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Abstract

Recently, the beta regression model has been used in several fields of science to model data
in the form of rate or proportion. In this paper, some novel and improved methods to
estimate parameters in the beta regression model are proposed. We consider a sub-space
on the regression coeflicients of the beta regression model and combine the unrestricted and
restricted estimators then we present Stein-type and preliminary estimators. We develop
the expressions for the proposed estimators’ asymptotic biases and their quadratic risks.
Numerical studies through Monte Carlo simulations are used to evaluate the performance
of the proposed estimators in terms of their simulated relative efficiency. The results show
that the proposed estimators outperform the unrestricted estimator when the restrictions
hold. Finally, an empirical application is given to show how useful the proposed estimators
are in the practical area.
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1. Introduction

It is common knowledge that linear regression models can be used to represent a re-
lationship between a response variable and a few predictors. However, for the bounded
response variables, this approach is not appropriate. The beta regression model, proposed
by [13], is a suitable model where the response variable is in the form of rates or propor-
tions. Beta regression models have become increasingly popular in analyzing biological,
chemical, or environmental data in the form of percentages and rates, such as poverty
rates, migration rates, unemployment rates, the percentage of income spent on food, and
the proportion of crude oil converted to gasoline.

The use and interpretation of the models depend on the quality of the parameters’
estimation. If the model parameters are poorly calibrated, the model output will not
be relevant to make predictions or data assimilation. The maximum likelihood method
(MLE) is a well-known parameters estimation technique in regression models. Ferrari
and Cribari-Neto [13] explained the MLE of parameters in beta regression models by
considering the precision parameter as a constant value. Lately, some authors such as
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Ferrari and Pinheiro [14], Simas et al. [21] and Espinheira et al. [10,11] tried to improve
the MLE in beta regression models. In this paper, the MLE of the parameters is called the
unrestricted estimator. Recently, the multicollinearity issue has been considered for beta
regression models and for that many estimators have been introduced such as the ridge
estimator [3, 18], modified ridge-type estimator [5], Liu estimator [17], Liu-type estimator
[7], two-parameters estimator [1] and Dawoud-Kibria estimator [2].

In the data analysis process, the practitioners may have some information about the
value of the parameters or any combination of parameters. This information can be
obtained through model selection techniques such as the Akaike information criterion
(AIC), corrected AIC [6], Bayesian information criterion (BIC), adjusted R? [19], or it
can be obtained based on past data or expert opinions. The use of this prior information
may increase the efficiency of the estimators, especially when the sample information is
somewhat limited. Consider that the prior information can be written as follows:

HO :Rﬂ:T, (11)

in which R is a known (¢ X p) matrix of full rank (rank(R) = ¢) and r is a (¢ x 1) length-
vector of constants. The primary aim of this study is to introduce the model’s parameter
estimator, 8, under the sub-space defined in (1.1). This estimator emerging from the
model by considering restrictions in (1.1) is called the restricted estimator.

In practice, the prior information in (1.1) is uncertain. The doubt on this prior in-
formation can be removed by testing hypothesis Hy : RS = r against the alternative
Hi : RB # r. Accordingly, we will study the preliminary test estimator (PTE) which se-
lects between unrestricted and restricted estimators based on the rejection or acceptance
of Hy. The preliminary test estimator was first proposed by Bancroft [9] and then has
been developed by several authors. In the sequel, our goal is to combine unrestricted and
restricted estimators optimally. The shrinkage estimators, such as stein-type estimators,
are well-known methods in this context. [20], [4], [8], and [15] are some of the most im-
portant sources on stein-type estimation and its application. Stein-type estimators shrink
the unrestricted estimator toward the restricted estimator based on a function of sample
test statistics for restrictions in (1.1). Therefore, we will define James-Stein and posi-
tive James-Stein estimators in the beta regression models, which outperform unrestricted
estimators in most cases.

This paper unfolded as follows: In section 2, the parameters estimation problem in
the beta regression models using the MLE is considered. Then, by considering restric-
tions in (1.1), the restricted estimator is proposed. In Section 3, the James-Stein and
positive James-Stein estimators and also the preliminary test estimator are proposed in
beta regression models. Then asymptotic characteristics of proposed estimators such as
asymptotic bias and the quadratic risk functions will be obtained. Section 4 offers the
numerical study of evaluating the performance of the proposed estimators using Monte
Carlo simulation in the situation when (1.1) is valid and also it is considered to be false.
Finally, the empirical data is analyzed in Section 5 and the conclusion is given in Section
6. The proof of the theoretical results is given in Appendix.

2. Beta regression model: unrestricted and restricted estimators

Let y1,42, - ,yn be independent observations of response variable which follows a beta
distribution with parameters (ur, (1 — u)7); e.g.
T _
Pl ) = Ot g0 o<1, (20)

Y
L(pr)T((1 = p)m)™
where the precision parameter, 7 > 0, is considered constant over observations. Then the
beta regression model is defined by

glp) =i B=mi, i=1,2,---,n, (2.2)
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where 8 = (B1, P2, - ,ﬁp)T € RP, z; = (41,240, ,:Eip)T is the ¢th observation of the
independent variables and the link function ¢(.) is a continuous and double differentiable
function from (0,1) into R. Another form of the beta regression model with varing preci-
sion parameter in the literature was employed first by [22] and then it was used by [21].
However, in this paper, 7 is considered a known and constant value.

Although, many link functions are considered for beta regression model, we prefer to

use the logit link function, g(u) = log(ﬁ), SO

_ exp{xiTﬂ}
T explalf)

The log-likelihood function of the beta regression model is given by

i=1,2,-,n, (2.3)

(2

2(8) = Y- L(B), (24)

where

£i(8) = log (I'(7)) — log (T(yui7)) —log (P((1 = pu)7)) — log(=")

+ pirlog(yi) + (1 — pa)7log(1 — wi).
Since this function is nonlinear in B, we use the iterative reweighted least-squares algorithm
to derive the MLE of 8. Let y* = (y{,v3,--- ,up)", p* = (uf, u3, -+, 1), v = logit(ys)
and pf = ¥(u;m) — (1 — pi)7) such that (.) denotes the digamma function. Thus, in
the beta regression model [3,18], the MLE will be

Bure = X"VX)' X"V Z, (2.5)
where

V= diag(vy, -+ ,vp),
1

v = ) = 00 = ) f e,

o= {0 ) = = n) | s

S 5 o—1y —p")

Z=X"B+Vv! (7

{g'(n)}?

The value of V and Z are evaluated at the final iteration. The MLE is called in this
paper the unrestricted estimator and it is denoted by 8 . Under regularity conditions
[12],when n increases, we know that

~UN

Vi - 8) B No, - (xTTX)), (26)

where 3 denotes the convergence in distribution.
Now, we consider the restriction in (1.1) for beta regression model. The restricted

~RE
estimation, 8, is obtained by maximizing the log-likelihood function in (2.4) under sub-

~RE
space restriction RB — r = 0. By using Lagrange multipliers, 8 is derived as follows:

-1
B =" _c.RT {RexRT] ®RB"" 1), (2.7)

where €, = (XTVX)~ 1.
It is possible that this sub-space may not be true, as mentioned before we can check
it by testing hypothesis Hy : RS = r against the alternative Hy : RB # r. Let define
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N) BRE

~U ~UN
£(B and £( ) ,respectively, as the value of the log-likelihood function at 8~ and

~RE
B, then the test statistics will be

~UN ARE)}

3 :2[s<ﬁ )— (B

1
G LA {RGxRT] RB"N — 1)+ 0,(1). (2.8)

When n increases, §, follows a chi-square distribution with ¢ degrees of freedom.

3. Shrinkage estimators in beta regression models

In the last few decades, shrinkage procedures, specifically Stein-type estimates, have
gained a considerable amount of attention when it comes to estimating the parameters
of a model. In these methods, the unrestricted and restricted estimators are combined
optimally to dominate the unrestricted estimator. Therefore, in this section, the James-
Stein and positive James-Stein estimators for the beta regression models are constructed,
which are superior to MLEs. In the sequel, preliminary test estimators for the beta
regression models are provided. Finally, asymptotic theories for the proposed estimators
are established.

3.1. James-Stein type estimators

~JSE
The James-Stein estimator (JSE) of 8, denoted by f# , which shrinks the unrestricted
estimator towards the restricted estimator, is defined in beta regression models as follows:

~JSE ~RE _ ~UN ~RE
B =B +{1-¢c§,'}B  —-B ), c>0, (3.1)
which can be rewritten as
~JSE  ~UN . ~AUN  ARE
B =B —-&,'B -B), c>0, (3.2)

where ¢ € [0,2(¢ — 2)) and often is set as ¢ = ¢ — 2. But when 0 < §,, < ¢, consequently
1 —¢§,;' < 0, the James-Stein estimator will suffer from the over-shrinkage problem.

~JS
To avoid this issue, we define a truncated form of 8, called the positive James-Stein
~PJSE

estimator [4]. Formally, the positive James-Stein estimator (PJSE), B8 is defined as
follows:
~PJSE  ~RE _ ~UN  ~RE
IB :ﬂ +{1_an1}+(:8 _ﬁ )7 C>O) (33)
where 2zt = max(0, z). This estimator also can be rewritten as
~PJSE  »JSE —11,5UN  ARE
B =8 - {1-&"YB  —B <, c>0. (3-4)

3.2. Preliminary test estimator

As mentioned before, when the restrictions on parameters are suspicious, it may be
reasonable to construct a preliminary test estimator. This estimator chooses only one
value of the unrestricted estimator or the restricted estimator based on the test statistic
for testing hypothesis Hy : RS = r against Hy : RB # r.

Let §pno be the (1 — a)th percentile of the chi-Squared distribution with ¢ degrees of
freedom under Hy. Therefore, in beta regression models, we define the preliminary test
estimator (PTE) as

~PTE AUE AUE ARE

B =B B -8B )z.<gu.) (3.5)
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3.3. Asymptotic properties of the proposed estimators

Sometimes the subspace on parameters based on restrictions , Rf = r may be wrong. In
this case, we consider R = r+wv. For fixed v # 0, when the test statistic converges oo, the
proposed estimators will be asymptotically equivalent in probability to the unrestricted
estimator. So, due to obtain meaningful asymptotic, we consider the following consequence
of local alternatives:

€
Hepy : RB =1+ Nk (3.6)
where € = (&1,&2, - ,{Q)T € RY. The vector £/y/n measures how much local alternatives

differ from RB = r. It is noteworthy that Hy : Rf = r is a special case of H g, since
& =0 implies RB = r.

Now, we provide the asymptotic properties of the proposed estimators, such as bias and
quadratic risk function. To do so, we define the asymptotic distribution function of the
estimator B under (3.6) as

F(w) = lim p(v/n(B — B) < w|Hqp)), (3.7)

n—oo

where F'(w) is a non-degenerated distribution function and the letter p is used for proba-
bility operation. Thus, the asymptotic distributional bias (ADB) will be defined as

ADB(B) = limE [Vn(B - B) / / wdF(w (3.8)

In addition to the asymptotic distributional bias, the asymptotic distributional quadratic
risk (ADR) is defined as follows:

ADR(B) = tr(MSE(B)), (3.9)

where

MSEQB) = lim E[Vi(B - B)vaB -] = [ [ww'dF@w).  (3.10)

In the following theorems, we determined the ADB and ADR of the proposed estimators
which provide the main results of this section.

Theorem 3.1. Under regularity conditions [12] and the sequence of alternatives (3.6),
the ADB of the proposed estimators is given by

(1) ADB(B ): _JE,

(2) ADB(B"") = —cJeE ;2 ()],

(3) ADB(B"""") = ADB(B") + JeH a(e V).
(4) ADB( BT = —J&Hq+2<$n,a;A),

where J = C,RT[RC, RT] Hyia(5 ) and E[XgiQ()\)] stand, respectively, for the cumu-
lative distribution function and]th order moment of a non-central chi-squared distribution
with q + 2 degrees of freedom and non-centrality parameter .

Proof. See Appendix B. O

For the ADR of proposed estimators, we have the following theorem.
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Theorem 3.2. Under regularity conditions [12] and the sequence of alternatives (3.6),
the ADR of the proposed estimators are as follows:

ADRB"T) = rtr(ey),
ADRB™) = rtr(Cy — Jo) + JTETE T,
ADRB™T) = rtr(Cy) + 2e6T I JEE X;@(A)}

+ rctr(Jy)E

X;@(A)} — 2crtr(Jo)E

Xq_f2(A):|

+ 2T JT JER

Gt N)] - 27T 6B

GO,

~PJSE ~JSE
ADR(B™*") = ADR(B"™) — 267 T J€ | Hypales ) — Hysale )
+ 37tr(Jo)Hgro(c; A) — 2cttr(Jo)E ng?(A)I(xqu(A)@)}
—2c¢T JT JEE X;f4()\)I(X;+24( AKC)} + 26T T JEHya(c5 M),
~PTE
ADR(ﬂ ) = Ttr(er) =+ fTJTjé(Hq—i-?(gn,a; )‘) - Hq+4(3n,a§ /\))

— Tt?“(Jo)Hq_;,_Q(gnA; )\)
where Jo = JRC, L.
Proof. See Appendix C. O

Obviously, the expressions for ADB and ADR of estimators are not in closed form. So,
in the following section, we conduct a simulation study to compare all proposed estimators.

4. Simulation study

In this section, we examine the performance of the proposed estimators in the beta
regression model via a simulation study by the estimated relative efficiency criterion. We
display various scenarios of the performance of the proposed estimators by considering
different values of sample size, the number of independent variables, and the precision
parameter, which is illustrated in Table 1.

Table 1. Assumed values for the simulation study.

Title Symbol Values
Number of independent variables p 4,6, 8, 12
Value of dispersion T 1, 10, 100
Sample size n 50, 100, 200
Number of replicates m 2000

The n observations of the independent variables are generated from the standard normal
distribution. The n observations of the response variable in the beta regression model,
with logit link function, are generated from the beta distribution with parameters (p;, 7),
where

eni

14 em

wi = log( ), i=1,2,---,n (4.1)

and
ni = Bo + Brxi1 + Baziz + - + BpTip, 1=1,2,---,n. (4.2)
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We chose 3y as zero and (f1, (2, ,8p) = (1,1,---,1)/,/p such that BTB = 1. For the

restrictions, we consider the following restrictions.

e 9
R(pxp) = S and T<le) :%(5,1’.-. 71)T, (4.3)
2 00000 - 11 2

The value of k allows us to control whether the restrictions are valid or not. When
k = 0, it indicates that the restrictions are valid, but when x # 0, it indicates that
the distance between simulated parameters and candidate values is x/,/p. We use this
parameter, x, to study the behavior of the proposed estimators in different situations. To
do this, various values of k in the interval [0, 1] have been considered in this study.

We use the unrestricted estimator as a benchmark and report the simulated relative
efficiency (SRE) as a ratio of the simulated MSE of the proposed estimator to that of the
unrestricted estimator. Therefore, the SRE of an estimator ,B is defined as

~UN
SRE(p) = SMSEB ) (4.4)
SMSE(B)
in which the SMSFE of an estimator is calculated by
R 1 M . o
SMSE(B) = —> (B, —B)" (B, - B), (4.5)
=1

where m represents the total number of replications which is set to be 2000 here and Bl
is the estimated value of B8 in the Ith replication. The results are given in Tables 2-5 and
plotted for easier comparison in Figures 1—4.

Table 2. The SRE of the suggested estimators for p = 4.

n = 50 n = 100 n = 200
7 k RE JSE PIJSE PTE RE JSE PJSE PTE RE JSE PJSE PTE

1.0 0.0 3.0068 0.6521 2.2140 3.0068 2.6809 0.5384 2.1222 2.6809 2.6823 0.5261 2.1503 2.6661
0.2 1.8831 0.7456 1.6476 1.8707 1.3305 0.6807 1.3605 1.3245 0.8408 0.8650 1.1305 0.8312
0.4 0.9239 0.7998 1.1393 0.9107 0.5386 0.7698 0.9669 0.5350 0.2794 0.9928 0.9938 0.3374
0.6 0.5034 0.9047 0.9641 0.5072 0.2711 0.9257 0.9335 0.3086 0.1326 1.0055 1.0055 0.6037
0.8 0.3083 0.9335 0.9388 0.3621 0.1601 0.9574 0.9574 0.3377 0.0765 1.0070 1.0070 1.0000
1.0 0.2060 0.9482 0.9488 0.3604 0.1049 0.9720 0.9720 0.6805 0.0495 1.0069 1.0069 1.0000

10 0.0 2.5271 1.2717 1.3969 2.0250 2.8485 1.3018 1.4857 2.3413 2.7453 1.2282 1.4724 2.3450
0.2 0.9089 1.0784 1.1006 0.8655 0.6321 1.0500 1.0577 0.7307 0.3439 1.0156 1.0158 0.7438
0.4 0.3183 1.0077 1.0078 0.8104 0.1913 1.0066 1.0066 0.9679 0.0954 1.0016 1.0016 1.0000
0.6 0.1534 1.0004 1.0004 0.9852 0.0886 1.0007 1.0007 1.0000 0.0433 0.9997 0.9997 1.0000
0.8 0.0890 0.9985 0.9985 1.0000 0.0506 0.9991 0.9991 1.0000 0.0245 0.9993 0.9993 1.0000
1.0 0.0579 0.9980 0.9980 1.0000 0.0326 0.9986 0.9986 1.0000 0.0158 0.9992 0.9992 1.0000

100 0.0 3.8002 1.3740 1.4813 2.3998 2.9568 1.2787 1.4345 2.1693 2.5501 1.1938 1.3956 2.0205
0.2 0.2205 1.0182 1.0182 0.9471 0.0820 1.0024 1.0024 1.0000 0.0411 1.0013 1.0013 1.0000
0.4 0.0577 1.0037 1.0037 1.0000 0.0209 0.9998 0.9998 1.0000 0.0104 1.0001 1.0001 1.0000
0.6 0.0258 1.0014 1.0014 1.0000 0.0093 0.9995 0.9995 1.0000 0.0046 0.9999 0.9999 1.0000
0.8 0.0146 1.0006 1.0006 1.0000 0.0053 0.9995 0.9995 1.0000 0.0026 0.9999 0.9999 1.0000
1.0 0.0093 1.0003 1.0003 1.0000 0.0034 0.9996 0.9996 1.0000 0.0017 0.9999 0.9999 1.0000
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Table 3. The SRE of the suggested estimators for p = 6.

n =50 n = 100 n = 200
T « RE JSE PJSE PTE RE JSE PJSE PTE RE JSE PJSE PTE

1.0 0.0 6.1177 0.5425 4.9999 6.1177 3.7743 0.4324 3.5587 3.7743  3.5169 0.3080 3.3577 3.5169
0.2 3.7678 0.5421 3.3783 3.7678 1.7912 0.5061 1.8214 1.7912 1.0877 0.6509 1.2453 1.0824
0.4 1.7683 0.5376 1.8347 1.7420 0.7067 0.7026 0.9765 0.7034 0.3583 0.8886 0.9038 0.3880
0.6 0.9401 0.5508 1.1520 0.9235 0.3527 0.8276 0.8518 0.3823 0.1695 0.9551 0.9551 0.5666
0.8 0.5681 0.5887 0.8652 0.5643 0.2075 0.8878 0.8881 0.3955 0.0976 0.9786 0.9786 1.0000
1.0 0.3767 0.6362 0.7536 0.3922 0.1358 0.9204 0.9204 0.7248 0.0632 0.9889 0.9889 1.0000

10 0.0 4.7898 1.8219 2.2389 2.8666 4.1973 1.8193 2.3179 3.1318 4.0200 1.7388 2.3294 3.0633
0.2 1.4594 1.3800 1.4565 1.1225 0.8811 1.2074 1.2413 0.8471 0.4305 1.0866 1.0904 0.7640
0.4 04727 1.1251 1.1261 0.8522 0.2626 1.0509 1.0509 0.9350 0.1174 1.0187 1.0187 1.0000
0.6 0.2222 1.0561 1.0561 0.9904 0.1211 1.0199 1.0199 1.0000 0.0531 1.0074 1.0074 1.0000
0.8 0.1276 1.0315 1.0315 1.0000 0.0691 1.0095 1.0095 1.0000 0.0301 1.0036 1.0036 1.0000
1.0 0.0824 1.0201 1.0201 1.0000 0.0445 1.0050 1.0050 1.0000 0.0193 1.0020 1.0020 1.0000

100 0.0 3.7828 1.7035 1.9291 2.2662 3.7866 1.7546 2.0271 2.5128 4.0062 1.8365 2.1303 2.7340
0.2 0.2541 1.0430 1.0430 0.9605 0.1121 1.0166 1.0166 1.0000 0.0557 1.0105 1.0105 1.0000
0.4 0.0670 1.0084 1.0084 1.0000 0.0287 1.0035 1.0035 1.0000 0.0141 1.0022 1.0022 1.0000
0.6 0.0301 1.0027 1.0027 1.0000 0.0128 1.0013 1.0013 1.0000 0.0063 1.0008 1.0008 1.0000
0.8 0.0170 1.0010 1.0010 1.0000 0.0072 1.0006 1.0006 1.0000 0.0035 1.0003 1.0003 1.0000
1.0 0.0109 1.0003 1.0003 1.0000 0.0046 1.0003 1.0003 1.0000 0.0023 1.0002 1.0002 1.0000

Table 4. The SRE of the suggested estimators for p = 8.

n =50 n = 100 n = 200
T & RE JSE PJSE PTE RE JSE PIJSE PTE RE JSE PJSE PTE

1.0 0.0 6.5220 0.3862 6.0861 6.4719 5.1415 0.3391 5.0155 5.1415 4.6390 0.3410 4.5639 4.6390
0.2 3.9289 0.4325 3.7847 3.9114 2.2841 0.4391 2.3078 2.2841 1.4080 0.4491 1.4732 1.4061
0.4 1.8478 0.5126 1.9041 1.8393 0.8691 0.5947 1.0478 0.8621 0.4614 0.6258 0.7398 0.4645
0.6 0.9869 0.5897 1.1568 0.9737 0.4286 0.7266 0.7967 0.4399 0.2180 0.7553 0.7565 0.3382
0.8 0.5985 0.6608 0.8749 0.5969 0.2509 0.8123 0.8160 0.3604 0.1255 0.8341 0.8341 0.7809
1.0 0.3978 0.7180 0.7874 0.4253 0.1638 0.8666 0.8666 0.5825 0.0812 0.8818 0.8818 1.0000

10 0.0 4.8467 2.1134 2.6142 2.7575 5.2926 2.3516 3.0272 3.8051 5.0183 2.2783 3.0580 3.6135
0.2 1.7303 1.5189 1.5969 1.2328 1.0425 1.3876 1.4004 0.9510 0.5301 1.1687 1.1724 0.8044
0.4 0.6002 1.1704 1.1732 0.9013 0.3083 1.1057 1.1057 0.9931 0.1443 1.0388 1.0388 1.0000
0.6 0.2881 1.0722 1.0722 0.9942 0.1420 1.0447 1.0447 1.0000 0.0652 1.0145 1.0145 1.0000
0.8 0.1669 1.0365 1.0365 1.0000 0.0809 1.0234 1.0234 1.0000 0.0369 1.0066 1.0066 1.0000
1.0 0.1083 1.0204 1.0204 1.0000 0.0521 1.0139 1.0139 1.0000 0.0237 1.0032 1.0032 1.0000

100 0.0 5.5196 2.1561 2.4670 2.4435 4.5111 2.0914 2.5244 2.7516 4.4693 2.1550 2.5932 2.8744
0.2 0.3285 1.1084 1.1084 0.9935 0.1353 1.0390 1.0390 1.0000 0.0640 1.0195 1.0195 1.0000
0.4 0.0862 1.0280 1.0280 1.0000 0.0346 1.0080 1.0080 1.0000 0.0162 1.0048 1.0048 1.0000
0.6 0.0387 1.0124 1.0124 1.0000 0.0155 1.0028 1.0028 1.0000 0.0072 1.0021 1.0021 1.0000
0.8 0.0218 1.0069 1.0069 1.0000 0.0087 1.0011 1.0011 1.0000 0.0041 1.0012 1.0012 1.0000
1.0 0.0140 1.0044 1.0044 1.0000 0.0056 1.0004 1.0004 1.0000 0.0026 1.0007 1.0007 1.0000
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Table 5. The SRE of the suggested estimators for p = 12.

n = 50 n = 100 n = 200
T K RE JSE PJSE PTE RE JSE PJSE PTE RE JSE PJSE PTE
1 0.0 12.1344 0.5219 10.9643 11.5686 8.8704 0.2872 8.7380 8.8704 7.9636 0.2736 7.9360 7.9636
0.2 7.0338 0.6274 6.5875 6.7385  3.7438 0.3734 3.7287 3.7438 2.0386 0.4385 2.0709 2.0386
0.4 3.1758 0.8617 3.1414 3.0267 1.3878 0.5362 1.4669 1.3749 0.6424 0.7001 0.8729 0.6407
0.6 1.6652 1.0816 1.8257 1.5698  0.6788 0.6772 0.8966 0.6754 0.3008 0.8426 0.8451 0.4514
0.8 1.0009 1.1685 1.3431 0.9494 0.3961 0.7702 0.7949 0.4478 0.1726 0.9072 0.9072 0.9194
1.0 0.6620 1.1670 1.1935 0.6978  0.2580 0.8295 0.8297 0.4874 0.1116 0.9396 0.9396 1.0000
10 0.0 8.1865 3.1488 3.6097 29794  7.918% 3.1847 4.2565 4.0340 7.1899 3.2489 4.5858 4.9873
0.2 27256 2.0558 2.1297 1.4155 1.4519 1.6841 1.7312 1.0837 0.7251 1.3616 1.3641 0.9180
04 09202 1.3941 1.3951 0.9706 0.4221 1.2110 1.2110 0.9832 0.1964 1.0955 1.0955 1.0000
0.6 04383 1.1837 1.1837 0.9956 0.1935 1.0959 1.0959 1.0000 0.0887 1.0417 1.0417 1.0000
0.8 0.2531 1.1018 1.1018 1.0000 0.1101 1.0538 1.0538 1.0000 0.0502 1.0229 1.0229 1.0000
1.0 0.1640 1.0631 1.0631 1.0000 0.0708 1.0342 1.0342 1.0000 0.0322 1.0142 1.0142 1.0000
100 0.0 8.5843 2.8356 2.9918 2.0743 8.8429 3.3162 3.9046 3.3997 7.3468 3.2494 3.9494 3.8172
0.2 03770 1.1651 1.1651 0.9931 0.1993 1.0970 1.0970 1.0000 0.0915 1.0436 1.0436 1.0000
0.4 0.0974 1.0398 1.0398 1.0000 0.0507 1.0239 1.0239 1.0000 0.0231 1.0105 1.0105 1.0000
0.6 0.0436 1.0163 1.0163 1.0000  0.0226 1.0103 1.0103 1.0000 0.0103 1.0044 1.0044 1.0000
0.8 0.0246 1.0084 1.0084 1.0000 0.0127 1.0056 1.0056 1.0000 0.0058 1.0024 1.0024 1.0000
1.0 0.0157 1.0049 1.0049 1.0000 0.0082 1.0035 1.0035 1.0000 0.0037 1.0014 1.0014 1.0000
n=501=1 n=100,7=1 n=200,7= 1
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Figure 1. The SRE of proposed estimators for p = 4,
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Figure 4. The SRE of proposed estimators for p = 12, 7 = 1,10,100 and n =
50,100, 200.
The most important characteristics of the tables and the figures are summarized as
follows:
When the restrictions are true:

(1) The simulated relative efficiency of the proposed estimators increases as the number
of independent variables increases for all estimators.

(2) When the value of the precision parameter is small, the James-Stein estimator
does not perform as well as the unrestricted estimator but the restricted estima-
tor, positive James-Stein estimator and preliminary test estimators have better
performance than the unrestricted estimator.

(3) In all the cases, the performance of the restricted estimator is superior to other
estimators such that it has the utmost simulated relative efficiency value.

When the restrictions are not true:

(1)

(2)
3)

(4)

In all combinations of p, n, and 7, for the small value of x, the restricted estimator
dominates all estimators. However, when the value of x increases, the perfor-
mance of the restricted estimator decreases so that it gets worth more than other
estimators.

For all values of 7, as k increases, the behavior of the restricted, positive James-
Stein and preliminary test estimators are the same.

When « increases, for 7 = 1, the James-Stein estimator does not perform as well as
the unrestricted estimator but for 7 = 10 and 100, the performance of the James-
Stein estimator decreases and finally converges to the unrestricted estimator.

For the small value of x, the positive James-Stein and preliminary test estimators
still dominate the unrestricted estimator and then converge to the unrestricted
estimator as s increases.



James-Stein type estimators in beta regression model 1057

5. Real data application

We apply the proposed estimators to a dataset from the Turkish Statistics Associa-
tion in this section. This dataset reported in 2015, includes the indicator values of the
well-being index for provinces and was analyzed by [23]. The data is accessible from
http://www.turkstat.gov.tr/PreHaberBultenleri.do?id=24561.

The independent variables that we chose to analyze are: the percentage of households
having problems with the quality of dwellings (z1), the percentage of households having
problems with the quality of dwellings (x3), average daily earnings (z3), job satisfaction
rate (z4) savings deposit per capita (z5), the percentage of households in middle or higher
income groups (xg), life expectancy at birth (Years) (z7) satisfaction rate with public
health services (zg) murder rate (per million people) (zg), the number of traffic accidents
involving death or injury (per thousand people) (z19) satisfaction rate with public safety
services (%) (z11) the number of cinema and theatre audience (per hundred persons) (x12),
satisfaction rate with social relations (%) (z13), satisfaction rate with social life (%) (x14)
and response variable is the level of happiness (y) measured as a life satisfaction index
that lies between zero and one and the values close to one refers to a better level of life.

Table 6. Estimates and standard error of the proposed estimators for the real

data set.
Parameters UNE RE JSE PJSE PTE
Bo Estimates 24121 1.3538 1.6142 2.1833 2.0688
SE 0.1571 0.0951 0.1102 0.1402 0.1465
51 Estimates 1.3318 0.7957 1.2283 1.2292 1.2505
SE 0.0445 0.0262 0.0397 0.0397 0.0421
Bo Estimates -0.9247 -0.6594 0.5836 -0.8739 -0.8845
SE 0.0335 0.0253 0.0341 0.0314 0.0327
B4 Estimates 1.1926 1.5997 0.4848 1.2814 1.2927
SE 0.0531 0.0410 0.0407 0.0502 0.0521
B Estimates -0.0779 -0.0660 0.7864 -0.0754 -0.0742
SE 0.0017 0.0011 0.0262 0.0016 0.0016
5s Estimates 2.3260 2.2043 0.8774 2.2858 2.2583
SE 0.0564 0.0382 0.0438 0.0516 0.0534
Bo Estimates -0.7940 -0.7941 0.7990 -0.7914 -0.7889
SE 0.0147 0.0116 0.0276 0.0137 0.0142
Bi1 Estimates -2.0958 -2.2179 0.8953 -2.1139 -2.0890
SE 0.0613 0.0426 0.0389 0.0567 0.0579
Bi3 Estimates 3.1963 3.5572 0.5235 3.2787 3.2942
SE 0.0561 0.0435 0.0401 0.0520 0.0538
Bia Estimates 0.8120 0.6062 0.9618 0.7746 0.7786
SE 0.0222 0.0173 0.0288 0.0208 0.0216

To analyze this dataset, we used the betareg package in the R programming language.
The results show that the AIC of the full model is —235.86 and x3, x5, xg, £19 and x1o are
not significant. Thus in the next step, we consider the model without these independent
variables. The AIC of the new model is —242.23, which shows that the new model is
better than the full model. Therefore, we consider a sub-space that sets x3, x5, xg, T10
and x12 to zero. Our aim here is to evaluate the performance of proposed estimators
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when this sub-space is correct. We use the bootstrap case resampling method to calculate
the estimates, standard errors, and also the simulated relative efficiency of the proposed
estimators to evaluate the performance of the proposed estimators. We choose a bootstrap
sample size of 30 from the 81 observations of the dataset with 2000 replacements, and we
compute the estimators, standard errors (SE), and relative efficiencies according to each
bootstrap sample. The estimators are then determined based on the estimation methods
described in Sections 2 and 3, and the SEs are estimated using the sample SE. Summary
statistics for all parameters are presented in Table 6.

The SRE of the estimators is presented in Table 7. The results show that the SRE
of the James-Stein estimator is less than one (0.9813). Therefore, this estimator is not
an efficient estimator when the sub-space information is correct. On the other hand,
the SRE of the restricted estimator, positive James-Stein estimator and preliminary test
estimator are more significant than one, which indicates that these estimators outperform
the unrestricted estimator.

Table 7. The SRE of the proposed estimators for the real data set.

RE JSE PJSE PTE
SRE 2.3233 0.9813 1.2259 1.1278

6. Conclusion

In this paper, the MLE (as unrestricted estimator) in beta regression model is improved
using restricted estimators and shrinkage strategies when there is some information about
the coefficients’ values or their relationship. The properties of the proposed estimators,
such as symptomatic distribution bias and quadratic risk, were theoretically and numer-
ically studied. The numerical results confirm that if the sub-space is true (k = 0), the
restricted estimator outperforms the proposed estimators but when x moves away from
zero, the SRE of it gently decreases and gets even worse than the unrestricted estimator.
The performance of the positive James-Stein estimator and preliminary test estimator,
when the sub-space is true, is better than the unrestricted estimator. While s increases,
the SRE of these estimators decreases and eventually reaches one. About the James-Stein
estimator, for the small value of the precision parameter when the sub-space is true, its
performance is worse than the unrestricted estimator but as x increases, the SRE of the
James-Stein estimator increases. On the other hand, when the precision parameter is
large, the James-Stein estimator behaves like the positive James-Stein and preliminary
test estimator. Eventually, we analyze the application of the proposed estimators on an
example of real-life data to evaluate the SRE of the proposed estimators. The results for
real data also show better performance for the proposed estimators.
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Appendix A.

The proof of Theorem 3.1 and 3.2 are provided here. First, we obtain some statistical

properties of ﬁUE and BRE. If we define U} = \/H(BUE -B), Uy = \/E(BRE — B) and
Us = \/ﬁ(,BUE — BRE), by using (2.6), we can derive:
b 0 0€ B(Cr— o) B
Us| ~N | |-J¢], 6(C—Jo) 0 (A1)
Us Jf ¢J0

We also present the following lemma, which is proved by [16], that helps us to derive the
results of the mentioned theorems.

Lemma A.1. Let Z be a m-dimensional vector follows Ny, (uz,Xz). For any measurable
function of ¢, we have

E (Zd)(Z’Z)) = uzE <T/J(X$n+2(A2))>

E(Z’Z¢(Z’Z)> =3/E (w (2(A?)) ) + piypzE <¢ (Xia(2?)) )

where A? = ,U,/ZEEl,U,Z is the non-centrality parameter.

Appendix B. Proof of Theorem 3.1
By using (A.1), we have

~RE

ADBB™) = E(/n(B"" - B)) = B(U:) = —J¢. (B.1)

We can write

~JSE

ADB(B"7) =E(Va(B" - B))

By using (A.1) and above Lemma, we have

~JSE

BB~ 8)) = —J6 + JEE[1 - ex 20V

— —cJE[ ;B0 (B.2)
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~PJSE
To get the asymptotic distributional bias of 8 , We can write

~PJSE

ADB(B 7)) =E(Vn(B " - B))
F - oo 1}+( ~UE BRE)_’BH

{ ~JSE ~UE  ~RE

B )+ B -85,

UE ~RE

—F _\/H(BJSE —B)+vn(B  —B )I@NJ

—E -\/E(B Yop+ U3I(&n<c)}

~JSE
= ADB(,B ) +E |:[(3:n<c)U3]

— ADBB"") + E(Ug)E[f(sn«)}

— ADB(B"™") + JeH pa(e; \)

= —cJ¢E {quz()\)} + JEHg42(c; A).

~PTE
Finally, for the asymptotic distributional bias of B , we have

APTE

ADB(B ") =E(vn(B B))
- E[\/ﬁ{ )— (8" - BRE)I(&ngsn,a)H
= E[Ul Usl(z, <3, a)}

E(Uy) — [Usf Fn<Fn, a)]

= —E(Us) E[I §n<Fn.a ]
= _Jqu—i-Z(Snom )

Appendix C. Proof of Theorem 3.2

By definition of the asymptotic risk function (ADR), at first, we need to calculate the
MSE of estimators:

MSE@"") =& {Jﬁ(ﬁ —B)vn(B

Therefore,

ADR(B"") = tr(¢€,) = otr(C,). (C.1)
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ARE
Now, we calculate ADR of 8 as

MSER"™) ~E| Vin(p

RE ~RE

- B)vVn(B

= E[UQUQT]

= cov(Uh) + |:E(U2)] [E(UQ) T

= p[C, — Jo] + JEETIT.

Thus,

~RE
B

ADRB ) = tr(¢[Cp — Jo] + JEETJT)

= ¢tr(Cy — Jo) + JTETE

~JSE
For ADRof B, we can write

~JSE

MSEBE) = '|vad”" - g)yyn@’"" - ﬂ)T}

+E {{1 — CS',_LI}QUgUgT}

-B)"

—E :(U2 +{1- cg,;l}Ug) <U2 +{1— csgl}U3>T

=E _UQUﬂ + ]E{UQ{l — cs,;l}Ug] + E[UQT{1 — CSEI}U3:|

= cov(Us) + {]E(Ug)} {E(Ug)}T + 2E{Uz{1 - c&?l}Us,T]

+ E{{l —~ 03;1}2U3U3T} :

Mo

By using the lemma, we have

M, =E|Ux{1 - cggl}UgT}

) E[Ug{l — 5, Yulus

|

_E|E [U2|U3] {1—c5, YUt

—E| - Jeqn —c&;l}Usﬂ

= —JEE [{1 — g Ut

= —JER(UDE

1- CX(J_JEQ()‘)]

M,

_E _{E(Ug) + cov(Us, Us)cov(Us)] ™ (Us — E(Us)) }{1 _ cg,;l}UgT]
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M, = —JeeTJTE

1—‘CX532(A)}
— _Je" T 4 cJeeT IR [quz(x)] (C.4)
and by following the lemma for My, we have

My =E {{1 — 5, Y2UsUT

T

= cov(Ug)IE[{l - qufQ(A)}ﬂ + [E(Ug)] [E(Ug) E[{l - qu+24(A)}2}

— GJoE {{1 - qu—fz(x)}?] + TR - e 20 }2]. (C.5)

Consequently,

E

MSE(BJS ) = ¢[Cp — Jo] + JEET T — 2767 JT + 2cJ¢T JTE

X;f2(A)}
+ 0IE[ {1 - e W) + JETITE| {1 - oGOV

= ¢Cy + 2¢JEETJTR

GO + 0 RE b )| - 208.0E G0

+ I JTE

G| - 207667 TR

GO (C.6)

Therefore,

SJSE
B

ADR( ) = ¢tr(C,) 4+ 2c£T JT JER

Xq_fQ()\)} + ¢ctr(Jo)E

]
— 2cgtr(Jo)E [qug(A)} + 2T I JER {qu_ﬂl()\)]

—2c¢TJT JEE

X;f4()\)] :

For the ADR of ﬁPJSE, we have

~PJSE [ ~PJSE ~PJSE T
- -p)"|

MSEB ~7) =E|vn(B B)vVn(B

J ~JS

SE—5)+(%Q&K@}{Vﬁw

JSE
-B

—E|{va(d T-p)+ Usf<sn<c>}T

JSE

_&[vn@ yWa(g”s” —ﬂ)ﬂ +E[\/ﬁ</’3

JSE
-B

- ﬂ)UéTI(Sn<C):|

+E [ﬁ(ﬁ >TU31<gn<c>} L E [USUST I<sn<c>]

J

~JSE ~JSE
_ MSE(B )+2E{\/ﬁ(ﬁ —,B)UgTI(gnQ)] +IE[U3U3TI(3”<C)],

Ms My

(C.7)
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where
Ms=E \/ﬁ(ﬂ - IB)U?,TI(Sn@)}
=E _(Uz + {1 - CSEI}UB) Ug[(&me)}
=F _UQUSTI(EN) + UsUj {1 — cgnl}&sn«)}
—F —E [UQUBTI(%@)\U;J,H + E[UgUgT{l — ngl}f(gn<c)]

~E E[UﬂL@]U§I@ﬁ<@]+—E[U3U§{1——csgl}hgn<a]

_E :{IE(UQ) + coo(Us, Uy)[cov(Us)] ™ (Us — E(Ug))}UgI(Sn@)]

+E |:U3Ug{1 — 637;1}](3”<C)

~ BB I(5,<0| + B[V {1 - 571} 5,0 |
= —J¢E {Ug I(gn@)} + cov(Us)E [{1 - qufg(k)}ﬁxq—g(x)@)}

+ E(U3)E(U3)'E

-2
{1- CXq+4()\)}I(Xq_f4()\)<c):|

= —JET T Hyo(c; \) + ¢ JoE

{1- CXq_f2(/\)}I(quz(,\)<c)]
+ JﬁfTJTE [{1 - CX;f4()\)}I(qu4(A)<c)]
= —JE T Hypa(e; ) + 0JoHya (€ A) = ch o E {Xq+22@)[<x;fz<x><c>}

+ JEET T Hypa(c; M) — cJEET TR

-2
Xq+4()‘)I(Xq—j4(,\)<c)} (C.8)
and

M, =E [UgUg,T I(gn@)]

(Xg2

(xqf4(>\)<0)]

_ T 1T
—¢J0E[I<xqu(x><c>} IR qu4(>\)<0)}

= ¢JoHyya(c; A) + JEE T  Hypa(c; M), (C.9)
By replacing (C.8) and (C.9) in (C.7), we have

) —2Jeet gt {Hm(c; ) — Hypa(c )\)}

I

MSE(BPJSE) _ MSE(BJSE

+ 3¢ JoHy 2(c; A) — 2c¢JoE

-2
Xg2(M)] (X;EQ(A)@)]

—2cJe¢TJTE

X;@(A)I(Xq@(A)QJ + 276 T Hypa(c; N). (C.10)
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Therefore,

SPJSE L JSE
B

ADR(B ") = ADR( y—2eT gt ¢

Hysa(ei ) — Hyva(ei )|

+ 3¢tr(Jo)Hyq2(c; N) — 2¢ptr(Jo)E

)
Xar2 (M (xqf2<x><c>}

—2c¢T JT JER qu4(A)I(qu4(A)<C)} + 26T JT JEH, 1 4(c;)).  (C.11)
For BPTE, we have
~PTE [ ~PTE ~PTE
MSE@B ") =E|VnB BB ~-B)"

=E| (U1 — Usl(3,<5,..)) (U1 — Uﬂ(snssn,a))ﬂ

=E|U,UT

- E[UleTf(sngsn,a)} - E{UlTU?J(&nSEn,a)]

+ E[U3Ugf(sn<sn,a)}

= cou(tn) + £ [E(@) '

—2E [UFUSI(snssn,a)]
+ E[U3U§I(Sn<sn,a)}
= ¢C; — 2E E[UlUng(Sngsn,aﬂUs” + E{U?)U?,Tf(snssn,a)]

— Qbem - QE ]E|:U1|U3:| Ugl(&nggn,a)} + E |:U3Ugl(§n§3n7a):|

= ¢C, — 2K :{E(Ul) + cov(Uy, Us) [cov(Us)} _1(U3 - E(U3)>}U§I<&ns'f>]
+ E[U?)U:J,TI(Sngsn,a)}

= ¢C, — 2E[(U3 - J€)U§Ipf(sn<3n,a)} + E[USUgTI(ann,a)]

= $C, — E[UgUgI(gnggnya)} + 2J¢E |:U3TI(37L§37L70¢)

T
Hq+4 (gn,a ; )\)

— 96, — cov(Ua) Hy1a(Snai ) — B0 [BWH)

+ 2767 T Hy 28 M)
= ¢Cs — 9JoHy12(Fnas ) + JEET T (2Hg12(Fnas ) — Hyra(Fnsas A))-

Thus,
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