K1,1) ∼= C4. By corol-

lary 2.7, M
′
(K1,1) is pair difference cordial. A pair difference cordial labeling of

M
′
(K1,2) is shown in Table 1.

Suppose f is a pair difference cordial labeling of M
′
(K1,n), n ≥ 3 . Obviously

∆f1 ≤ 4. Then ∆c
f1
≥ q − 4. This implies that ∆c

f1
≥ 3n + 1− 4 = 3n− 3. Hence

∆c
f1
−∆f1 ≥ 3n− 7 > 1 , a contradiction.

�
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n x x1 x2 y y1 y2
2 −2 −1 -3 2 1 3

Table 1.

Theorem 3.3. M
′
(S(K1,n)) is pair difference cordial if and only if n ≤ 2.

Proof. Let (X1, Y1) be bipartition of the first copy of S(K1,n) where X1 = {x, yi :
1 ≤ i ≤ n}, Y1 = {xi : 1 ≤ i ≤ n} and (X2, Y2) be bipartition of the second copy

of S(K1,n) where X2 = {x′ , y′i : 1 ≤ i ≤ n}, Y2 = {x′i : 1 ≤ i ≤ n}. Therefore

E(M
′
(S(K1,n))) = {xxi, x

′
x
′

i, yixi, y
′

ix
′

i : 1 ≤ i ≤ n} ∪ {xx′ , xix
′

i, yiy
′

i : 1 ≤ i ≤
n} ∪ {xy, x′y′}. Clearly there are 4n + 2 vertices and 6n + 1 edges in the mirror

graph of S(K1,n). Since M
′
(S(K1,1)) ∼= L3, by theorem 2.8, M

′
(S(K1,1)) is pair

difference cordial. A pair difference cordial labeling of M
′
(S(K1,2)) is given in

Table 2.

n x x1 x2 y1 y2 x
′

x
′

1 x
′

2 y
′

1 y
′

2

2 5 2 4 1 3 −5 −2 -4 −1 −3
Table 2.

Suppose f is a pair difference cordial labeling of M
′
(S(K1,n)), n ≥ 3 . Obviously

∆f1 ≤ 2n+2. Then ∆c
f1
≥ q−2n−2. This implies that ∆c

f1
≥ 6n+1−2n−2 = 4n−1.

Hence ∆c
f1
−∆f1 ≥ 2n− 3 > 1 , a contradiction.

�

Theorem 3.4. M
′
(Bn,n) is pair difference cordial if and only if n ≤ 2.

Proof. Let (X1, Y1) be bipartition of the first copy of Bn,n where X1 = {x, yi : 1 ≤
i ≤ n}, Y1 = {y, xi : 1 ≤ i ≤ n} and (X2, Y2) be bipartition of the second copy

of Bn,n where X2 = {x′ , y′i : 1 ≤ i ≤ n}, Y2 = {y′ , x′i : 1 ≤ i ≤ n}. Therefore

E(M
′
(Bn,n)) = {xxi, x

′
x
′

i, yyi, y
′
y
′

i : 1 ≤ i ≤ n} ∪ {xx′ , yy′ , xix
′

i, yiy
′

i : 1 ≤ i ≤ n}.
Obviously M

′
(Bn,n) has 4n+ 2 vertices and 6n+ 1 edges. Since M

′
(B1,1) ∼= L4,by

theorem 2.8, M
′
(B1,1) is pair difference cordial. A pair difference cordial labeling

of M
′
(B1,2) is shown in Table 3.

n x x1 x2 y y1 y2 x
′

x
′

1 x
′

2 y
′

y
′

1 y
′

2

2 2 1 3 −2 −1 −3 5 4 6 −5 −4 −6
Table 3.

Suppose f is a pair difference cordial labeling of M
′
(Bn,n), n ≥ 3 . Obviously

∆f1 ≤ 8. Then ∆c
f1
≥ q − 8. This implies that ∆c

f1
≥ 6n + 4− 8 = 6n− 4. Hence

∆c
f1
−∆f1 ≥ 6n− 12 > 1 , a contradiction.

�

4. Shadow Graphs

Theorem 4.1. Let G be a (p, q) graph with q ≥ p.Then D2(G) is not pair difference
cordial.
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Proof. Suppose G is a pair difference cordial graph with q ≥ p. Obviously |V (D2(G))| =
2p and |E(D2(G))| = 4q. By theorem 2.5, 4q ≤ 2(2p) − 3. This implies that
4q ≤ 4q − 3, a contradiction.

�

Theorem 4.2. D2(Pn) is pair difference cordial for all values of n.

Proof. Let V (D2(Pn)) = {xi, yi : 1 ≤ i ≤ n} , E(D2(Pn)) = {xixi+1, yiyi+1 : 1 ≤
i ≤ n − 1} ∪ {xiyi+1, yixi+1 : 1 ≤ i ≤ n − 1}. Clearly D2(Pn) has 2n vertices and
4n− 4 edges.
Define f : V (D2(Pn))→ {±1,±2,±3, · · · ± n} by

f(xi) = i, 1 ≤ i ≤ n,

f(yi) = −i, 1 ≤ i ≤ n.

This vertex labeling yields that D2(Pn) is pair difference cordial for all values of n,
since ∆f1 = 2n− 2 = ∆fc

1
.

�

Theorem 4.3. D2(Cn) is not pair difference cordial for all values of n.

Proof. Let Cn be the first copy of the cycle x1x2 · · ·xnx1 and y1y2 · · · yny1 be
the second copy of the cycle Cn. The maximum number of the edges with the
labels 1 among the vertex labels 1, 2, · · · , n is n − 1. Also the maximum number
of the edges with the labels 1 among the vertex labels −1,−2, · · · ,−n is n − 1.
Therefore ∆f1 ≤ 2n − 2. This implies that ∆c

f1
≥ 4n − (2n − 2) = 2n + 2. Hence

∆f1 −∆c
f1
≥ 2n + 2− (2n− 2) = 4 > 1, a contradiction.

�

Theorem 4.4. D2(Kn) is pair difference cordial if and only if n ≤ 2.

Proof. Clearly |V (D2(Kn))| = 2n and |E(D2(Kn))| = n(n − 1) + 2
(
n
2

)
. Suppose

D2(Kn) is a pair difference cordial. By theorem 2.5 ,n(n− 1) + 2
(
n
2

)
≤ 2(2n)− 3,

which implies that 2n2 − 6n + 3 ≤ 0. It gives that n ≤ 2. Hence D2(Kn), n > 3
is not pair difference cordial. Obviously D2(K1) is pair difference cordial. Since
K2
∼= P2, by theorem 2.6, D2(K2) is pair difference cordial.

�

Theorem 4.5. D2(K1,n) is pair difference cordial if and only if n ≤ 2.

Proof. Clearly |V (D2(K1,n))| = 2n+2 and |E(D2(K1,n))| = 4n. Suppose D2(K1,n)
is a pair difference cordial . Obviously ∆f1 ≤ 2n + 1. Let u be the central vertex

of K1,n and u
′

be the corresponding shadow vertex . Hence d(u) = d(u
′
) = 2n in

D2(K1,n) . Now ∆f1 ≥ 2n− 2 + 2n− 2 ≥ 4n− 4. Hence ∆f1 −∆fc
1
≥ 2n− 3. This

implies n ≤ 2. Since D2(K1,1) ∼= C4 , by corollary 2.7, D2(K1,1) is pair difference

cordial. The labeling f defined by f(u) = 2, f(u
′
) = −2, f(u1) = −1, f(u2) =

−3, f(u
′

1) = 1, f(u
′

2) = 3 is a pair difference cordial labeling of D2(K1,2).
�

Theorem 4.6. D2(Pn �K1) is not pair difference cordial for all values of n.

Proof. Let V (D2(Pn � K1)) = {xi, x
′

i, yi, y
′

i : 1 ≤ i ≤ n} . There are 4n vertices
and 8n− 4 edges.
Suppose D2(Pn �K1) is pair difference cordial for all values of n. The maximum
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number of the edges with the labels 1 among the vertex labels 1, 2, · · · , n is n − 1
and the maximum number of the edges with the labels 1 among the vertex labels
−1,−2, · · · ,−n is n − 1. Therefore ∆f1 ≤ 2n − 2 + 2 = 2n. This implies that
∆c

f1
≥ 8n − 4 − 2n = 6n − 4. Hence ∆f1 − ∆c

f1
≥ 6n − 4 − 2n = 4n − 4 > 1, a

contradiction.
�

5. Spilitting Graphs

Theorem 5.1. S
′
(Pn) is pair difference cordial for all n.

Proof. Let V (S
′
(Pn)) = {xi, yi : 1 ≤ i ≤ n} and E(S

′
(Pn)) = {xixi+1 : 1 ≤ i ≤

n− 1} ∪ {xiyi+1, yixi+1 : 1 ≤ i ≤ n− 1} . There are two cases arises.

Case 1. n ≤ 5.
A pair difference cordial labeling for this case given in Table 4.

n x1 x2 x3 x4 x5 y1 y2 y3 y4 y5
2 1 2 −1 −2
3 1 −1 3 −2 2 −3
4 1 2 −1 −2 3 4 −3 −4
5 1 2 5 −2 −4 3 4 −1 −5 −3

Table 4.

Case 2. n > 5.
There are four cases arises.
Subcase 1. n ≡ 0 (mod 4).

Assign the labels 1, 5, 9, · · · , n−3 to the vertices x1, x3, x5, · · · , xn−2
2

respectively

and assign the labels 2, 6, 10, · · · , n−2 respectively to the vertices x2, x4, x6, · · · , xn
2

.
Now we assign the labels 3, 7, 11, · · · , n−1 respectively to the vertices y1, y3, y5, · · · ,
yn−2

2
and assign the labels 4, 8, 12, · · · , n to the vertices y2, y4, y6, · · · , yn

2
respec-

tively.

Next we assign the labels −1,−5,−9, · · · ,−(n − 3) respectively to the vertices
xn+2

2
, xn+6

2
, xn+10

2
, · · · , xn−1 and we assign the labels −2,−6,−10, · · · ,−(n − 2)

respectively to the vertices xn+4
2
, xn+8

2
, xn+12

2
, · · · , xn . Lastly assign the labels

−3,−7,−11, · · · ,−(n − 1) respectively to the vertices yn+2
2
, yn+6

2
, yn+10

2
, · · · , yn−1

and assign the labels −4,−8,−12, · · · ,−n to the vertices yn+4
2
, yn+8

2
, yn+12

2
, · · · , yn

respectively.

Subcase 2. n ≡ 1 (mod 4).

Assign the labels 1, 5, 9, · · · , n−4 respectively to the vertices x1, x3, x5, · · · , xn−3
2

and assign the labels 2, 6, 10, · · · , n − 3 to the vertices x2, x4, x6, · · · , xn−1
2

respec-

tively. Now we assign the labels 3, 7, 11, · · · , n−2 to the vertices y1, y3, y5, · · · , yn−3
2

respectively and assign the labels 4, 8, 12, · · · , n − 1 respectively to the vertices
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y2, y4, y6, · · · , yn−1
2

and assign the label n to the vertex yn+1
2

.

Now we assign the labels −1,−3,−5, · · · ,−(n+1
2 ) respectively to the vertices

xn+1
2
, xn+5

2
, xn+9

2
, · · · , xn and we assign the labels −(n+3

2 ),−(n+7
2 ),−(n+11

2 ), · · · ,
−(n−1) respectively to the vertices yn, yn−2, yn−4, · · · , yn+5

2
. Next assign the labels

−2,−4,−6, · · · ,−(n−1
2 ) respectively to the vertices yn+3

2
, yn+7

2
, yn+11

2
, · · · , yn−1 and

assign the labels−(n+5
2 ),−(n+9

2 ),−(n+13
2 ), · · · ,−(n) to the vertices xn−1, xn−3, xn−5,

· · · , xn+3
2

respectively.

Subcase 3. n ≡ 2 (mod 4).
as in case 1 assign the labels to the vertices xi, yi(1 ≤ i ≤ n− 2). Finally we assign
the labels (n− 1), n,−n,−(n− 1) to the vertices xn−1, xn, yn−1, yn.

Subcase 4. n ≡ 3 (mod 4).

Assign the labels 1, 5, 9, · · · , n−2 respectively to the vertices x1, x3, x5, · · · , xn−1
2

and we assign the labels 2, 6, 10, · · · , n−5 to the vertices x2, x4, x6, · · · , xn−3
2

respec-

tively. Now we assign the labels 3, 7, 11, · · · , n−4 to the vertices y1, y3, y5, · · · , yn−5
2

respectively and assign the labels 4, 8, 12, · · · , n − 3 respectively to the vertices
y2, y4, y6, · · · , yn−3

2
.

Next we assign the labels −1,−3,−5, · · · ,−(n−1
2 ) respectively to the vertices

xn+1
2
, xn+5

2
, xn+9

2
, · · · , xn−1 and we assign the labels−(n+3

2 ),−(n+7
2 ),−(n+11

2 ), · · · ,
− (n) respectively to the vertices xn, xn−2, xn−4, · · · , xn+3

2
. Next assign the labels

−2,−4,−6, · · · ,−(n+1
2 ) respectively to the vertices yn+3

2
, yn+7

2
, yn+11

2
, · · · , yn and

assign the labels −(n+5
2 ),−(n+9

2 ),−(n+13
2 ), · · · ,−(n−1) to the vertices yn−1, yn−3,

yn−5, · · · , yn+5
2

respectively.

Finally assign the labels n− 1, n to the vertices yn−12
,

yn+1
2

respectively.

�

Theorem 5.2. S
′
(Pn �K1) is pair difference cordial.

Proof. Let V (S
′
(Pn � K1)) = {xi, x

′

i, yi, y
′

i : 1 ≤ i ≤ n} and E(S
′
(Pn � K1)) =

{xix
′

i+1, xi+1x
′

i : 1 ≤ i ≤ n−1}∪{xixi+1 : 1 ≤ i ≤ n−1}∪{yix
′

i, xiy
′

i : 1 ≤ i ≤ n}.
There are 4n vertices and 6n− 3 edges.There are two cases arises.

Case 1.n is even.

Assign the labels 1, 5, 9, · · · , (2n−3) to the vertices x1, x2, x3, · · · , xn
2

respectively
and we assign the labels−1,−5,−9, · · · ,−(2n−3) respectively xn+2

2
, xn+4

2
, xn+6

2
, · · · ,

xn. Next assign the labels 4, 8, 12, · · · , 2n to the vertices x
′

1, x
′

2, x
′

3, · · · , x
′
n
2

respec-

tively and we assign the labels−4,−8,−12, · · · ,−(2n) respectively x
′
n+2
2

, x
′
n+4
2

, x
′
n+6
2

,

· · · , x′n.
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Now we assign the labels 3, 7, 11, · · · , (2n−1) to the vertices y1, y2, y3, · · · , yn
2

re-
spectively and we assign the labels−3,−7,−11, · · · ,−(2n−1) respectively yn+2

2
, yn+4

2
,

yn+6
2
, · · · , yn. Next assign the labels 2, 6, 10, · · · , (2n−2) to the vertices y

′

1, y
′

2, y
′

3, · · · ,
y
′
n
2

respectively and assign the labels −2,−6,−10, · · · ,−(2n−2) respectively y
′
n+2
2

,

y
′
n+4
2

, y
′
n+6
2

, · · · , y′n.

Clearly ∆f1 = 3n−2,∆fc
1

= 3n−1. This vertex labeling gives that S
′
(Pn�K1)

is pair difference cordial for all even values of n.

Case 2.n is odd.

As in case 1 , assign the labels to the vertices xi, yi, x
′

i, yi
′(1 ≤ i ≤ n−1). Finally

we assign the labels 2n− 1,−(2n− 1), 2n,−2n to the vertices x
′

n, xn, yn, y
′

n.

Clearly ∆f1 = 3n−2,∆fc
1

= 3n−1. This vertex labeling gives that S
′
(Pn�K1)

is pair difference cordial for all odd values of n.

�

Theorem 5.3. S
′
(Kn) is pair difference cordial if and only if n ≤ 3.

Proof. Clearly
∣∣∣V (S

′
(Kn))

∣∣∣ = 2n and
∣∣∣E(S

′
(Kn))

∣∣∣ = 3n(n−1)
2 .

Case 1. n ≤ 3.
Obviously S

′
(K1) is pair difference cordial.Since S

′
(Kn) ∼= C4, then S

′
(K2) is pair

difference cordial. By theorem 5.2, S
′
(K3) is pair difference cordial.

Case 2. n > 3.
Suppose S

′
(Kn) is pair difference cordial. By theorem 2.5 ,

3n(n− 1)

2
≤ 2(2n)− 3,

⇒ 3n2 − 3n ≤ 4(2n)− 6,

⇒ 3n2 − 11n ≤ −6,

⇒ −3n2 + 11n ≥ 6, a contradiction

�

Theorem 5.4. S
′
(K1,n) is pair difference cordial if and only if n ≤ 3.

Proof. Let V (S
′
(K1,n)) = {x, y, xi, yi : 1 ≤ i ≤ n} and E(S

′
(K1,n)) = {xxi, yyi, yix :

1 ≤ i ≤ n}.Since S
′
(K1,1) ∼= P4. By theorem 2.6, S

′
(K1,1) is pair difference cordial.

A pair difference cordial labeling of S
′
(K1,2) and S

′
(K1,3) is shown in Table 5.

n x x1 x2 x3 y y1 y2 y3
2 −1 −2 -3 2 1 3
3 −1 −2 -3 -4 2 1 3 4

Table 5.
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Suppose f is a pair difference cordial labeling of S
′
(K1,n), n > 3 . Obviously

∆f1 ≤ 4. Then ∆c
f1
≥ q − 4. This implies that ∆c

f1
≥ 3n− 4. Hence ∆c

f1
−∆f1 ≥

3n− 8 > 1 , a contradiction.
�

6. Conclusions

In this paper, we have studied about the pair difference cordility of Mirror
graph,Splitting graph,Shadow graph of some graphs.Investigation of the pair differ-
ence cordility of Mirror graph,Splitting graph,Shadow graph of some special graphs
are the open problems.
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