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Abstract

In this paper, two fast methods are proposed for computation of mean and variance of a random variable
which is logarithm of two log-normally distributed random variables. It is shown that mean and variance
can be computed using only one dimensional numerical integration method. The speed of the proposed
algorithms is compared with the baseline algorithm. Simulation results showed that the first proposed
method decreases the execution time by an average of 43.98 %. Simulation results also showed that the
second proposed method is faster than the first proposed method for the variances greater than 0.325.

Keywords: Sum of log-normally distributed random variables, Parallel model combination, Numerical
integration, Robustness.

İki Bağımsız Log-Normal Dağıtılmış Rastgele Değişkenin Toplamının Logaritması
Olan Rastgele Değişkenin Parametrelerinin Hızlı Hesaplanması

Öz

Bu çalışmada, iki log-normal dağılımlı rasgele değişkenin logaritması olan rasgele değişkenin ortalama ve
varyansını hesaplamak için iki hızlı metot sunulmuştur. Ortalama ve varyansın sadece bir boyutlu
nümerik integral metodu ile hesaplanabileceği gösterilmiştir. Önerilen algoritmanın hızı temel
algoritmanın hızı ile karşılaştırılmıştır. Benzetim sonuçları önerilen ilk yöntemin çalışma zamanını
ortalama %43,98 azalttığını göstermiştir. Benzetim sonuçları ayrıca önerilen ikinci metodun 0,325’ten
büyük varyanslar için birinci yöntemden daha hızlı olduğunu göstermiştir..

Anahtar Kelimeler: Log-normal dağılımlı rasgele değişkenlerin toplamı, Paralel model kombinasyonu,
Nümerik integral, Gürbüzlük
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1. INTRODUCTION

The parameters of a random variable that
represents the log of sum of two log-normally
distributed random variables, are required to be
estimated for some signal processing applications.
These parameters can be used for estimating the
distribution of sum of log normally distributed
random variables [1,2], and for the Parallel Model
Combination (PMC) [3-6] which is our main case
for developing the methods proposed in this paper.

The sum of log-normal random variables has
applications in many fields such as
telecommunication [1,7,8], financial modelling [9],
physics [10], and so forth. Many techniques have
been developed for estimating distribution of sum
of log-normally distributed random variables [1,2,
7,8]. Schwartz-Yeh [1] method and the method
proposed in [2] need to use parameters of log of
sum of log-normally distributed random variables.
Therefore, methods proposed in this paper for
estimating the parameters of the log of sum of two
log-normally distributed random variables can be
used for estimating the distribution of sum of log-
normally distributed random variables [1,2].

The PMC is a technique for estimating the noisy
speech models using the noise and clean speech
models. Noise severely degrades the performance
of speech recognition systems [11]. The PMC is
one of the most effective techniques used for
speech recognition under noisy conditions. In
PMC, the noisy speech model parameters are
estimated using the clean speech models and noise
model. Estimating the noisy speech model
parameters is almost the same as estimating the
parameters of a random variable which is obtained
by taking the logarithm of the sum of two log-
normally distributed random variables. Therefore,
the method proposed in this paper can be used as a
part of numerical integration based PMC.

There are three different PMC techniques which
are log-normal approximation [3], data-driven
approach [4,5] and numerical integration [6]. The

numerical integration technique estimates the
noisy speech model parameters with the highest
accuracy among the other PMC methods but
demands the highest computation time. In this
paper, we propose two new fast methods which
can be used in PMC, for estimating the parameters
(mean and variance) of logarithm of random
variable which is obtained by adding two log-
normally distributed random variables. Numerical
integration-based PMC method is explained in [6],
however, the accuracy of the estimated parameters
and computational complexity of the numerical
integration method are not discussed in this paper.
In this paper, we discuss the accuracy and
computational complexity of the proposed
numerical integration methods.

2. ADDING TWO LOG-NORMALLY
DISTRIBUTED RANDOM
VARIABLES

Let 𝑺𝒊and 𝑵𝒊 be two independent Gaussian random
variables with means 𝝁𝒔𝒊 , 𝝁𝒏𝒊 and variances 𝝈𝒔𝒊,
𝝈𝒏𝒊, respectively. We define a new random
variable 𝑶𝒊 such that

   log 1i i iS N X
i iO e e S log e     (1)

where Xi=Ni-Si. 𝑋𝑖 is also a Gaussian random
variable with mean μXi

=μni
-μsi

and variance
σXi

2 =σni
2 +σsi

2 since 𝑆𝑖 and 𝑁𝑖 are Gaussian random
variables. We want to compute the mean and
variance of the random variable 𝑂𝑖 . There is no
closed form of solution for mean and variance.
Two dimensional numerical integration can be
used to compute mean and variance. However,
dimension of integration can be reduced to one as
follows. Let us drop the index 𝑖 for the sake of
simplicity. The mean is

X
o sμ =μ +E log(1+e )   (2)

The variance is;
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 22 X 2
o oσ =E S+log(1+e ) -μ 

  

   22 X X
s s=σ +E 2 S-μ log(1+e )+ log(1+e ) 

  

 2X- E log(1+e )   (3)

   22 2 X X
s x=σ +E 2ρ μ -X log(1+e )+ log(1+e ) 

  

 2X- E log(1+e )  

where
  x s s

x s x

E X-μ S-μ -σ
ρ= =

σ σ σ
  

3. COMPUTING THE MEAN AND
VARIANCE USING GAUSS-
HERMITE QUADRATURE

If the function f(x) is well approximated by a
polynomial of order 2N-1, then Gauss-Hermite
quadrature is a good estimate of the integral

∫ f(x)e-x
2+∞

-∞ .

   2

1

N
x

i i
i

f x e w f x






 (4)

In this case where 𝑥𝑖 and 𝑤𝑖 are Gauss-Hermite
abscissa and weights, respectively [12] and 𝑁 is
the number of abscissa and weights used. It is
known that if 𝑥𝑖 is an abscissa then −𝒙𝒊 is also an
abscissa [12]. This property of abscissa reduces the
number of exponents by almost a factor of two
since 𝑒𝑥𝑖 = 1 𝑒−𝑥𝑖⁄ . The accuracies of 𝜇 and 𝜎

2

which are computed using Equation 4 depend on
how well the function 𝑓(𝑥) is approximated by a
polynomial of order 2𝑁-1. In order to compute 𝜇
and 𝜎

2 using Equation 4, We need to compute the
following expectations:

  2

21
(1 )

x x x

X x
log e

E log e e dx
 









     (5)

 
  x x

2

2
μ + 2σ x

+
2X -x

-

log 1+e
E log(1+e ) = e dx

π





 
    (6)

and

 
 x x

2

μ + 2σ x+
X -x

x x
-

log 1+e2E X-μ log(1+e ) = σ x e dx
π π





    (7)

Computations of exponents and logarithms
demand most of the computation time in
computing 𝜇 and 𝜎

2 using Gauss-Hermite
quadrature. Therefore, we consider comparing
only the number of exponents and logarithms. In
order to compute 𝜇 and 𝜎

2 using Equations 2-7
with 𝑁 abscissa, computations of 𝑁 logarithms,
and (⌊N/2⌋+1) exponents are required, where⌊𝑥⌋ is
the floor of 𝑥. In this paper, the algorithm which
uses Equations 2-7 to compute 𝜇 and 𝜎

2 is
referred as the baseline method.

3. FAST COMPUTATION OF MEAN
AND VARIANCE

In this paper, two methods for fast computation of
the mean (μo) and variance (σo

2) are proposed. The
first method is based on approximating the
function log (1+ex) for computing mean and
variance using Gauss-Hermite quadrature. The
latter method is based on approximating the
functions log (1+ex), (log (1+ex))2, and the
complementary error function erfc(x) for
computing 𝜇 and σo

2.

We need to decide on the error criterion for
approximating these functions. In this paper,
maximum relative error is minimized to find
approximate expressions for these functions. If f(x)
is the function and fመ(x) is the approximation of
f(x), then the relative error is defined as

   
 

ˆf x f x
f x


(8)

log (1+ex) can be approximated as
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1 1

(1 )    0
K K ix ix x

i i
i i

log e a e a e for x
 

     (9)

where a୧'s are chosen to minimize the error for the
given criteria, and K is the number of coefficients.
One exponent, one logarithm and one addition are
needed to compute log (1+ex). However, the
number of arithmetic operations can be replaced
by one exponent, ൫K-1൯ additions, an 2(K-1)d
multiplications using equation (9). For x>0,
 log (1+ex) can be computed using the equality
log (1+ex)=x+log (1+e-x). Similarly, [log (1+ex)]2

can be approximated as

M2x ix
i

i=2

log(1+e ) b e             for x 0     (10)

where b୧'s are chosen to minimize the error for the
given criteria, (M − 1) is the number of
coefficients. erfc(x) can be approximated using

  2
R

x i
i

i 1

erfc x e c t              for x 0



  (11)

where t= 1
1+ax

and R is the number of coefficients.
a, and c୧'s are chosen to minimize the error
between erfc(x) and the approximation of erfc(x)
for the given criteria. erfc(x) can be computed
using erfc(x)=2- erfc൫-x൯ for x≤0. For all the
functions that were approximated, maximum
relative error is minimized, and Parks-McClellan
[13] algorithm is used to find the approximations
of these functions. Table I shows the maximum
relative approximation errors in percentage for 3,
4, 5 and 6 coefficients for the functions  log (1+ex),
(log (1+ex))2, and erfc(x).

Table 1. Maximum relative approximation errors
in percent

#of coefficients 3 4 5 6
xlog(1 e ) 0.283 0.039 0.006 0.0008

2xlog(1 e )   0.948 0.152 0.024 0.0039

 erfc x 0.237 0.053 0.009 0.0017

4.1. Fast Computation of Mean and Variance
Using Gauss-Hermite Quadrature

The baseline method requires computations of N
logarithms, and (⌊N/2⌋+1) exponents for
computing µo and σo

2 where N is the number of
abscissa. These (⌊N/2⌋+1) exponents, and
N logarithms can be replaced by only (⌊N/2⌋ + 1)
exponents by approximating the log ቀ1+eμx+√2σxxቁ
using Equation 9. This approximation significantly
reduces computational complexity. We call this
algorithm as fast version of Gauss-Hermite
quadrature (fast version of baseline) method for
computing µo and σo

2 in this paper.

4.2. Fast Computation of Mean and Variance
by Approximating the Functions

Gaussian-Quadrature method approximates the
integral. However, in this section, we propose to
approximate the functions for fast computation of
mean and variance. In order to compute µo and σo

2,
we need to compute expected values of
ൣ൫X-µx൯log (1+eX)൧, log (1 + ex), and (log (1 +
ex))2. Approximate values of these expected
values can be computed as follows. We assume
µx ≤ 0 for the sake of simplicity.

  X
xE X μ log(1 e )   

 x x
2

μ 2σ x

x
x

log 1 e2σ x e dx
π π











  (12)

2
x
2
x

2 2
x x

μ R K R0.5
σ i i

i 0 k i k
i 1 k 1 i 12

x
2K

0.5k σ kμ x x
k

k 1 x

e c t ka c t
0.5σ

μ kσ
ka e erfc

2σ



  





         
  
   
  

  



where
i

2
i x x
k

x

-μ +kσ
t =1/ 1+a

2σ

  
      

.  erfc x   can be

computed using Equation 11.
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 x x
2

μ + 2σ x+
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-

log 1+e
E log(1+e ) = e dx

π





   

 x x
2

x

x

μ - 2σ x+
-x

μ
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π
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x
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where yK = ቀµx+Kσx
2

√2σx
ቁ. Computation of logarithm

and exponent of a number using a computer takes
a long time compared to addition, multiplication
and division of numbers. Despite many additions,
multiplications and divisions are used, only three

exponents ൭eμx,  e0.5σx
2,  and e

-0.5
μx

2

σx2൱ are used for

computing µo and σo
2 in the method proosed in this

section. Therefore, the method proposed in this
section could demand less computation time
compared to the Gauss-Hermite Quadrature
method. We call the method proposed in this
section as the second proposed method.

The method proposed in this section has an
advantage and a disadvantage over the baseline or
the fast version of the baseline method. The
advantage is that, the percent relative error in σo

2

does not increase as σx
2 increases for the given

number of coefficients used to compute σo
2  and µo

using the method proposed in this section unlike
the baseline or the fast version of baseline method.

The disadvantage is that, there are subtractions in
computing σo

2  and µo using the method proposed
unlike the baseline method or fast version of the
baseline method. When we subtract one number
from the other that are close to each other, there
will be loss of significance [14]. When the value of
σx

2 is small, there will be subtraction of one
number from the other that are close to each other.
Therefore, the relative error will increase
substantially due to the loss of significance, when
the value of σx

2 is small. As a result, for small
values of σx

2, we may need to use more coefficients
to keep the relative percent error under a
prescribed value if we use the method described in
this section. However, a few abscissa will be
enough for computing σo

2  and µo for small values
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of σx
2 using the baseline method or fast version of

baseline method. Experimental results which
discuss these will be given in the next section.

5. EXPERIMENTAL RESULTS

Accuracy for both proposed methods and the
baseline method depends on the parameters
σx

2  and µx. Therefore, we must decide on ranges
of σx

2  and µx. We must also decide on the
maximum acceptable errors for σo

2  and µo. In this
paper, the speeds of the proposed methods and
baseline method were compared for 0 < σx

2 ≤
1000, −100 ≤ µx ≤ 0, and the maximum relative
error in σo

2 less than 1%.

Since we use numerical integration method to
compute the parameters, it is not possible to
compute the exact values of the parameters.
Consequently, we must decide on the error. The
percent relative error criterion is used in the
experiments. 100 ቀσෝ2−σ2

σ2 ቁ gives the percent error
for variance where σ2 is the true variance and σෝ2 is
the computed variance. However, percent error
criterion is not appropriate for the mean since the
value of mean could be zero. 100 ቀµෝ−µ

σ
ቁ could be a

good criterion for the mean where µ is the true
mean and µො is the computed mean. Experimental
results showed that when the error criterion for
variance is satisfied, the error criterion for mean
will also be satisfied. Therefore, we consider to

satisfy only the error criterion for variance. After
setting these error criteria, we can compare the
computational complexity of the proposed
methods and the baseline method.

Since the number of additions, subtractions and
multiplications depend on the values of µx, and σx

2,
it is not easy to compare computational complexity
of the proposed methods and baseline method.
Therefore, we executed the baseline algorithm and
the proposed algorithms for estimating the
parameters for 1000 × 1000 times on a computer
with an intel i7 860 CPU without parallelizing the
algorithm, and compared the execution time. To do
this, the ranges of µx and σx

2 were divided into
1000 equally spaced values and for each value of
µx the algorithm were run for these 1000 different
σx

2 values.

We run an experiment to compare the execution
time of baseline method and fast version of
baseline method. Figure 1 shows the percent
decrease in execution time for the fast version of
baseline algorithm over the baseline algorithm for
the number of abscissa from 3 to 190. We set the
number of coefficients K as 5 for approximating
log (1+eX). There are 31.19% and 44.75%
decreases in execution time for 3 and 190
coefficients, respectively. The average (over all
coefficients) decrease in execution time
is 43.98%.

Figure 1. Number of coefficients versus percent decrease in execution time
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We run an experiment to analyze the execution
time compared to the number of coefficients.
Figure 2 shows normalized execution time versus
number of abscissa. The normalized execution
time increases as the number of abscissa increase
as expected since the number of exponents which
demand most of execution time increases linearly
as the number of abscissa increases.

Figure 2. Number of coefficients versus
normalized execution time for the fast
version of baseline method

We run an experiment to find the maximum value
of variance σx 

2 that makes the maximum relative
percent errorin σo

2 less than one. The main effects
on the error are the values of σx

2, and µx for both
baseline method and fast version of baseline
method. We approximate log (1+eX) for the fast
version of baseline method. Since the
approximation error for  log (1+eX) is very small
(less than 0.00567% for K=5) the percent relative
errors for both baseline and fast version of baseline
method are almost same for the given σx

2 value,
µx value, and number of abscissa. Figure 3 shows
number of coefficients versus variance (σx

2) that
makes the maximum relative percent error in
σo

2 less than 1 when -100≤μx≤0. Similarly, Figure
4 shows number of coefficients versus variance
(σx

2) that makes the maximum relative percent
error in σo

2 less than 1 when -10≤μx≤0. From these

figures, we can conclude that both σx
2 and µx have

significant effects on the number of abscissa that
keeps the relative percent error under one. The
ranges of µx are from -100 to 0 for Figure 3 and
from -10 to 0 for Figure 4. We can observe from
Figure. 3 and Figure 4 that less coefficients are
needed to keep the maximum relative percent error
in σo 

2 under one when the range of µx is small. We
can also conclude from Figure 3 and Figure 4 that
the execution time increases as the variance (σx

2)
increases since more coefficients are needed to
keep the relative percent error in σo

2 less than 1 for
large values of σx

2.

Table 2 shows the same information for Figure 3
and Figure 4 in terms of number of abscissas from
2 to 11 in addition to the normalized time for the
fast version of baseline method.  The first column
shows the number of abscissa, second column
shows the maximum variance value that keeps the
percent error in σo

2 under 1 for −100 ≤ µx ≤ 0 for
the given number of abscissa. Similarly, the third
column shows the maximum variance value that
keeps the percent error in σo

2 under one for−10 ≤
µx ≤ 0 for the given number of abscissa. The last
column shows the normalized execution time for
the given number of abscissa.

Figure 3. Variance σx
2 versus number of

coefficients for (−100 ≤ µx ≤ 0), and
relative error inσo

2 less than 1% for the
fast version of baseline method.
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Figure 4. Variance σx
2 versus number of

coefficients for (−10 ≤ µx ≤ 0), and
relative error inσo

2 less than 1% for the
fast version of baseline method

We used 3, 4, and 5 coefficients for
approximations of log (1 + ex), (log (1 + ex))2,
and erfc(x), respectively for computation of σo 

2

and µo using the second proposed method. These

coefficients are given in Table III. Finally, we run
an experiment to see the speed and accuracy of the
second proposed method. We measured the
normalized execution time as 1.873 for this
method. The good thing about the second proposed
method is that the normalized execution time does
not increase (1.873 seconds) as the variance σx

2

increases unlike the baseline and the fast version of
baseline methods. The experimental results
showed that the percent error in σo

2 is less than 1
when σx

2 > 0.325 and −100 ≤ µx ≤ 0. From
these results we realize that the fastest method
which keeps the percent error in σo

2 less than one is
the second proposed method for computing σo

2 and
µo for−100 ≤ µx ≤ 0 and σx

2 > 0.325. The
fastest method is the fast version of baseline
method for σx

2 ≤ 0.325 as seen from Table II. The
fast version of baseline method that uses 2, 3, 4,
and 5 abscissa will be the fastest method for
σx

2 ≤ 0.008, 0.008 ≤ σx
2 ≤ 0.144, 0.144 ≤ σx

2 ≤
0.438, and 0.438 ≤ σx

2 ≤ 0.830, respectively for
−100 ≤ µx ≤ 0 as seen from Table II.

Table 2. Number of coefficients versus variances (σx
2) and normalized execution time for fast version of

baseline method that keeps the relative percent error in σo
2 less than one

Functions Index Coefficients

log(1+ex)

1 0.9971742202972404545136

2 -0.4437795339412708983673

3 0.1417111754378272969746

[log(1+ex)]2

2 0.9984854111176986179999

3 -0.9510743713797964460355

4 0.6370018861419275424396

5 - 0.204687600754972720551

erfc(x)

1 0.3179095096078142779206

2 0.3202728919600088541841

3 0.2377829824350161658231

4 0.2941637083449997192020

5 -0.1702177063239194154676

a 0.56353
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Table 3. Coefficient values for approximation log (1 + ex), [log (1 + ex)]2, and erfc(x) which are used
for the experiments

# of coef-ficients Variance (σx
2)

(−100 ≤ µx ≤ 0)
Variance (σx

2)
(−10 ≤ µx ≤ 0) Normalized time

2 0.008 0.008 1.0
3 0.144 0.144 1.231
4 0.438 0.438 1.531
5 0.830 0.832 1.723
6 1.282 1.291 2.023
7 1.773 1.819 2.208
8 2.292 2.659 2.554
9 2.835 3.395 2.777
10 3.397 4.199 3.385
11 4.574 5.096 3.331

6. CONCLUSIONS

Two new fast methods were proposed to compute
the mean and variance of the logarithm of a
random variable which is obtained by adding two
log-normally distributed random variables. It is
shown that the first proposed method which is
called the fast version of baseline method is the
fastest method for σx

2 ≤ 0.325 and −100 ≤ µx ≤
0, and the second proposed method is the fastest
method for σx

2 ≥ 0.325 and −100 ≤ µx ≤ 0
which keeps the percent errors in σo

2 under one. In
addition to this, the execution time for the second
proposed method does not increase as the variance
σx

2 increases unlike the baseline and the fast
version of baseline method. The future work could
be exploring fast algorithms for computing the
covariance between the random variables which
are logarithm of random variables obtained by
adding two log-normally distributed random
variables.
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