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Abstract
In this article, we study Codazzi-couples of an arbitrary connection ∇ with a nondegen-
erate 2-form ω, an isomorphism L on the space of derivation of ρ-commutative algebra
A, which the important examples of isomorphism L are almost complex and almost para-
complex structures, a metric g that (g, ω, L) form a compatible triple. We study a statisti-
cal structure on ρ-commutative algebras by the classical manner on Riemannian manifolds.
Then by recalling the notions of almost (para-)Kähler ρ-commutative algebras, we gener-
alized the notion of Codazzi-(para-)Kähler ρ-commutative algebra as a (para-)Kähler (or
Fedosov) ρ-commutative algebra which is at the same time statistical and moreover define
the holomorphic ρ-commutative algebras.
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1. Introduction
The notion of statistical manifolds was introduced by S. L. Lauritzen [12] in 1980s and

created a new field research that is called information geometry. Information geometry
is a greatly absorbing limb of science, considered as a combination of differential geome-
try and statistics, actually it make some objects of differential geometry such as metric,
connection and geodesics combine to statistical ones. Statistical structures to information
geometers are characterized by the Codazzi-couple of (∇, g) [1, 17,19].
In 1930 Schouten and Dontzing introduced the concept of complex structure and a Her-
mitian metric in a differentiable manifold and called it a complex manifold. In 1933 [11],
Kähler add a new notion named Kählerian structure on a complex manifold. Later, H.
Furuhuta [10] defined and studied a structure on the statistical manifolds which is con-
sidered as a Kähler structure with a certain conditions that is called the holomorphic
statistical manifold. Statistical manifolds with almost complex structures (with almost
contact structures) and its statistical submersions are studied by Tanako in [20, 21]. As
a special case, Hessian manifolds (for which ∇ is flat but not Levi-Civita) are the affine
analogue of Kähler manifolds, see [4,18]. Also, interaction of Codazzi-Couples with (Para-
)Kähler Geometry was raised by Teng and Zhang in [9].
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The concept of non-commutative geometry was formed by replacing the algebra of smooth
functions on a smooth manifold with an abstract associative algebra. In non-commutative
geometry, the element that plays a key role is the extension of the concept of differen-
tial forms to manifolds. (see [7, 8, 13, 14, 16], for instance). ρ-commutative algebras are
a key element in non-commutative geometry because by replacing this algebra with the
algebra of smooth functions on a manifold, many geometric objects can be generalized
to these algebras. Bonggarts and Pijls introduced ρ-commutative algebras at the first
time (see [3]) and differential structures and ρ-derivations were defined on these algebras.
A G-graded algebra A with a given cocycle ρ will be called ρ-commutative iff [, ]ρ = 0
i.e., fg = ρ(|f |, |g|)gf for all homogeneous elements f and g in A (see [2] for more de-
tails). These types of algebras are interesting objects and have been in the focus of several
authors, including C. Ciupala and F. Ngakeu who studied and defined other geometric
objects on these algebras such as linear connections, differential forms, metrics, curvature,
Ricci tensor (see [5, 6, 15]). These algebras have also been mentioned with titles such as
almost commutative algebras, graded commutative algebras, colour algebras and Γ-graded
algebras.

The aim of this paper is the generalization of the geometry objects on ρ-commutative al-
gebras and discuss about some notions such as statistical structure, Codazzi-(para-)Kähler
ρ-commutative algebras, Kähler statistical structure and holomorphic statistical structure.

This paper is arranged as follows. Section 2 is devoted to a summary of some pre-
vious developments on ρ-commutative algebras. The core of the paper is contained
in Section 3 where we investigate the interaction of an arbitrary connection ∇ with
three geometric structures on A, namely, a nondegenerate 2- form ω, an isomorphism
L : ρ−DerA −→ ρ−DerA and a metric g and we introduce the notion of a statistical
ρ-commutative algebras as a triple (A, ∇, g) where A is a ρ-commutative algebra and ∇ is
a torsion free connection such that (∇, g) is Codazzi-couple. The study of statistical cur-
vature and its properties is also included in this section. Also, we introduce g-conjugation
∇∗, ω-conjugation ∇†, L-gauge transformation ∇L of ∇ and investigate the Codazzi-
couple of (∇∗, g), (∇L, L). We show that (id, ∗, †, L) acts as the 4-element Klein group.
At we deduce that Codazzi-couple of ∇ with both g and L gives rise to a (para-)Kähler ρ-
commutative algebra. Section 4 is fully devoted to Codazzi-(para-)Kähler ρ-commutative
algebras. We have tried to collect some of the definitions and formulas in almost complex
ρ-commutative algebras or Kähler ρ-commutative algebras, then we introduce the Kähler
statistical ρ-commutative algebras. In Section 5, holomorphic statistical ρ-commutative
algebras are introduced and it is shown that Kähler statistical ρ-commutative algebra
(A, ∇, g, J) is a holomorphic statistical ρ-commutative algebra.

2. Statistical ρ-commutative algebras
In this section we proceed with the study of statistical ρ-commutative algebra. Let

(A, g) be a metric ρ-commutative algebra and ∇ be a connection on A. We denote by ∇̂
the Levi-Civita connection of g.

Let ρ-DerA =
⊕

a∈G ρ-DerAa be the ρ-Lie algebra of ρ-derivations of a ρ-commutative
algebra A and L : ρ-DerA −→ ρ-DerA be an isomorphism. Almost complex structures
and almost para-complex structures are the most important examples of the isomorphism
on ρ-DerA (refer to [2] for an introduction to the almost complex structures and almost
para-complex structures, Kähler and para-Kähler ρ-commutative algebra and related con-
cepts of them). We denote by J and K almost complex structures and almost para-complex
structures, respectively, and use L when these two structures can be treated in a unified
way. We say that g is compatible with L (either J or K) if g(LX, LY ) = g(X, Y ) or
g(X, LY ) + g(LX, Y ) = 0, for any X, Y ∈ ρ-DerA. We define 2-covariant tensor ω by
ω(X, Y ) = g(LX, Y ). One check that ω satisfies ω(X, LY ) + ω(LX, Y ) = 0, for any
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X, Y ∈ ρ-DerA. If we start with ω, we can define g by g(X, Y ) = ω(L−1X, Y ). The three
structures (g, ω, L) form a compatible triple when each structure can be specified by the
two others. We define a new connection ∇L by L-gauge transformation as follows

∇L
XY = L−1(∇X(LY )). (2.1)

Definition 2.1. (∇, L) is called Codazzi-couple if the following condition holds
ρ(X, Y )(∇XL)Y = (∇Y L)X, ∀X, Y ∈ Hg(ρ-DerA). (2.2)

Proposition 2.2. The following assertions are equivalent
i) (∇, L) is Codazzi-couple.
ii) The torsions of ∇ and ∇L are equal.
iii) (∇L, L−1) is Codazzi-couple.

Proof. Let (i) holds. Since (∇, L) is Codazzi-couple, then ρ(X, Y )(∇XL)Y = (∇Y L)X.
Hence

0 = L−1(ρ(X, Y )(∇XL)Y − ρ(X, Y )ρ(Y, X)(∇Y L)X)
= L−1(∇X(LY ) − L∇XY − ρ(X, Y )(∇Y (LX) − L∇Y X))
= L−1∇X(LY ) − ρ(X, Y )L−1(∇Y (LX)) − ∇XY + ρ(X, Y )∇Y X − [X, Y ] + [X, Y ]
= ∇L

XY − ρ(X, Y )∇L
Y X − [X, Y ] − (∇XY − ρ(X, Y )∇Y X − [X, Y ])

= T L(X, Y ) − T (X, Y ).

So T L(X, Y ) = T (X, Y ). Therefore (i) and (ii) are equivalent. The rest is proved in a
similar way. □
Corollary 2.3. Consider isomorphism L (either J or K). Then

i) ∇L = ∇L−1 (i.e (∇L)L = ∇)),
ii) (∇, L) is Codazzi-couple if and only if (∇L, L) is Codazzi-couple.

Definition 2.4. The pair (∇, g) consisting of a connection ∇ and a metric g is called
Codazzi-couple if the following identity holds

ρ(X, Y + Z)(∇Xg)(Y, Z) = ρ(Y, X + Z)ρ(X, Y )(∇Y g)(X, Z) = (∇Zg)(X, Y ), (2.3)
for any X, Y, Z ∈ Hg(ρ-DerA). Set C(X, Y, Z) = ρ(X, Y + Z)(∇Xg)(Y, Z), where C is
a 3-covariant-tensor that is called cubic form associated to the pair (∇, g). Clearly C is
totally symmetric in all of it’s indices, that is

C(X, Y, Z) = ρ(X, Y )C(Y, X, Z);
C(X, Y, Z) = ρ(Y, Z)C(X, Y, Z);
C(X, Y, Z) = ρ(X + Y, Z)C(Z, X, Y );
C(X, Y, Z) = ρ(X, Y )ρ(X + Y, Z)C(Z, Y, X).

Definition 2.5. The pair (∇, g) is called a statistical structure on A if it is Codazzi-couple
and the connection ∇ is torsion free. If (∇, g) is a statistical structure on A then the triple
(A, ∇, g) is called statistical ρ-commutative algebra.
Example 2.6. Consider the extended hyperplane A2

q := ⟨1, x, y, x−1, y−1, xy = qyx⟩. It
is a Z × Z-graded ρ-commutative algebra, with

ρ(n, n′) = q
∑n

j,k=1 njn′
kαjk ,

where αjk = 1 if j < k, 0 if j = k and −1 if j > k. ρ-DerAq
2 is the Aq

2-bi-module generated
by ∂

∂x and ∂
∂y , and Ω1(A) is generated by dx, dy, such that dxj( ∂

∂xi
) = ∂

∂xi
(xj) = δi,j ,

| ∂
∂xi

| = −|xi|, |x−1
i | = −xi and |dxi| = |xi|, where x1 = x and x2 = y. Now we consider

g = dx ⊗ dxg11 + (dx ⊗ dy + qdy ⊗ dx)g12 + dy ⊗ dyg22,
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where g11 = 0, g12 = x−1y−1, g22 = 0. Thus we can see g is a homogeneous metric on A2
q (of

degree (0, 0)) if and only if D = −x−2y−2 is invertible. Considering g̃mk := ρ(xm, xk)gmk,
we have

(g̃mk) =
(

0 qx−1y−1

x−1y−1 0

)
,

and
(g̃mk) = (g̃mk)−1 =

(
0 q−1xy

q−2xy 0

)
.

Now, we compute the ρ-Christoffel coefficient Γ̂t
ij of G-degree |Γ̂t

ij | = |xt| − |xi| − |xj | of
Levi-Civita connection. By the ρ-symmetry property of g, we have

g21 = g( ∂

∂x
,

∂

∂y
) = ρ( ∂

∂x
,

∂

∂y
)g( ∂

∂y
,

∂

∂x
) = qg12,

and, by torsion-free condition we can find Γ̂t
ij = ρ(xi, xj)Γ̂t

ji. So, we have

Γ̂2
11 = Γ̂2

21 = Γ̂2
12 = Γ̂1

22 = Γ̂1
12 = Γ̂2

12 = 0.

We have also Γ̂2
22 = −q2y−1, Γ̂1

11 = −x−1. Now, we find all connections ∇ such that (∇, g)
is a statistical structure. (2.3) for any X, Y, Z ∈ Hg(ρ-DerA2

q) gives us

(1) − x−2y−1 − Γ2
12 − q2Γ1

11x−1y−1 = −2qΓ2
21x−1y−1

= −x−2y−1 − Γ1
11x−1y−1 − Γ2

12x−1y−1,

(2) − 2qΓ1
12x−1y−1 = −q3x−1y−2 − q−2Γ1

22x−1y−1 − Γ2
22x−1y−1,

(3) − qx−1y−2 − Γ2
22x−1y−1 − Γ1

21x−1y−1 = −2q−1Γ1
12x−1y−1,

(4) − qx−2y−1 − qΓ1
11x−1y−1 − qΓ2

12x−1y−1 = −2q2Γ2
21x−1y−1,

(5) − 2Γ2
21x−1y−1 = −q−1x−2y−1 − q−1Γ2

12x−1y−1 − qΓ1
11x−1y−1,

(6) − q2x−1y−2 − qΓ1
21x−1y−1 − q−1Γ2

22x−1y−1 = −2Γ1
12x−1y−1

= −q2x−1y−2 − qΓ2
22x−1y−1 − qΓ1

21x−1y−1.

The torsion-free condition gives us Γt
ij = ρ(xi, xj)Γt

ji. Using the formula (1), we get x−1 +
Γ1

11 = Γ2
12 and x−1 + q2Γ1

11 = Γ2
12, this equations give us q2 = 1 and then q = ±1. Let us

to assume that q = −1 and the other equalities imply

Γ1
11 = Γ2

12 − x−1, Γ2
22 = −Γ1

12 − y−1.

Γ1
22 = −y−1 − 2Γ1

12 − Γ2
22 = −y−1 − 2Γ1

12 + Γ1
12 + y−1 = −Γ1

12.

For any connection ∇, we denote the g-conjugate of ∇ by ∇∗ and define it for any
X, Y, Z ∈ Hg(ρ-DerA) by the following formula

X · g(Y, Z) = g(∇XY, Z) + ρ(X, Y )g(Y, ∇∗
XZ). (2.4)

It is easy to check that ∇∗ is involutive, i.e., (∇∗)∗ = ∇.

Lemma 2.7. ∇∗ is a connection on A and moreover (∇∗, g) is a statistical structure.

Proof. It is easy to see that ∇∗ is a connection. We show (∇∗, g) is a statistical structure.
For this, we have

g(Z, ∇∗
XY − ρ(X, Y )∇∗

Y X − [X, Y ]) = ρ(Z, X + Y )(∇Xg)(Y, Z)
− ρ(X + Z, Y )ρ(X, Z)(∇Y g)(X, Z)

= ρ(Z, X + Y )((∇Xg)(Y, Z)
− ρ(X, Y )(∇Y g)(X, Z)) = 0.
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So, T ∗(X, Y ) = ∇∗
XY − ρ(X, Y )∇∗

Y X − [X, Y ] = 0, that is ∇∗ is torsion free. Now, we
show that (∇∗, g) is Codazzi-couple. For this we have
ρ(X, Y + Z)(∇∗

Xg)(Y, Z) − ρ(Y, X + Z)ρ(X, Y )(∇∗
Y g)(X, Z) = X · g(Y, Z) − g(∇∗

XY, Z)
− ρ(X, Y )g(Y, ∇∗

XZ) − ρ(X, Y )Y · g(X, Z)
+ ρ(X, Y )g(∇∗

Y X, Z) + g(X, ∇∗
Y Z).

From (2.4), we obtain
ρ(X, Y + Z)(∇∗

Xg)(Y, Z) − ρ(Y, X + Z)ρ(X, Y )(∇∗
Y g)(X, Z)

= −ρ(X, Y + Z)(∇Xg)(Y, Z)
+ ρ(Y, X + Z)ρ(X, Y )(∇Y g)(X, Z)

= 0.

□
Using (2.3) and (2.4), we get

C(X, Y, Z) = ρ(X, Y )g(Y, (∇∗ − ∇)XZ). (2.5)
We can also find C∗(X, Y, Z) = −C(X, Y, Z). So C∗(X, Y, Z) = C(X, Y, Z) = 0 if ∇ = ∇∗,
that is ∇ is g-self-conjugate. A short calculation shows that

ρ(Y, X)C(X, Y, Z) − ρ(X + Y, Z)C(Z, Y, X) = g(Y, (T ∗ − T )(X, Z). (2.6)
So, C(X, Y, Z) = ρ(X, Y )ρ(X + Y, Z)C(Z, Y, X) if and only if T ∗ = T . Let us briefly
summarize the above discussion by the following proposition:
Proposition 2.8. The following assertions are equivalent

i) (∇, g) is Codazzi-couple;
ii) (∇∗, g) is Codazzi-couple;
iii) C is totally symmetric;
iv) C∗ is totally symmetric;
v) T ∗ = T .

Let us construct a family of connections {∇(α)}α∈R by the connections ∇ and ∇∗ as
follows

∇(α) = 1 + α

2
∇ + 1 − α

2
∇∗, (2.7)

with ∇(1) = ∇ and ∇(−1) = ∇∗. This connections is called α-connections.
Remark 2.9. For α-connections we have

i) (∇(α))∗ = ∇(−α),
ii) Cα(X, Y, Z) = αC(X, Y, Z),
iii) g(∇(α)

X Y, Z) = g(∇(0)
X Y, Z) − α

2 ρ(X, Z)C(X, Y, Z).

Note that, for the connections ∇ and ∇∗, ∇̂ = 1
2(∇ + ∇∗) is a Levi-civita connection.

Let (∇, g) be a statistical structure on A. We define on ρ-DerA a linear map K :
ρ-DerA −→ End(ρ-DerA) by

KXY = ∇XY − ∇̂XY, (2.8)
for any X, Y ∈ Hg(ρ-DerA). One can easily see that the linear map K satisfies the
following conditions

KXY = ρ(X, Y )KY X, g(KXY, Z) = ρ(X, Y )g(Y, KXZ), . (2.9)
We have also K = 1

2(∇ − ∇∗) = ∇̂ − ∇∗.
Remark 2.10. For a metric g on A, if a linear map K : ρ-DerA −→ End(ρ-DerA)
satisfies (2.9), then the pair (∇ := ∇̂ + K, g) is a statistical structure on A.
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Definition 2.11. Let (∇, g) be a statistical structure on A. The statistical curvature
tensor of (∇, g) is the map R : ρ-DerA × ρ-DerA −→ End(ρ-DerA) defined by

R(X, Y )Z = 1
2

{R(X, Y )Z − R∗(X, Y )Z},

where R and R∗ denote the curvature tensor of ∇ and ∇∗, respectively.

Definition 2.12. A statistical ρ-commutative algebra (A, ∇, g) is said to be of constant
statistical curvature c ∈ R if, for any X, Y, Z ∈ ρ-DerA the equality
R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y } holds.

Lemma 2.13. Let (∇, g) be a statistical structure on A and R be the statistical curvature
tensor of (∇, g). Then for any X, Y, Z ∈ Hg(ρ-DerA), we have

R̂(X, Y )Z = R(X, Y )Z − [KX , KY ]Z,

where R̂ is denoted for the curvature tensor of ∇̂ and K = ∇̂ − ∇∗.

Proof. By definition of R̂, we get

R̂(X, Y )Z = ∇̂X∇̂Y Z − ρ(X, Y )∇̂Y ∇̂XZ − ∇̂[X,Y ]Z

= 1
2

S(X, Y )Z − 1
4

{∇[X,Y ]Z + ∇∗
[X,Y ]Z}

− 1
4

ρ(X, Y ){∇Y ∇∗
XZ + ∇∗

Y ∇XZ} + 1
4

{∇X∇∗
Y Z + ∇∗

X∇Y Z}.

On the other hand, we have

[KX , KY ]Z = KXKY Z − ρ(X, Y )KY KXZ = 1
2

S(X, Y )Z + 1
4

{∇[X,Y ]Z + ∇∗
[X,Y ]Z}

+ 1
4

ρ(X, Y ){∇Y ∇∗
XZ + ∇∗

Y ∇XZ} − 1
4

{∇X∇∗
Y Z + ∇∗

X∇Y Z}.

Therefore

S(X, Y )Z − [KX , KY ]Z = 1
2

S(X, Y )Z − 1
4

{∇[X,Y ]Z + ∇∗
[X,Y ]Z}

− 1
4

ρ(X, Y ){∇Y ∇∗
XZ + ∇∗

Y ∇XZ} + 1
4

{∇X∇∗
Y Z + ∇∗

X∇Y Z}

= R̂(X, Y )Z.

□

Lemma 2.14. Let (∇, g) be a statistical structure on A. Then for any X, Y, Z, W ∈
Hg(ρ-DerA), we have

1) R(X, Y, Z, W ) = −ρ(X, Y )R(Y, X, Z, W ),
2) R∗(X, Y, Z, W ) = −ρ(X, Y )R∗(Y, X, Z, W ),
3) R(X, Y, Z, W ) = −ρ(Z, W )R∗(X, Y, W, Z),
4) ρ(Z, X)R(X, Y )Z + ρ(X, Y )R(Y, Z)X + ρ(Y, Z)R(Z, X)Y = 0,

5) ρ(Z, X)R∗(X, Y )Z + ρ(X, Y )R∗(Y, Z)X + ρ(Y, Z)R∗(Z, X)Y = 0,

where R(X, Y, Z, W ) = g(R(X, Y )Z, W ).
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Proof. We show the assertion (1) and the other equalities are just as easy to prove.
R(X, Y, Z, W ) = g(R(X, Y )Z, W ) = g(∇X∇Y Z, W )

ρ(X, Y )g(∇Y ∇XZ, W ) − g(∇[X,Y ]Z, W )
= −ρ(X, Y ){−ρ(Y, X)g(∇X∇Y Z, W )

+ g((∇Y ∇XZ, W ) + ρ(Y, X)g(∇[X,Y ]Z, W )}
= −ρ(X, Y )R(Y, X, Z, W ).

□
For the Levi-Civita connection ∇̂ and its curvature R̂, the above lemma is expressed in

the following:
(a) ρ(X, Y )R̂Y ZX + ρ(Y, Z)R̂ZXY + ρ(Z, X)R̂XY Z = 0 (Bianchi1),
(b) R̂(X, Y, V, W ) = −ρ(X, Y )R̂(Y, X, V, W ) = −ρ(V, W )R̂(X, Y, W, V ),
(c) R̂(X, Y, V, W ) = ρ(X + Y, V + W )R̂(V, W, X, Y ),

where R̂(X, Y, V, W ) := g(R̂XY V, W ), for any X, Y, Z, V, W ∈ Hg(ρ-DerA).

Lemma 2.15. Let R be the statistical curvature tensor of (∇, g). Then for any X, Y, Z, W
∈ Hg(ρ-DerA), we have
1) R(X, Y, Z, W ) = −ρ(X, Y )R(Y, X, Z, W ),
2) R(X, Y, Z, W ) = −ρ(Z, W )R(X, Y, W, Z),
3) ρ(Z, X)R(X, Y )Z + ρ(X, Y )R(Y, Z)X + ρ(Y, Z)R(Z, X)Y = 0,

where R(X, Y, Z, W ) = g(R(X, Y )Z, W ).

Proof. It is easy to show the above assertions by direct calculations. □

2.1. Codazzi-couple of ∇ with ω

Consider 2-form ω by ω(X, Y ) = g(LX, Y ). Let us define 3-covariant-tensor Γ by
Γ(X, Y, Z) = ρ(X, Y + Z)(∇Xω)(Y, Z).

It is clear that Γ(X, Y, Z) = −ρ(Y, Z)Γ(X, Z, Y ).

Definition 2.16. The pair (∇, ω) is Codazzi-couple if the following identity hold
ρ(X, Y + Z)(∇Xω)(Y, Z) = ρ(Y, X + Z)ρ(X, Y )(∇Y ω)(X, Z) = (∇Zω)(X, Y ). (2.10)

The relation (2.10) says that Γ(X, Y, Z) = ρ(X, Y )Γ(Y, X, Z) = ρ(X + Y, Z)Γ(Z, X, Y ).
So

Γ(X, Y, Z) = ρ(X + Y, Z)Γ(Z, X, Y ) = −ρ(X + Y, Z)ρ(X, Y )Γ(Z, Y, X)
= −ρ(X, Y + Z)Γ(Y, Z, X) = ρ(X, Y + Z)ρ(Y + Z, X)ρ(Y, Z)Γ(X, Z, Y )
= −ρ(Y, Z)ρ(Z, Y )Γ(X, Y, Z).

Thus 2Γ(X, Y, Z) = 0. Therefore Γ(X, Y, Z) = 0, that is ∇ω = 0.

Corollary 2.17. The Codazzi-couple of (∇, ω) follows that ∇ω = 0. If ∇ω = 0 and ∇ is
torsion-free, then dω = 0.

For any connection ∇, we define the ω-conjugate connection ∇† by
X · ω(Y, Z) = ω(∇XY, Z) + ρ(X, Y )ω(Y, ∇†

XZ). (2.11)

Lemma 2.18. For the ω-conjugate connection ∇†, we have
i) ∇† is a connection.
ii) (∇†)† = ∇.
iii) Γ†(X, Y, Z) = −Γ(X, Y, Z).
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Proof. (i) We check just one of the property of the connection. We show that
∇†

fXY = f∇†
XY . For this, we have

ρ(f + X, Y )ω(Y, ∇†
fXY ) = fX · ω(Y, Z) − fω(∇XY, Z)

= f · {X · ω(Y, Z) − ω(∇XY, Z)}

= ρ(X, Y )fω(Y, ∇†
XZ)

= ρ(f + X, Y )ω(Y, f∇†
XZ).

So, for all Y ∈ Hg(ρ-DerA) we have

ρ(f + X, Y )ω(Y, ∇†
fXY − f∇†

XZ) = 0.

Since ω is non-degenerate, therefore

∇†
fXY = f∇†

XZ.

(ii) We have
X · ω(Y, Z) = ω(∇†

XY, Z) + ρ(X, Y )ω(Y, (∇†)†
XZ).

Therefore

ρ(X, Y )ω(Y, (∇†)†
XZ) = X · ω(Y, Z) − ω(∇†

XY, Z)

= −ρ(Y, Z)X · ω(Z, Y ) + ρ(X + Y, Z)ω(Z, ∇†
XY )

= −ρ(Y, Z)ω(∇XZ, Y ) = ρ(X, Y )ω(Y, ∇XZ).

Since ω is non-degenerate, then (∇†)† = ∇.
(iii) This assertion can be proved directly by (2.11). We have

Γ†(X, Y, Z) = ρ(X, Y + Z)(∇†
Xω)(Y, Z) = X · ω(Y, Z) − ω(∇†

XY, Z) − ρ(X, Y )ω(Y, ∇XZ)
= −X · ω(Y, Z) + ω(∇XY, Z) + ρ(X, Y )ω(Y, ∇XZ)
= −ρ(X, Y + Z)(∇Xω)(Y, Z)
= −Γ(X, Y, Z).

□

Proposition 2.19. Consider ω, ∇, ∇† respectively as an any ρ-skew-symmetric 2-form, an
arbitrary connection and ω-conjugate of ∇. Then the following assertions are equivalent:

i) ∇ω = 0.
ii) ∇ = ∇†.
iii) T = T †.

In the following theorem, we show the relationship between ∇, ∇∗, ∇† and ∇L, where
denote respectively an arbitrary connection, g-conjugation, ω-conjugation and L-gauge
transformation of ∇.

Theorem 2.20. Let (g, ω, L) be a compatible triple. Then, we can realize (id, ∗, †, L) as
a 4-element Klein group action on the space of connections, that is

(∇∗)∗ = (∇†)† = (∇L)L = ∇;

∇† = (∇∗)L = (∇L)∗;

∇∗ = (∇†)L = (∇L)†;

∇L = (∇∗)† = (∇†)∗.
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Proof. By (2.11) and this fact that (∇†)† = ∇, we have

ω(∇†
XY, Z) = X · ω(Y, Z) − ρ(X, Y )ω(Y, ∇XZ)

= X · g(LY, Z) − ρ(X, Y )g(LY, ∇XZ)
= g(∇∗

X(LY ), Z) = g(L(∇∗)L
XY, Z)

= ω((∇∗)L
XY, Z).

Since ω is non-degenerate, then
∇† = (∇∗)L. (2.12)

If L-gauge transformation is applied to both sides of (2.12), we have

(∇†)L = ∇∗. (2.13)
The last equation holds because L is involutive. Substituting ∇∗ into ∇ in (2.13), we
arrive at the following formula

(∇∗)† = ∇L. (2.14)
□

From Proposition 2.19 and Theorem 2.13, we deduce that ∇ω = 0 if and only if ∇∗ =
∇L.
Actually, we can write ∇ω = 0 if and only if

∇∗
XY = ∇XY + ρ(X, Y )L−1((∇XL)Y ) = ∇XY + ρ(X, Y )L((∇XL−1)Y ).

Because by (∇L)L = ∇, we have
L−1((∇XL)Y ) = L((∇XL−1)Y ).

Definition 2.21. The Nijenhuis tensor associated with L is defined by the following
relation

NL(X, Y ) = L[X, LY ] + L[LX, Y ] − [LX, LY ] − L2[X, Y ]. (2.15)
When NL = 0, the operator L is said to be integrable.

Definition 2.22. An isomorphism L : ρ-DerA −→ ρ-DerA is said to be a quadratic
operator if there exists α, β ∈ C such that α + β and αβ are real numbers and

L2 − (α + β)L + αβ · id = 0.

The important examples of quadratic operators are complex structure J and para-complex
structure K.

Lemma 2.23. Let (∇, L) be the Codazzi-couple, where L is a quadratic operator. Then
NL(X, Y ) = L2T (X, Y ) − LT (X, LY ) − LT (X, Y ) − T (LX, LY ). (2.16)

Proof. Since (∇, L) is Codazzi-couple, then
ρ(X, Y )(∇XL)Y = (∇Y L)X.

Thus
∇X(LY ) − L∇XY − ρ(X, Y )∇Y (LX) + ρ(X, Y )L∇Y X = 0.

So
∇X(LY ) − ρ(X, Y )∇Y (LX) − L[X, Y ] = LT (X, Y ). (2.17)

Substitute X and Y by LY and LX respectively, we have
∇LY (L2X) − ρ(Y, X)∇LX(L2Y ) − L[LY, LX] = LT (LY, LX).

L is a quadratic operator, then L2 − (α + β)L + β · id = 0. Thus, we get
(α + β − L)[LY, LX] − αβ(∇LY X − ρ(Y, X)∇LXY ) = (L − α − β)T (LY, LX). (2.18)
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Using (2.17) and (2.18), we get the following relations:
αβL(∇X(LY ) − L∇XY − ρ(X, Y )∇Y (LX) + ρ(X, Y )L∇Y X) = 0

and
L(∇X(LY ) − ρ(X, Y )∇Y (LX) − L[X, Y ]) = L2T (X, Y ).

Summing the above two equations we obtain
αβ(NL(X, Y )) = αβ{L2T (X, Y ) − LT (X, LY ) − LT (LX, Y ) + T (LX, LY )}.

□
Remark 2.24. From the above lemma, we can deduce that the quadratic operator L,
which is Codazzi-couple with a connection ∇, is integrable if ∇ is torsion-free. The
converse of this corollary does not hold, because if ∇ is torsion-free and (∇, L) is Codazzi-
couple, then NL = 0 if (∇LXL)Y = L(∇XL)Y . But from (∇XL2) = 0, we get

(∇XL)(LY ) = L(∇Y L)X. (2.19)

From Remark 2.24 and Proposition 2.2, we have the following proposition

Proposition 2.25. If there exists a torsion-free connection ∇ such that ∇L is torsion-free,
then the quadratic operator L is integrable.

3. Codazzi-(Para-)Kähler ρ-commutative algebras
In this section, we introduce the notion of holomorphic statistical structure on A and

give some lemma and propositions to find some results.

Definition 3.1. [2] An almost complex connection on A is a ρ-linear connection ∇ such
that ∇J = 0.

Theorem 3.2. [2] Let (A, J, g) be an almost Hermitian ρ-commutative algebra and ∇̂ be
Levi-Civita connection. Then we have
2g(Z, (∇̂XJ)Y ) = dω(JZ, JY, X) − dω(Z, Y, X) + ρ(Z, Y )ρ(Y + Z, X)g(JX, NJ(Y, Z)),

∀X, Y, Z ∈ Hg(ρ-DerA).

Moreover, ∇̂ is the almost complex connection if and only if NJ = 0 and Kähler form ω
is closed (i.e., dω = 0).

Lemma 3.3. If ∇ is a torsion-free connection, then for all X, Y, Z ∈ Hg(ρ-DerA) we
have

dω(X, Y, Z) = ρ(X, Y + Z)∇Xω(Y, Z) + ρ(X + Y, Z)∇Y ω(Z, X) + ∇Zω(X, Y ). (3.1)

Proof. The proof of this lemma is straightforward. □
Theorem 3.4. Consider the following assumptions

i) (∇, g) is Codazzi-couple, where ∇ is a torsion-free connection and g is a metric.
ii) (∇, L) is Codazzi-couple, where L (either J or K) is compatible with g.

Then, (A, g, L) is a (Para)-Kähler ρ-commutative algebra.

Proof. Remark 2.24 follows that NJ = 0, thus it is enough to show that dω = 0. For this
we have
ρ(X, Y + Z)(∇Xω)(Y, Z) = X · ω(Y, Z) − ω(∇XY, Z) − ρ(X, Y )ω(Y, ∇XZ)

= X · g(LY, Z) − g(L∇XY, Z) − ρ(X, Y )g(LY, ∇XZ)
= ρ(X, Y + Z)(∇Xg)(LY, Z) + g(∇X(LY ), Z) − g(L∇XY, Z)
= ρ(X, Y + Z)(∇Xg)(LY, Z) + ρ(X, Y )g((∇XL)Y, Z)
= C(X, LY, Z) + ρ(X, Y )g((∇XL)Y, Z). (3.2)
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By Lemma 3.3 and (3.2), we get
dω(X, Y, Z) = C(X, LY, Z) + ρ(X, Y + Z)C(Y, LZ, X) + ρ(X + Y, Z)C(Z, LX, Y ) (3.3)

+ ρ(X, Y )g((∇XL)Y, Z) + ρ(X, Y + Z)ρ(Y, Z)g((∇Y L)Z, X) (3.4)
+ ρ(Y, Z)g((∇ZL)X, Y ),

and
dω(Z, Y, X) = C(Z, LY, X) + ρ(Z, X + Y )C(Y, LZ, X) + ρ(Y + Z, X)C(X, LZ, Y )

+ ρ(Z, Y )g((∇ZL)Y, X) + ρ(Z, Y + X)ρ(Y, X)g((∇Y L)X, Z)
+ ρ(Y, X)g((∇XL)Z, Y ).

Since C is totally ρ-symmetric, we get
dω(X, Y, Z) = ρ(X + Y, Z)ρ(X, Y )dω(Z, Y, X).

On the other hand, dω(X, Y, Z) = −ρ(X, Y )dω(Y, X, Z) = −ρ(Y, Z)dω(X, Z, Y ). So
dω(X, Y, Z) = ρ(X + Y, Z)ρ(X, Y )dω(Z, Y, X) = −ρ(X + Y, Z)dω(Z, X, Y )

= ρ(Y, Z)dω(X, Z, Y ) = −dω(X, Y, Z).
Therefore dω = 0. □
Theorem 3.5. Let ∇ be a torsion-free connection, g is a metric, L be either J or K and
(g, ω, L) a compatible triple. Then any two of the following statements imply the third

i) (∇, g) is Codazzi-couple.
ii) (∇, L) is Codazzi-couple.
iii) ∇ω = 0.

Proof. From (i) and (ii) to (iii): Setting α(X, Y, Z) = ρ(X, Y )g((∇XL)Y, Z). (2.19)
follows that

α(X, LY, Z) = α(X, Y, LZ). (3.5)
By (3.2), we get

ρ(X, Y + Z)(∇Xω)(Y, Z) = C(X, LY, Z) + α(X, Y, Z).
On the other hand ρ(X, Y + Z)(∇Xω)(Y, Z) = −ρ(X, Y + Z)ρ(Y, Z)(∇Xω)(Z, Y ). Thus

C(X, LY, Z) + α(X, Y, Z) + ρ(Y, Z)C(X, LZ, Y ) + ρ(Y, Z)α(X, Z, Y ) = 0. (3.6)
Codazzi-couple of ∇ and L implies that

α(X, Y, Z) = ρ(X, Y )α(Y, X, Z). (3.7)
By invoking (3.3), (3.6), (3.7) and totally ρ-symmetry of C, we deduce that

dω(X, Y, Z) = ρ(X + Y, Z)C(Z, LX, Y ) + ρ(X + Y, Z)ρ(X, Y )α(Y, Z, X). (3.8)

On the other hand, by Theorem 3.4, (3.8) translates to
0 = ρ(X + Y, Z)C(Z, LX, Y ) + ρ(X + Y, Z)ρ(X, Y )α(Y, Z, X). (3.9)

Substituting X with LX, we have
ρ(Y, X + Z)(∇Y ω)(LZ, X) = 0,

for any arbitrary ρ-derivations. Therefore ∇ω = 0.
From (i) and (iii) to (ii): Statement (iii) implies that

C(X, LY, Z) + α(X, Y, Z) = 0. (3.10)
Since α(X, LY, Z) = α(X, Y, LZ), then by (3.10) we get

C(X, L2Y, Z) = C(X, LY, LZ).
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By (i), C is total symmetric, so

C(X, LY, LZ) = ρ(X, Y )C(Y, LX, LZ),

which, in terms of A

A(X, Y, LZ) = ρ(X, Y )A(Y, X, LZ).

Thus

ρ(X, Y )g((∇XL)Y, LZ) = ρ(X, Y )ρ(Y, X)g((∇Y L)X, LZ).

Therefore ρ(X, Y )(∇XL)Y = (∇Y L)X, which is (ii).
From (ii) and (iii) to (i): (3.5) and (3.7) give us

α(X, LY, Z) = ρ(X, Y )α(Y, LX, Z). (3.11)

Then by statement (iii), we get

C(X, L2Y, Z) = ρ(X, Y )C(Y, L2X, Z).

Therefore
C(X, Y, Z) = ρ(X, Y )C(Y, X, Z).

□

Definition 3.6. Let A be a ρ-commutative algebra and ∇ be a connection on A.
i) A non-degenerate 2-form ω on A is called a symplectic form if dω = 0. In this

case, (A, ω) is said to be a symplectic ρ-commutative algebra.
ii) If ∇ω = 0, then ∇ is called a symplectic connection.
iii) The triple (A, ω, ∇) is called a Fedesov ρ-commutative algebra if ω is a symplectic

form and ∇ is a symplectic connection.

According to Theorem 3.4, we have a (para-)Kähler ρ-commutative algebra (A, g, ∇, L, ρ),
where (A, g, ∇, ρ) is an arbitrary statistical ρ-commutative algebra and L ((para-)complex
structure) is compatible with g such that ∇ and L are Codazzi-couple. Furthermore,
Theorem 3.5 implies that if ∇ is a symplectic connection, then (A, ∇, ω, ρ) is a Fedosov ρ-
commutative algebra. Theorem 3.5 also says that, we have a (para-)Kähler ρ-commutative
algebra (A, ∇, ω, L), where (A, ∇, ω) is any Fedosov ρ-commutative algebra and L is a
(para-)complex structure compatible with ω such that ∇ and L are Codazzi-couple. Ac-
tually, if we consider statistical ρ-commutative algebra (A, ∇, g), Fedosov ρ-commutative
algebra (A, ∇, ω) and Codazzi-couple of ∇ and L, then any two of these statements imply
the third.

Let ∇ be a torsion-free connection on A and ∇∗, ∇†, and ∇L be g-conjugate, ω-conjugate
and L-gauge transformation of a connection ∇, respectively. Then, by Propositions 2.2,
2.8 and 2.19, we have the following theorem.

Theorem 3.7. Let (g, ω, L) be a compatible triple. A is (para-)Kähler ρ-commutative
algebra if any two of the following three statements are true:

i) ∇∗ is torsion-free.
ii) ∇† is torsion-free.
iii) ∇L is torsion-free.

Definition 3.8. Let (A, g, J(K), ρ) be an almost (Para-)Kähler ρ-commutative algebra
with a connection ∇. If ∇ is Codazzi-couple to both g and J(K), then (A, g, J(K), ρ)
is called an almost Codazzi-(Para-) Kähler ρ-commutative algebra. Furthermore, if ∇ is
torsion-free, then by 2.24, J(K) is automatically integrable and dω = 0. In this case,
(A, g, J(K), ∇, ρ) is said to be Codazzi-(Para-) Kähler ρ-commutative algebra.
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Definition 3.9. Let (A, ∇, g) be a statistical ρ-commutative algebra. If (A, J, g) is a (an
almost) (Para-) Hermitian ρ-commutative algebra, then (A, ∇, g, J) is called a (an almost)
(Para-) Hermitian statistical ρ-commutative algebra. If (A, J, g) is a (an almost) (Para-)
Kähler ρ-commutative algebra, then (A, ∇, g, J) is called a (an almost) (Para-) Kähler
statistical ρ-commutative algebra.

By the above definition, Definition 3.8 can be implied in other words, that is
Codazzi-(para-)Kähler ρ-commutative algebra is a (para-)Kähler (or Fedosov) ρ-commutative
algebra which is at the same time statistical.

Definition 3.10. A Quadruple (g, ω, L, ∇) consisting of two non-degenerate 2-forms g and
ω, which are ρ-symmetric and ρ-skew-symmetric respectively, an isomorphism L, which
is either J or K and a torsion-free connection ∇ is called a compatible quadruple on
ρ-commutative algebra A, if the following conditions hold

i) ω(X, Y ) = g(LX, Y ).
ii) g(LX, Y ) + g(X, LY ) = 0.
iii) ω(LX, Y ) = ω(LY, X).
iv) ρ(X, Y )(∇XL)Y = (∇Y L)X.
v) ρ(X, Y + Z)(∇Xg)(Y, Z) = ρ(Y, X + Z)ρ(X, Y )(∇Y g)(X, Z).
vi) ρ(X, Y + Z)(∇Xω)(Y, Z) = 0.

Proposition 3.11. Consider the following conditions
a) (g, L, ∇) satisfy (ii), (iv) and (v),
b) (ω, L, ∇) satisfy (iii), (iv) and (vi),
c) (g, ω, ∇) satisfy (v) and (vi).

Then a ρ-commutative algebras A is a Codazzi-(Para-) Käler ρ-commutative algebras if
and only if any of the above conditions holds.

4. Holomorphic statistical ρ-commutative algebras
In this section we introduce the notion of holomorphic statistical structure on A and

give some lemmas and propositions to find some results.

Lemma 4.1. Let (A, ∇, g, J) be an almost Hermitian statistical ρ-commutative algebra.
Then we have

g((∇XJ)Y, Z) = −ρ(X, Y )g(Y, (∇∗
XJ)Z), ∀X, Y, Z ∈ Hg(ρ-DerA). (4.1)

Proof. Using ρ(X, Y )(∇XJ)Y = ∇X(JY ) − J∇XY , we get
g((∇XJ)Y, Z) = ρ(Y, X)g(∇X(JY ), Z) − ρ(Y, X)g(J∇XY, Z)

= ρ(Y, X)X · g(JY, Z) − g(JY, ∇∗
XZ)

+ ρ(Y, X)X · g(Y, JZ) − g(Y, ∇∗
X(JZ))

= −ρ(X, Y )g(Y, (∇∗
XJ)Z).

□
Proposition 4.2. Let (A, ∇, g, J) be an almost Hermitian statistical ρ-commutative alge-
bra. The covariant derivatives ∇J ,∇∗J of J with respect to the torsion free connections
∇ and ∇∗ are given by

2g(Z, (∇XJ)Y ) = 2g(Z, (KXJ)Y ) + dω(JZ, JY, X) − dω(Z, Y, X)
+ ρ(Z, Y )ρ(Y + Z, X)g(JX, NJ(Y, Z)),

2g(Z, (∇∗
XJ)Y ) = −2g(Z, (KXJ)Y ) + dω(JZ, JY, X) − dω(Z, Y, X)

+ ρ(Z, Y )ρ(Y + Z, X)g(JX, NJ(Y, Z)),
for any X, Y, Z ∈ Hg(ρ-DerA).
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Proof. The proof can be completed by Theorem 3.2 and KXY = ∇XY −∇̂XY = ∇̂XY −
∇∗

XY. □
Corollary 4.3. Let (A, ∇, g, J) be an almost Kähler statistical ρ-commutative algebra.
Then

2g(Z, (∇XJ)Y ) = 2g(Z, (KXJ)Y ) + ρ(Z, Y )ρ(Y + Z, X)g(JX, NJ(Y, Z)),
2g(Z, (∇∗

XJ)Y ) = −2g(Z, (KXJ)Y ) + ρ(Z, Y )ρ(Y + Z, X)g(JX, NJ(Y, Z)),
for any X, Y, Z ∈ Hg(ρ-DerA).
Corollary 4.4. Let (A, ∇, g, J) be a Kähler statistical ρ-commutative algebra. Then

2(Z, (∇XJ)Y ) = g(Z, (KXJ)Y ),
2(Z, (∇∗

XJ)Y ) = −g(Z, (KXJ)Y ),
for any X, Y, Z ∈ Hg(ρ-DerA).
Lemma 4.5. Let (A, ∇, g, J) be a Kähler statistical ρ-commutative algebra. Then for any
X, Y ∈ Hg(ρ-DerA), we have

∇X(JY ) = J∇∗
XY.

Proof. We have
0 = (∇Xω)(JY, Z) = X · g(JY, Z) − ω(∇X(JY ), Z) − ρ(X, Y )ω(JY, ∇XZ)

= −g(∇∗
XY, Z) + g(∇X(JY ), JZ) = −g(J∇∗

XY, JZ) + g(∇X(JY ), JZ)
= g(∇X(JY ) − J∇∗

XY, JZ).
So ∇X(JY ) = J∇∗

XY . □
Definition 4.6. A holomorphic statistical structure on A is a triple (∇, g, J) such that

i) (∇, g) is a statistical structure on A,
ii) (g, J) is a Kähler structure on A,
iii) KX(JY ) + JKXY = 0 ∀X, Y ∈ ρ-DerA.

The ρ-commutative algebra A equipped with this structure is called holomorphic statistical
ρ-commutative algebra.
Theorem 4.7. Let (A, ∇, g, J) be a Kähler statistical ρ-commutative algebra. Then
(A, ∇, g, J) is a holomorphic statistical ρ-commutative algebra.
Proof. It is enough to show that KX(JY ) + JKXY = 0 for any X, Y ∈ Hg(ρ-DerA).
Since ∇ω = 0, we have
0 = (∇Xω)(Y, Z) = X · ω(Y, Z) − ω(∇XY, Z) − ρ(X, Y )ω(Y, ∇XZ)

= g(∇̂X(JY ), Z) + g(KXY, JZ) + g(∇̂XY, JZ) − ρ(X, Y )g(JY, KXZ)

= ρ(X, Y )g((∇̂XJ)Y, Z) + g(KXY, JZ) − ρ(X, Y )g(JY, KXZ).

By Theorem 3.2, ∇̂ is an almost complex connection. So, we conclude that
0 = (∇Xω)(Y, Z) = g(KXY, JZ) − ρ(X, Y )g(JY, KXZ) = −{g(JKXY + KX(JY ), Z)}.

Therefore, JKXY + KX(JY ) = 0. □
Example 4.8. Let us go back to the extended hyperplane A2

q := ⟨1, x, y, x−1, y−1, xy =
qyx⟩ given by Example 2.6. In [2], the present authors obtained all complex structures of
degree zero that have the following expression

J( ∂

∂x
) = −i

∂

∂x
, J( ∂

∂y
) = i

∂

∂y
,

J( ∂

∂x
) = i

∂

∂x
, J( ∂

∂y
) = −i

∂

∂y
.
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As seen, for this structures dω = 0, NJ = 0 and all Hermitian metrics are as follows
g = (dx ⊗ dy + qdy ⊗ dx)g12.

Moreover, in Example 2.6 we obtain all statistical connections on A2
q with respect to metric

g with components g11 = g22 = 0, g12 = x−1y−1, which actually the components of
Hermitian metric can have the same expression. In this example, we intend to investigate
which connections admits a holomorphic structure. For this, it is enough to check the
property JKXY + KX(JY ) = 0 for any X, Y ∈ ρ-DerA2

q . Let J( ∂
∂x) = i ∂

∂x , J( ∂
∂y ) =

−i ∂
∂y and consider the following cases:
Case 1: If X = ∂

∂x and Y = ∂
∂y , we have

K ∂
∂x

(J( ∂

∂y
)) + JK ∂

∂x

∂

∂y
= −i∇ ∂

∂x

∂

∂y
+ i∇̂ ∂

∂x

∂

∂y
+ J(∇ ∂

∂x

∂

∂y
− ∇̂ ∂

∂x

∂

∂y
)

= −i(Γ12
∂

∂x
+ Γ2

12
∂

∂y
) + i(Γ̂1

12
∂

∂x
+ Γ̂2

12
∂

∂y
)

+ J(Γ12
∂

∂x
+ Γ2

12
∂

∂y
) − J(Γ̂1

12
∂

∂x
+ Γ̂2

12
∂

∂y
)

= −iΓ12
∂

∂x
− iΓ2

12
∂

∂y
+ iΓ1

12
∂

∂x
− iΓ2

12
∂

∂y

= −2iΓ2
12

∂

∂y
.

Case 2: If X = ∂
∂y and Y = ∂

∂x , in the similar way, we have

K ∂
∂y

(J( ∂

∂x
)) + JK ∂

∂y

∂

∂x
= 2iΓ1

21
∂

∂x
.

Case 3: If X = ∂
∂x and Y = ∂

∂x , we have

K ∂
∂x

(J( ∂

∂x
)) + JK ∂

∂x

∂

∂x
= 2iΓ1

11
∂

∂x
− 2iΓ2

11
∂

∂y
.

Case 4: If X = ∂
∂y and Y = ∂

∂y , we get

K ∂
∂y

(J( ∂

∂y
)) + JK ∂

∂y

∂

∂y
= −2iΓ2

22
∂

∂y
+ 2iΓ̂2

22
∂

∂y
.

So JKXY + KX(JY ) = 0 if and only if

Γ1
11 = −x−1, Γ2

22 = −y−1, Γ2
11 = −x−1, Γ2

12 = Γ2
21 = 0, Γ1

12 = Γ1
21 = 0, Γ1

22 = 0.

Therefore, there exists only one connection on ρ-DerA2
q with the above components which

the triple (∇, g, J) is a holomorphic statistical structure.

References
[1] S. Amari and H. Nagaoka, Methods of information geometry, in: Transl. Math.

Monogr., Amer. Math. Soc. 191, 2000.
[2] Z. Bagheri and E. Peyghan, (Para-) Kähler structures on ρ-commutative algebras,

Adv. Appl. Clifford Algebras 28 (5), 95, 2018.
[3] P. J. Bongaarts and H. G. J. Pijls, Almost commutative algebra and differential cal-

culus on the quantum hyperplane, J. Math. Phys. 35 (2), 959–970, 1994.
[4] S.Y. Cheng and S. T. Yau, The real Monge-Amp‘ere equation and affine flat struc-

tures. In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and
Differential Equations, Vol. I, Science Press, New York, 339-370, 1982.



Statistical ρ-commutative algebras 355

[5] C. Ciupala, Linear connections on almost commutative algebras, Acta. Th. Univ.
Comenianiae 72 (2), 197207, 2003.

[6] C. Ciupala, Connections and distributions on quantum hyperplane, Czech. J. Phys.
54 (8), 921–932, 2004.

[7] C. Ciupala, 2-ρ-derivation on a ρ-algebra and application to the quaternionic algebra,
Int. J. Geom. Meth. Mod. Phys. 4 (3), 457–469, 2007.

[8] M. Dubois-Violette, Dérivations et calcul différentiel non commutatif, C.R. Acad. Sci.
Paris, série I. 307, 403–408, 1988.

[9] T. Fei and J. Zhang, Interaction of Codazzi Couplings with (Para-)Kähler Geometry,
Results Math. 72 (2), 2017. DOI 10.1007/s00025-017-0711-7.

[10] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical mani-
folds, in: S. Dragomir, M.H. Shahid, F.R. Al-Solamy (Eds.), Geometry of Cauchy-
Riemann Submanifolds, Springer, Singapore, 179–215, 2016.

[11] E. Kähler, Über eine bemerkenswerte Hermtesche metrik, Abn. Sem. Unv. Hamburg
9, 173–186, 1933.

[12] S. L. Lauritzen, Statistical manifolds, In: Differential Geometry in Statistical Infer-
ences, IMS Lecture Notes Monogr. Ser., 10, Inst. Math. Statist., Hayward California,
96–163, 1987.

[13] S. Majid, Classification of bicovariant differential calculi, J. Geom. Phys. 25, 119–140,
1998.

[14] S. Majid, Riemannian geometry of quantum groups and finite groups with nonuniver-
sal differentials, Commun. Math. Phys. 225, 131–170, 2002.

[15] F. Ngakeu, Levi-Civita connection on almost commutative algebras, Int. J. Geom.
Meth. Mod Phys. 4 (7), 1075–1085, 2007.

[16] F. Ngakeu, S. Majid and D. Lambert, Noncommutative Riemannian geometry of the
alternating group A4, J. Geom. Phys. 42, 259–282, 2002.

[17] K. Nomizu and T. Sasaki,Affine Differential Geometry: Geometry of Affine Immer-
sions, Volume 111 of Cambridge Tracts in Mathematics, Cambridge University Press,
Cambridge, 1994.

[18] H. Shima, On certain locally flat homogeneous manifolds of solvable Lie groups, Osaka
J. Math. 13 (2), 213-229, 1976.

[19] U. Simon, Affine differential geometry. In: Dillen, F., Verstraelen, L. (eds.) Handbook
of Differential Geometry, North-Holland 1, 905–961, 2000.

[20] K.Takano, Statistical manifolds with almost complex structures and its statistical sub-
mersions, Tensor N.S. 65, 128–142, 2004.

[21] K.Takano, Statistical manifolds with almost contact structures and its statistical sub-
mersions, J. Geom. 85, 171–187, 2006.


