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Abstract

In this study, we consider a partitioned linear model with linear partial parameter constrains,
known as a constrained partitioned linear model (CPLM), and its reduced models. A group
of formulas on best linear unbiased predictors (BLUPs) and best linear unbiased estimators
(BLUEs) in CPLM is derived via some quadratic matrix optimization methods, and further
many basic properties of the predictors and estimators are established under some general
assumptions. Our main purpose is to derive various inequalities and equalities for the
comparison of covariance matrices of BLUPs and BLUEs under CPLM and its reduced
models.

1. Introduction and preliminary results

We first introduce the following notations. A′, r(A), C (A), and A+ denote, respectively, the transpose, the rank, the column
space, and the Moore–Penrose generalized inverse of A ∈ Rm×n, where Rm×n stands for the set of all m×n real matrices.
EA = A⊥ = Im−AA+ stands for the orthogonal projector, where Im denotes the identity matrix of size m×m. i+(A) and
i−(A) denote the positive and the negative inertias of symmetric matrix A, respectively, and for both i±(A) and i∓(A) are
used. The inequality A1−A2 < 0 or A1 < A2 means that the difference A1−A2 is positive semi-definite (psd) matrix in
the Löwner partial ordering (LPO) for the symmetric matrices A1 and A2 of same size, further, we use A1 ≺ A2, A1 4 A2,
and A1 � A2 in cases where the difference A1−A2 is negative definite, negative semi-definite, and positive definite matrix,
respectively.
As a linear model with its partitioned form, we consider

M : y = Xα + ε =
[
X1, X2

][
α ′1, α ′2

]′
+ ε = X1α1 +X2α2 + ε, (1.1)

E(ε) = 0 and cov(ε,ε) = D(ε) = σ
2
Σ, (1.2)

and its reduced model

MR : X⊥2 y = X⊥2 X1α1 +X⊥2 ε, (1.3)

where y ∈ Rn×1 is a vector of observable response variables, X =
[
X1, X2

]
∈ Rn×k is a known matrix of arbitrary rank with

Xi ∈Rn×ki , α =
[
α ′1, α ′2

]′ ∈Rk×1 is a vector of fixed but unknown parameters with α i ∈Rki×1, ε ∈Rn×1 is an unobservable
vector of random errors, σ2 is a positive unknown parameter, and Σ ∈ Rn×n is a known psd matrix of arbitrary rank, i = 1,2,
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k1 + k2 = k. The reduced linear model MR in (1.3), also known as the correctly-reduced model, is obtained by pre-multiplying
X⊥2 on both sides of the partitioned linear model M in (1.1); see, e.g., [1] and [2]. The model in (1.3) is one of the different
forms of the model in (1.1) and, especially, this model can be considered when estimation/prediction problems in general
parametric functions of partial parameters are considered.
In statistical theory and its applications, there often exist certain restrictions on unknown parameters in linear regression models.
These kinds of restrictions occur in many situations such as the linear hypothesis testing on parameters. Let us considered the
partitioned linear model in (1.1) with a certain restriction on α1, known as constrained partitioned linear model (CPLM), as
follows:

N : y = Xα + ε = X1α1 +X2α2 + ε, A1α1 = b1, (1.4)

and its constrained reduced linear model (CRLM),

NR : X⊥2 y = X⊥2 X1α1 +X⊥2 ε, A1α1 = b1, (1.5)

where the linear restriction equation A1α1 = b1 is consistent for given A1 ∈ Rm×k1 of arbitrary rank and b1 ∈ Rm×1. The two
given equation parts in (1.4) and (1.5) can merge into the following combined form of vectors

N̂ : ŷ = X̂α + ε̂ = X̂1α1 + X̂2α2 + ε̂, (1.6)

N̂R : X̂⊥2 ŷ = X̂⊥2 X̂1α1 + X̂⊥2 ε̂, (1.7)

respectively, and according to the expectation and covariance matrix assumptions in (1.2),

E(ŷ) = X̂α, E(X̂⊥2 ŷ) = X̂⊥2 X̂1α1, D(ŷ) = D(ε̂) = σ
2
[

Σ 0
0 0

]
:= Σ̂, D(X̂⊥2 ŷ) = D(X̂⊥2 ε̂) = σ

2X̂⊥2 Σ̂X̂⊥2 (1.8)

are obtained, where

ŷ =

[
y
b1

]
, X̂ =

[
X̂1, X̂2

]
=

[
X1 X2
A1 0

]
, X̂1 =

[
X1
A1

]
, X̂2 =

[
X2
0

]
, ε̂ =

[
ε

0

]
, X̂⊥2 =

[
X⊥2
0

]
.

This merging operation in (1.6) and (1.7) is a well-known method of including equality restrictions in constrained linear
regression models.
We make statistical inference of the models in (1.6) and (1.7) under the assumptions that the models are consistent, i.e., we
assume that ŷ ∈ C

[
X̂, Σ̂

]
holds with probability (wp) 1, corresponding the consistency of N̂ , in this case, the model N̂R in

(1.7) is consistent, i.e., X̂⊥2 ŷ ∈ C
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
holds wp 1; see, e.g., [3].

To estimate the unknown parameter vector α1 and to predict random error vector ε jointly in (1.4) and (1.5), we construct a
general vector containing the both unknown vectors as follows

φ 1 = K1α1 +Hε̂ =
[
K1,0

]
α +Hε̂ := K̂α +Hε̂ (1.9)

for given matrices K̂ =
[
K1,0

]
∈Rs×k with K1 ∈Rs×k1 and H ∈Rs×(n+m). It can be seen from the expectation and covariance

matrix assumptions in (1.2) and (1.8),

E(φ 1) = K1α1, D(φ 1) = σ
2HΣ̂H′, cov(φ 1, ŷ) = σ

2HΣ̂, cov(φ 1, X̂
⊥
2 ŷ) = σ

2HΣ̂X̂⊥2 . (1.10)

In the present paper, we concern with the problems of constrained prediction/estimation under a CPLM and its CRLMs. We
first review some of the results related to the subject that we consider in the study including the consistency of CPLMs,
predictability/estimability of φ 1 in (1.9), the best linear unbiased predictors (BLUPs), and the best linear unbiased estimators
(BLUEs). We show how to establish the BLUPs and the BLUEs of all unknown vectors in a CPLM and its CRLMs and
present some fundamental properties of the BLUPs/BLUEs by solving certain constrained quadratic matrix-valued function
optimization problems in LPO including ranks and inertias of block matrices. Our main purpose is to derive various inequalities
and equalities for comparison of covariance matrices of the BLUPs/BLUEs of all unknown vectors in the CPLM and its
CRLMs. Previous and recent work on the problems of the inference of CPLMs can be found in; see e.g., [4]-[18] among
others.
The results, in the present paper, are established by making use of formulas of ranks of block matrices and elementary matrix
operations. We review well-known results, which we need later, related to block matrices as follows.

Lemma 1.1 ([19]). Let A1, A2 ∈ Rm×n, or, let A1 = A′1, A2 = A′2 ∈ Rm×m. Then,

1. A1 = A2 ⇔ r(A1−A2) = 0.
2. A1 � A2 ⇔ i+(A1−A2) = m and A1 ≺ A2 ⇔ i−(A1−A2) = m.
3. A1 < A2 ⇔ i−(A1−A2) = 0 and A1 4 A2 ⇔ i+(A1−A2) = 0.
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Lemma 1.2 ([19]). Let A1 = A′1 ∈ Rm×m, A2 = A′2 ∈ Rn×n, P ∈ Rm×n, and c ∈ R. Then,

r(A1) = i+(A1)+ i−(A1).

i±(cA1) =

{
i±(A1) i f c > 0
i∓(A1) i f c < 0 .

i±

[
A1 P
P′ A2

]
= i±

[
A1 −P
−P′ A2

]
= i∓

[
−A1 P

P′ −A2

]
.

i±

[
A1 0
0 A2

]
= i±(A1)+ i±(A2). i+

[
0 P
P′ 0

]
= i−

[
0 P
P′ 0

]
= r(P).

Lemma 1.3 ([19]). Let A1 = A′1 ∈ Rm×m, B = B′ ∈ Rn×n, and A2 ∈ Rm×n. Then,

i±

[
A1 A2
A′2 0

]
= r(A2)+ i±(EA2A1EA2). (1.11)

i+

[
A1 A2
A′2 0

]
= r
[
A1, A2

]
and i−

[
A1 A2
A′2 0

]
= r(A2) if A1 < 0. (1.12)

i±

[
A1 A2
A′2 B

]
= i±(A1)+ i±(B−A′2A+

1 A2) if C (A2)⊆ C (A1). (1.13)

Lemma 1.4 ([20]). Let Q ∈ Rn×n be a symmetric psd matrix. Assume that there exists X0 ∈ Rm×n such that X0A = B for
given A ∈ Rn×p, B ∈ Rm×p. Then the maximal positive inertia of X0QX′0−XQX′ subject to all solutions of XA = B is

max
XA=B

i+(X0QX′0−XQX′) = r
[

X0Q
A′

]
− r(A) = r(X0QA⊥). (1.14)

Hence there exists solution X0 of X0A = B such that holds for all solutions of XA = B⇔ X0 satisfies both X0A = B and
X0QA⊥ = 0.

2. BLUPs/BLUEs’ computations

A group of computational formulas on the BLUPs/BLUEs of all unknown vectors in CPLM and its CRLMs are given with
many basic properties of BLUPs/BLUEs by using quadratic matrix optimization methods given as in Lemma 1.4. Under our
considerations, firstly, we review the predictability/estimability requirement of φ 1 and its special cases under the models (1.6)
and (1.7) before giving the definition of the BLUPs/BLUEs.

1. φ 1 in (1.9) is predictable by ŷ under N̂ in (1.6), i.e., E(Lŷ−φ 1) = 0 holds for some L⇔ C (K̂′)⊆ C (X̂′)⇔ K̂α is
estimable under (1.6), i.e., K1α1 is estimable under (1.6),

2. X̂α is always estimable and ε̂ is always predictable under (1.6),
3. φ 1 in (1.9) is predictable by X̂⊥2 ŷ under N̂R in (1.7), i.e., E(GX̂⊥2 ŷ−φ 1) = 0 holds for some G⇔ C (K′1)⊆ C (X̂′1X̂⊥2 )
⇔ K1α1 is estimable under (1.7),

4. X̂1α1 is estimable under (1.7)⇔ C (X̂′1)⊆ C (X̂′1X̂⊥2 ),
5. X̂⊥2 X̂1α1 is always estimable and X̂⊥2 ε̂ is always predictable under (1.7),
6. α1 is estimable under (1.7)⇔ r(X̂⊥2 X̂1) = k1 and ε̂ is always predictable under (1.7);

see, e.g., [21]. Further, φ 1 is predictable under N̂ when it is predictable under N̂R.

Definition 2.1 ([22],[23]). The BLUP/BLUE definitions for models in (1.6) and (1.7) are given as follows, respectively.

1. Let φ 1 be predictable by ŷ in (1.6). If there exists Lŷ such that

D(Lŷ−φ 1) = min s.t. E(Lŷ−φ 1) = 0 (2.1)

holds in the LPO, the linear statistic Lŷ is defined to be the BLUP of φ 1 and is denoted by Lŷ = BLUP
N̂
(φ 1) =

BLUP
N̂
(K̂α +Hε̂). If H = 0 in φ 1 or K̂ = 0 in φ 1, Lŷ corresponds the BLUE of K̂α , denoted by BLUE

N̂
(K̂α) and

BLUP of Hε̂ , denoted by BLUP
N̂
(Hε̂), under (1.6).
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2. Let φ 1 be predictable by X̂⊥2 ŷ in (1.7). If there exists GX̂⊥2 ŷ such that

D(GX̂⊥2 ŷ−φ 1) = min s.t. E(GX̂⊥2 ŷ−φ 1) = 0

holds in the LPO, the linear statistic GX̂⊥2 ŷ is defined to be the BLUP of φ 1 and is denoted by GX̂⊥2 ŷ = BLUP
N̂R

(φ 1) =

BLUP
N̂R

(K1α1 + Hε̂). If H = 0 in φ 1 or K1 = 0 in φ 1, GX̂⊥2 ŷ corresponds the BLUE of K1α1, denoted by
BLUE

N̂R
(K1α1) and BLUP of Hε̂ , denoted by BLUP

N̂R
(Hε̂), under (1.7).

The fundamental results on BLUP of φ 1 under (1.6) and (1.7) are collected in the following theorems. The results given below
are obtained from [24] by considering the models and notation used in this paper. For different approaches; see, e.g, [23], [25].

Theorem 2.2. Let φ 1 be predictable by ŷ in (1.6). Then,

BLUP
N̂
(φ 1) = Lŷ =

([
K̂ HΣ̂X̂⊥

]
W+

1 +P1W⊥
1

)
ŷ, (2.2)

where P1 ∈ Rs×(n+m) is an arbitrary matrix and W1 =
[
X̂, Σ̂X̂⊥

]
. In particular,

1. L is unique⇔ r(W1) = (n+m).
2. BLUP

N̂
(φ 1) is unique wp 1⇔ N̂ is consistent.

3. r(W1) = r
[
X̂, Σ̂

]
= r
[
X̂, X̂⊥Σ̂

]
.

4. Further, the following dispersion matrix equalities hold.

D[BLUP
N̂
(φ 1)] = σ

2 [K̂, HΣ̂X̂⊥
]

W+
1 Σ̂
([

K̂, HΣ̂X̂⊥
]

W+
1
)′
, (2.3)

D[φ 1−BLUP
N̂
(φ 1)] = σ

2 ([K̂, HΣ̂X̂⊥
]

W+
1 −H

)
Σ̂
([

K̂, HΣ̂X̂⊥
]

W+
1 −H

)′
. (2.4)

5. In particular,

BLUE
N̂
(K̂α) =

([
K̂, 0

]
W+

1 +P2W⊥
1

)
ŷ, (2.5)

BLUP
N̂
(Hε̂) =

([
0, HΣ̂X̂⊥

]
W+

1 +P3W⊥
1

)
ŷ, (2.6)

where P2 and P3 ∈ Rs×(n+m) are arbitrary matrices.

Proof. Let Lŷ be an unbiased linear predictor for φ 1 under the model in (1.6). Then,

E(Lŷ−φ 1) = 0⇔ LX̂ = K̂, i.e.,
[
L, −Is

][X̂
K̂

]
= 0, (2.7)

D(Lŷ−φ 1) = σ
2(L−H)Σ̂(L−H)′ = σ

2 [L, −Is
][In+m

H

]
Σ̂

[
In+m

H

]′ [
L, −Is

]′ (2.8)

for unbiased linear predictor Lŷ. The similar expressions can be written for the other unbiased linear predictor Tŷ for φ 1 under
the model in (1.6) by writing T instead of L in (2.7) and (2.8). Then the expression in (2.1) can be expressed as to find solution
L of the consistent linear matrix equation LX̂ = K̂ such that D(Lŷ−φ 1)4 D(Tŷ−φ 1) s.t. TX̂ = K̂, i.e.,

[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [
L, −Is

]′
4
[
T, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [
T, −Is

]′ s.t. TX̂ = K̂. (2.9)

Applying (1.14) to (2.9), the maximal positive inertia of D(Lŷ−φ 1)−D(Tŷ−φ 1) subject to TX̂ = K̂ is obtained as follows:

max
E(Tŷ−φ1)=0

i+(D(Lŷ−φ 1)−D(Tŷ−φ 1)) = r


[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′
[

X̂
K̂

]′
− r

[
X̂
K̂

]

= r

([
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [X̂
K̂

]⊥)
.

(2.10)
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Combining (2.7) with (2.10), we conclude that D(Lŷ−φ 1) = min ⇔ there exists L satisfying both

LX̂ = K̂ and
[
L, −Is

][In+m
H

]
Σ̂

[
In+m

H

]′ [X̂
K̂

]⊥
= 0,

i.e., Lŷ = BLUP
N̂
(φ 1)⇔ L

[
X̂, Σ̂X̂⊥

]
=
[
K̂ HΣ̂X̂⊥

]
. This matrix equation is consistent and the general solution of the

equation can be written as in (2.2); see, e.g., [26]. Results in items 1 and 2 follow from (2.2). For the result in item 3, we refer
[27, Lemma 2.1(a)]. (2.3) is seen from (2.2) and the assumptions in (1.2). Further,

cov{BLUP
N̂
(φ 1),φ 1}=

[
K̂ HΣ̂X̂⊥

][
X̂, Σ̂X̂⊥

]+
Σ̂H′ (2.11)

by using (1.8) and (1.10). (2.4) is seen from (2.3) and (2.11). (2.5) and (2.6) follow directly from (2.2).

Theorem 2.3. Let φ 1 be predictable by X̂⊥2 ŷ in (1.7). Then,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 +P4W⊥

2

)
X̂⊥2 ŷ, (2.12)

where P4 ∈ Rs×(n+m) is an arbitrary matrix and W2 =
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]. In particular,

1. G is unique⇔ r(W2) = (n+m).
2. BLUP

N̂R
(φ 1) is unique wp 1⇔ N̂R is consistent.

3. r(W2) = r
[
X̂⊥2 X̂1, (X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2
]
= r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
.

4. The following dispersion matrix equalities hold.

D[BLUP
N̂R

(φ 1)] = σ
2 [K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 Σ̂X̂⊥2

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2
)′
,

D[φ 1−BLUP
N̂R

(φ 1)] = σ
2
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′
. (2.13)

5. In particular,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

K1, 0
]

W+
2 +P5W⊥

2

)
X̂⊥2 ŷ,

BLUP
N̂R

(φ 1) = GX̂⊥2 ŷ =
([

0, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]W+
2 +P6W⊥

2

)
X̂⊥2 ŷ,

where P5 and P6 ∈ Rs×(n+m) are arbitrary matrices.

Proof. The proof of the theorem is obtained in a similar way to the proof of the Theorem 2.3.

3. Main results

Theorem 3.1. Let consider models N̂ and N̂R in (1.6) and (1.7), respectively, and assume that φ 1 is predictable under these
models. Let BLUP

N̂
(φ 1) and BLUP

N̂R
(φ 1) be as given in (2.2) and (2.12), and

A =


Σ̂ Σ̂X̂⊥2 Σ̂H′ 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
HΣ̂ 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

 .

Then

i+(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = i+(A)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1), (3.1)

i−(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = i−(A)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂), (3.2)

r(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)]) = r(A)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂). (3.3)

Further,
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1. D[φ 1−BLUP
N̂
(φ 1)]� D[φ 1−BLUP

N̂R
(φ 1)]⇔ i+(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ s.

2. D[φ 1−BLUP
N̂
(φ 1)]≺ D[φ 1−BLUP

N̂R
(φ 1)]⇔ i−(A) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂)+ s.

3. D[φ 1−BLUP
N̂
(φ 1)]< D[φ 1−BLUP

N̂R
(φ 1)]⇔ i−(A) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

4. D[φ 1−BLUP
N̂
(φ 1)]4 D[φ 1−BLUP

N̂R
(φ 1)]⇔ i+(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1).

5. D[φ 1−BLUP
N̂
(φ 1)] = D[φ 1−BLUP

N̂R
(φ 1)]⇔ r(A) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

Proof. Let D = D[φ 1−BLUP
N̂
(φ 1)]. By using (2.13) and (1.13),

i±(D[φ 1−BLUP
N̂
(φ 1)]−D[φ 1−BLUP

N̂R
(φ 1)])

= i±

(
D−

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′)

= i±

 Σ̂ Σ̂

([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)′([
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]W+
2 X̂⊥2 −H

)
Σ̂ D

− i±(Σ̂)

= i±

([
Σ̂ −Σ̂H′

−HΣ̂ D

]
+

[
Σ̂X̂⊥2 0

0
[
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]][ 0 W2
W′

2 0

]+[X̂⊥2 Σ̂ 0
0

[
K1, HΣ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]′
])

− i±(Σ̂)

(3.4)

is obtained, where W2 =
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]. We can apply (1.13) to (3.4) since the column space inclusions

C (Σ̂)⊆ C (W2) and C
([

K1, HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]′)⊆ C (W′
2) hold. Then (3.4) is equivalently written as follows

i±


0 −X̂⊥2 X̂1 −X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥ X̂⊥2 Σ̂ 0
−X̂′1X̂⊥2 0 0 0 K′1

−(X̂⊥2 X̂1)
⊥X̂⊥2 Σ̂X̂⊥2 0 0 0 (X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂H′

Σ̂X̂⊥2 0 0 Σ̂ −Σ̂H′

0 K1 HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥ −HΣ̂ D


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥]− i±(Σ̂)

= i±


−X̂⊥2 Σ̂X̂⊥2 −X̂⊥2 X̂1 −X̂⊥2 Σ̂X̂⊥2 (X̂

⊥
2 X̂1)

⊥ X̂⊥2 Σ̂H′

−X̂′1X̂⊥2 0 0 K′1
−(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 0 0 (X̂⊥2 X̂1)
⊥X̂⊥2 Σ̂H′

HΣ̂X̂⊥2 K1 HΣ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥ D−HΣ̂H′

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]

= i±

−X̂⊥2 Σ̂X̂⊥2 −X̂⊥2 X̂1 X̂⊥2 Σ̂H′

−X̂′1X̂⊥2 0 K′1
HΣ̂X̂⊥2 K1 D−HΣ̂H′

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓

X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂X̂⊥2 HΣ̂H′ K1

X̂′1X̂⊥2 K′1 0

−
0

Is
0

D
[
0 Is 0

]+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
.

(3.5)

We can reapply (1.13) to (3.5) after writing D = D[φ 1−BLUP
N̂
(φ 1)] in (2.4). Then, (3.5) is equivalently written as follows

by using the similar way to obtaining (3.4),

i∓




Σ̂ 0 −Σ̂H′ 0
0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

−HΣ̂ HΣ̂X̂⊥2 HΣ̂H′ K1

0 X̂′1X̂⊥2 K′1 0

+


Σ̂ 0
0 0
0
[
K̂, HΣ̂X̂⊥

]
0 0

[ 0 W1
W′

1 0

]+[
Σ̂ 0 0 0
0 0

[
K̂, HΣ̂X̂⊥

]′ 0

]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]− i∓(Σ̂).

(3.6)
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We can apply (1.13) to (3.6) since C (Σ̂)⊆ C (W1), where W1 =
[
X̂, Σ̂X̂⊥

]
. From Lemma 1.2 and 1.3, (3.6) is equivalent to

i∓



0 −X̂ −Σ̂X̂⊥ Σ̂ 0 0 0
−X̂′ 0 0 0 0 K̂′ 0
−X̂⊥Σ̂ 0 0 0 0 X̂⊥Σ̂H′ 0

Σ̂ 0 0 Σ̂ 0 −Σ̂H′ 0
0 0 0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

0 K̂ HΣ̂X̂⊥ −HΣ̂ HΣ̂X̂⊥2 HΣ̂Ĥ′ K1

0 0 0 0 X̂′1X̂⊥2 K′1 0


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− i∓(Σ̂)− r

[
X̂, Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓



−Σ̂ −X̂ −Σ̂X̂⊥ 0 Σ̂H′ 0
−X̂′ 0 0 0 K̂′ 0
−X̂⊥Σ̂ 0 0 0 X̂⊥Σ̂H′ 0

0 0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂ K̂ HΣ̂X̂⊥ HΣ̂X̂⊥2 0 K1

0 0 0 X̂′1X̂⊥2 K′1 0


− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i∓


−Σ̂ −X̂ 0 Σ̂H′ 0
−X̂′ 0 0 K̂′ 0

0 0 X̂⊥2 Σ̂X̂⊥2 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

HΣ̂ K̂ HΣ̂X̂⊥2 0 K1

0 0 X̂′1X̂⊥2 K′1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i±


Σ̂ 0 X̂ Σ̂H′ 0
0 −X̂⊥2 Σ̂X̂⊥2 0 X̂⊥2 Σ̂H′ X̂⊥2 X̂1

X̂′ 0 0 K̂′ 0
HΣ̂ HΣ̂X̂⊥2 K̂ 0 −K1

0 X̂′1X̂⊥2 0 −K′1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

+ i±
[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]

= i±


Σ̂ −Σ̂X̂⊥2 X̂ 0 Σ̂H′

−X̂⊥2 Σ̂ 0 −X̂⊥2 X̂1 X̂⊥2 X̂1 0
X̂′ −X̂′1X̂⊥2 0 0 K̂′

0 X̂′1X̂⊥2 0 0 −K′1
HΣ̂ 0 K̂ −K1 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r
[
X̂, Σ̂

]
+ i∓

[
X̂⊥Σ̂X̂⊥

]

= i±


Σ̂ Σ̂X̂⊥2 Σ̂H′ 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
HΣ̂ 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ i±

[
(X̂⊥2 X̂1)

⊥X̂⊥2 Σ̂X̂⊥2 (X̂
⊥
2 X̂1)

⊥]− r
[
X̂, Σ̂

]

+ i∓
[
X̂⊥Σ̂X̂⊥

]
.

(3.7)

In consequence, by using (1.11) and (1.12), we obtain (3.1) and (3.2) from (3.7). (3.3) is obtained by adding the equalities in
(3.1) and (3.2). (a)-(e) is seen from (3.1)-(3.3) by using Lemma 1.1.

As an immediate consequence of Theorem 3.1, the following results are obtained by setting H = 0 and K1 = X̂1, respectively,
in this theorem.
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Corollary 3.2. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that K1α1 is estimable under these
models. Denote

B =


Σ̂ Σ̂X̂⊥2 0 0 X̂

X̂⊥2 Σ̂ 0 0 X̂⊥2 X̂1 0
0 0 0 K1 0
0 X̂′1X̂⊥2 K′1 0 0
X̂′ 0 0 0 0

 .
Then

i+(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = i+(B)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1),

i−(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = i−(B)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂),

r(D[BLUE
N̂
(K1α1)]−D[BLUE

N̂R
(K1α1)]) = r(B)− r

[
X̂, Σ̂

]
− r(X̂⊥2 X̂1)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂).

Further,

1. D[BLUE
N̂
(K1α1)]� D[BLUE

N̂R
(K1α1)]⇔ i+(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ s.

2. D[BLUE
N̂
(K1α1)]≺ D[BLUE

N̂R
(K1α1)]⇔ i−(B) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂)+ s.

3. D[BLUE
N̂
(K1α1)]< D[BLUE

N̂R
(K1α1)]⇔ i−(B) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

4. D[BLUE
N̂
(K1α1)]4 D[BLUE

N̂R
(K1α1)]⇔ i+(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1).

5. D[BLUE
N̂
(K1α1)] = D[BLUE

N̂R
(K1α1)]⇔ r(B) = r

[
X̂, Σ̂

]
+ r(X̂⊥2 X̂1)+ r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂).

Corollary 3.3. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that X̂1α1 is estimable under these
models. Denote

C =

 Σ̂ Σ̂X̂⊥2 X̂
X̂⊥2 Σ̂ 0 0
X̂′ 0 0

 .
Then

i+(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = i+(C)− r

[
X̂, Σ̂

]
,

i−(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = i−(C)− r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂2),

r(D[BLUE
N̂
(X̂1α1)]−D[BLUE

N̂R
(X̂1α1)]) = r(C)− r

[
X̂, Σ̂

]
− r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
− r(X̂2).

Further,

1. D[BLUE
N̂
(X̂1α1)]� D[BLUE

N̂R
(X̂1α1)]⇔ i+(C) = r

[
X̂, Σ̂

]
+m+n.

2. D[BLUE
N̂
(X̂1α1)]≺ D[BLUE

N̂R
(X̂1α1)]⇔ i−(C) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2)+m+n.

3. D[BLUE
N̂
(X̂1α1)]< D[BLUE

N̂R
(X̂1α1)]⇔ i−(C) = r

[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2).

4. D[BLUE
N̂
(X̂1α1)]4 D[BLUE

N̂R
(X̂1α1)]⇔ i+(C) = r

[
X̂, Σ̂

]
.

5. D[BLUE
N̂
(X̂1α1)] = D[BLUE

N̂R
(X̂1α1)]⇔ r(C) = r

[
X̂, Σ̂

]
+ r
[
X̂⊥2 X̂1, X̂⊥2 Σ̂X̂⊥2

]
+ r(X̂2).

Corollary 3.4. Let N̂ and N̂R be as given in (1.6) and (1.7), respectively, and assume that α1 is estimable under these
models. Then

1. i±(D[BLUE
N̂
(α1)]−D[BLUE

N̂R
(α1)]) = r(D[BLUE

N̂
(α1)]−D[BLUE

N̂R
(α1)]) = 0.

2. i±(ε̂−D[BLUP
N̂
(ε̂)]−D[ε̂−BLUP

N̂R
(ε̂)]) = r(ε̂−D[BLUP

N̂
(ε̂)]−D[ε̂−BLUP

N̂R
(ε̂)]) = 0.
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