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Abstract. This work formally introduces and starts investigating the struc-

ture of matrix polynomial algebra extensions of a coefficient algebra by (el-

ementary) matrix-variables over a ground polynomial ring in not necessary

commuting variables. These matrix subalgebras of full matrix rings over poly-

nomial rings show up in noncommutative algebraic geometry. We carefully

study their (one-sided or bilateral) noetherianity, obtaining a precise lift of the

Hilbert Basis Theorem when the ground ring is either a commutative polyno-

mial ring, a free noncommutative polynomial ring or a skew polynomial ring

extension by a free commutative term-ordered monoid. We equally address the

natural but rather delicate question of recognising which matrix polynomial

algebras are Cayley-Hamilton algebras, which are interesting noncommutative

algebras arising from the study of Gl𝑛-varieties.
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1. Introduction

Of fundamental role in commutative algebra and commutative algebraic geom-

etry are commutative polynomial rings over a base field [2,3,4]. This explains the

rich investigation of their ideal theory and that of near skew polynomial rings.

With the development of noncommutative algebraic geometry, various more or less

specialized matrix subalgebras of the full matrix algebras over polynomial rings

arise naturally as interesting classes of algebras. In the realm of noncommutative

deformation theory as introduced by Laudal and Eriksen [5,12,13] and further re-

fined by Siqveland [18, §5], free matrix polynomial algebras and their completions

showed up as important tools in the computation of pro-representing hulls (for-

mal moduli) [5, §5, p 105]. Motivated by this, an earlier rather informal attempt
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to matrix polynomial algebras appeared in [18, p 2] and was not further investi-

gated. For a positive integer 𝑛 and arising from Gl𝑛-equivariant algebraic geometry,

an interesting class of noncommutative algebras investigated by [14] is formed by

Cayley-Hamilton algebras of degree 𝑛 over the field C of complex numbers. Here,

free affine Cayley-Hamilton algebras are specialized matrix polynomial algebras in

commuting variables, called the trace algebra [14, §1.4; §1.8, Theorem 1.16].

However on the algebra side of the story, it seems there had not been a systematic

study of matrix polynomial algebras as compared to commutative polynomial rings.

The need therefore arises to formalize and systematically investigate the structure

theory and the geometry of matrix polynomial algebra extensions. In this work

we focus on the structure of these algebras, their geometry being the object of a

subsequent work. Briefly, letting k be a base commutative ring and given a non-zero

𝑛 ∈ N, a matrix polynomial algebra A is an extension of a coefficient k-algebra 𝑅

by set X of 𝑛 × 𝑛 matrix-variables 𝑋 = (𝑥𝑖, 𝑗 )𝑖, 𝑗 (together with some special constant

matrices), with 𝑥𝑖, 𝑗 ∈ 𝑿 ∪{0} for all 𝑖, 𝑗 , where 𝑿 is a set of not necessarily commuting

variables. Such an object is actually very general with a complex structure, and

should model various polynomial-like algebras arising in noncommutative algebraic

geometry. In order to access a relevant aspect of the structure and geometry of

A, it is necessary to restrict attention to generic subclasses. As pointed out above,

this was done for Cayley-Hamilton algebras by [14]. In this work we are concerned

essentially with the case where A includes all the elementary idempotent matrices.

We shall now describe in more details the main contributions of this paper. In

the first part (Sections 2, 3 and 4), we fix a ground polynomial ring extension of a

coefficient k-algebra by a set 𝑿 of independent variables subject only to some com-

mutativity relations between some variables; this includes the commutative and the

free noncommutative polynomial rings. In this framework, Section 2 further unfolds

the structure of matrix polynomial algebras, computes their centers and briefly il-

lustrates their use in noncommutative deformation theory. Section 3 addresses the

question of (one-sided or bilateral) noetherianity and the main contribution in this

direction given by Theorem 3.12 is a precise analogue of the Hilbert Basis Theorem

([8, §7.10], [2, Thm 7.5]).

In Section 4 we study the intersection with Cayley-Hamilton algebras, obtaining

in Theorem 4.4 that a matrix polynomial algebra A in commuting variables admits

a trace map making it Cayley-Hamilton of degree 𝑟 ∈ J1 , 𝑛K precisely when the

diagonal components of A coincide and the trace map is induced by the natural

trace on matrices.
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The final section 5 generalizes the framework by letting the ground ring be a skew

polynomial ring extension of a coefficient algebra by a free commutative term-

ordered monoid. This change yields a more complex structure for matrix skew

polynomial extensions. We are able to achieve a precise generalisation of the Hilbert

Basis Theorem to univariate matrix skew polynomial extensions (Theorem 5.4 and

Corollary 5.5); the corresponding result in the multivariate case (Theorem 5.7)

restricts the coefficient algebra to a division algebra.

2. Matrix polynomial algebras

As general settings, we fix a base commutative ring k and a coefficient k-algebra

𝑅; every k-algebra is assumed associative and unitary. We also fix a non-zero 𝑛 ∈ N

and suitably write J𝑝 , 𝑞K = {𝑖 ∈ Z : 𝑝 ≤ 𝑖 ≤ 𝑞} for 𝑝, 𝑞 ∈ N. The canonical basis of

the full matrix ring M𝑛 (k) and the subset of elementary idempotent matrices are

given by:

E = {𝒆𝑖,𝑗 : 𝑖, 𝑗 ∈ J1 , 𝑛K} and 𝑰 = {𝒆𝑖 = 𝒆𝑖,𝑖 : 1 ≤ 𝑖 ≤ 𝑛}.

Each elementary matrix 𝒆𝑖,𝑗 has 1 as its (𝑖, 𝑗)-entry, and 0’s elsewhere.

From this section down to Section 4, we fix a ground polynomial ring 𝑹 = 𝑅⟨𝑿 ; 𝑪⟩
with 𝑿 an algebraically 𝑅-independent set of not necessarily commuting variables,

subject to some commutativity relations ‘𝑥𝑦 = 𝑦𝑥 ’ for (𝑥,𝑦) running through a

prescribed subset 𝑪 ⊂ 𝑿 × 𝑿 . Thus the ambient monoid of terms

⟨𝑿 ; 𝑪⟩ = ⟨𝑿 : 𝑥𝑦 = 𝑦𝑥 for all (𝑥,𝑦) ∈ 𝑪⟩

is the quotient of the free monoid ⟨𝑿⟩ modulo some commutativity relations.

Definition 2.1. By a matrix-variable (over 𝑿) is meant any non-zero (𝑛 × 𝑛)-
matrix 𝑋 each of whose entries is either a variable from 𝑿 or is equal to 0; it is

called elementary if 𝑋 = 𝒆𝑖, 𝑗𝑥 with 𝑖, 𝑗 ∈ J1 , 𝑛K and 𝑥 ∈ 𝑿 .

Let X be a set of matrix-variables, to which is adjoined a multiplicatively closed

subset 𝑬 ⊂ E. The matrix polynomial extension of 𝑅 by (𝑬 ,X, 𝑪) is the subalgebra

𝑅⟨𝑬 ,X; 𝑪⟩ = 𝑅⟨𝒆, 𝑋 : 𝒆 ∈ 𝑬 , 𝑋 ∈ X ; 𝑪⟩

of the full matrix algebra M𝑛 (𝑹), generated over 𝑅 · 𝑬 = ⊕𝒆∈𝑬𝑅𝒆 by the matrix-

variables in X. We refer to (X, 𝑪) (or more precisely, (𝑬 ,X, 𝑪)) as a seed.

From now and henceforth we fix a seed (𝑬 ,X, 𝑪) and write A = 𝑅⟨𝑬 ,X; 𝑪⟩ for

our running matrix polynomial algebra. We also consider the generic case where A

includes all the elementary idempotent matrices. Hence,

𝑰 ⊂ 𝑬 ⊂ E and X re-organizes as X = (X𝑖, 𝑗 )𝑖, 𝑗 = ∪
1≤𝑖, 𝑗≤𝑛

X𝑖, 𝑗 𝒆𝑖, 𝑗 .
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And as matrix subalgebra of M𝑛 (𝑹) we have:

A =
(
A𝑖, 𝑗

)
𝑖, 𝑗

= ⊕
1≤𝑖, 𝑗≤𝑛

A𝑖, 𝑗 𝒆𝑖, 𝑗 =

A1,1 · · · A1,𝑛
...

...

A𝑛,1 · · · A𝑛,𝑛

, and we set A𝑖 = A𝑖,𝑖 , 1 ≤ 𝑖 ≤ 𝑛.

Each diagonal component A𝑖 ⊂ 𝑹 is a k-algebra extension of 𝑅, each A𝑖, 𝑗 ⊂ 𝑹 is an

A𝑖 -A𝑗 -bimodule for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Observe for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ J1 , 𝑛K that the set 𝒆𝑖,𝑘 ·X𝑘,𝑙 𝒆𝑘,𝑙 · 𝒆𝑙, 𝑗 = 𝒆𝑖, 𝑗X𝑘,𝑙 already lies

in A as soon as both 𝒆𝑖,𝑘 and 𝒆𝑙, 𝑗 belong to 𝑬 . Thus we may henceforth assume from

the start that X is 𝑬-saturated in the sense that:

for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ J1 , 𝑛K, if 𝒆𝑖,𝑘 , 𝒆𝑙, 𝑗 ∈ 𝑬 , then X𝑘,𝑙 ⊂ X𝑖, 𝑗 .

❍ When 𝑬 = 𝑰 , simplifying the notation one writes:

𝑅⟨X; 𝑪⟩ = 𝑅⟨𝑰 ,X; 𝑪⟩ = 𝑅⟨𝒆𝑖 , 𝑥𝒆𝑖,𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑥 ∈ X𝑖, 𝑗 ; 𝑪⟩.

On the other hand, the full matrix algebra M𝑛 (𝑹) is recovered when 𝑬 = E.

❍ For 𝑪 = ∅ and 𝑬 = 𝑰 , we get the free matrix polynomial algebra extension

𝑅⟨X⟩ = 𝑅

〈X1,1 · · · X1,𝑛
...

. . .
...

X𝑛,1 · · · X𝑛,𝑛

〉
= 𝑅⟨𝒆𝑖 , 𝑥𝒆𝑖,𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑥 ∈ X𝑖, 𝑗 ⟩.

❍ When 𝑪 = 𝑿 × 𝑿 and 𝑬 = 𝑰 , we get the matrix polynomial ring (in commuting

variables)

𝑅 [X] = 𝑅


X1,1 · · · X1,𝑛
...

. . .
...

X𝑛,1 · · · X𝑛,𝑛

 = 𝑅 [𝒆𝑖 , 𝑥𝒆𝑖,𝑗 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑥 ∈ X𝑖, 𝑗 ] .

With A is associated a set T = T (X) of elementary matrix-terms, such that:

T ∪{0} = ⟨𝑬 ,X; 𝑪⟩ is the semigroup generated by 𝑬 and the elementary matrix-

variables, the components T𝑖, 𝑗 are such that 𝒆𝑖T 𝒆 𝑗 = 𝒆𝑖, 𝑗T𝑖, 𝑗 , 𝑖, 𝑗 ∈ J1 , 𝑛K.
(2.1)

For every 𝑖, 𝑗 ∈ J1 , 𝑛K, the set T𝑖 = T𝑖,𝑖 is a submonoid of the (not necessarily com-

mutative) monoid ⟨𝑿 ; 𝑪⟩ = ⟨𝑿 : 𝑥𝑦 = 𝑦𝑥 for all (𝑥,𝑦) ∈ 𝑪⟩. For 𝑖 ≠ 𝑗 , the set T𝑖, 𝑗

includes the constant term 1 precisely when 𝒆𝑖, 𝑗 ∈ 𝑬 .

Both X and the structure of T and A are efficiently described by a labelled quiver:

QX : with set of points J1 , 𝑛K, and labelled arrows 𝑖 𝑥 𝑗 for 𝑥 ∈ X𝑖, 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Let us make precise some terminology on labelled quivers needed in the sequel.
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i) For each pair 𝑖, 𝑗 ∈ J1 , 𝑛K, the set QX,1 (𝑖, 𝑗) consists of all labelled arrows

𝑖
𝑥
𝑗 with 𝑥 ∈ X𝑖, 𝑗 . Alternatively (when X𝑖, 𝑗 ≠ ∅), the set of all labelled

arrows from 𝑖 to 𝑗 may be represented by a single labelled arrow 𝑖
X𝑖, 𝑗

𝑗 .

ii) For any non-zero𝑚 ∈ N, an𝑚-length path from 𝑖 to 𝑗 in QX is any sequence

of labelled arrows 𝜔 : 𝑖 = 𝑖1
𝑥1

𝑖2 · · · 𝑖𝑚
𝑥𝑚

𝑖𝑚+1 = 𝑗 . The empty path (or

trivial path) at 𝑖 is identified with the idempotent 𝒆𝑖 . We denote by QX (𝑖, 𝑗)
the set of all paths from 𝑖 to 𝑗 , and by QX,𝑚 (𝑖, 𝑗) the subset of 𝑚-length

paths from 𝑖 to 𝑗 .

For an 𝑚-length path 𝜔 ∈ QX (𝑖, 𝑗) as before, the 𝑚-length term of 𝜔 and

the incidence set of 𝜔 are defined by:

𝜔 = 𝑥1 · · · 𝑥𝑚 ∈ T𝑖, 𝑗 and 𝒊𝜔 = {𝑖1, . . . , 𝑖𝑚, 𝑖𝑚+1}. (2.2)

In particular, the incidence set of the empty path at each 𝑖 ∈ J1 , 𝑛K is

𝒊𝒆𝑖 = {𝑖}.
iii) A cycle is any non-trivial path 𝜔 whose source and target coincide. A simple

path is any one that does not properly contain a cycle.

The next remark expands the description of the set T of elementary matrix-

terms, highlighting the link between matrix polynomial algebras and usual path

algebras.

Remark 2.2. (a) The ring A = 𝑅T = 𝑅 [T ] is a semigroup ring extension of 𝑅

with multiplicative basis T , that is, T is an 𝑅-central basis for A such that

T ∪{0} is a semigroup with zero.

(b) For every 𝑖, 𝑗 ∈ J1 , 𝑛K, T𝑖, 𝑗 consists of terms 𝜔 along all paths 𝜔 in QX (𝑖, 𝑗),
together with the constant 1 if also 𝒆𝑖, 𝑗 ∈ 𝑬 .

(c) If the components of X are pairwise disjoint, then the free matrix polyno-

mial algebra 𝑅⟨X⟩ coincides with the usual path algebra 𝑅QX of an abstract

quiver (as presented for instance in [1, ch II]).

Example 2.3. Let 𝑥,𝑦, 𝑧 be three independent variables over 𝑅, and take:

X =
[ 𝑥 𝑦,𝑧
𝑧 𝑦

]
, with associated labelled quiver QX: 1 2𝑥 𝑦

𝑦, 𝑧

𝑧
.

𝑅 [X] = 𝑅
[ 𝑥 𝑦,𝑧
𝑧 𝑦

]
=
𝑅 [𝑥] + {𝑦𝑧, 𝑧2}𝑺 {𝑦, 𝑧}𝑺

𝑧𝑺 𝑅 [𝑦] + {𝑦𝑧, 𝑧2}𝑺

 with 𝑺 = 𝑅 [𝑥,𝑦,𝑦𝑧, 𝑧2]

𝑅⟨X⟩ = 𝑅
〈 𝑥 𝑦,𝑧
𝑧 𝑦

〉
=  A1 A1,2

A2,1 A2

 with


A1 = 𝑅⟨𝑥,𝑦1+𝑛𝑧, 𝑧𝑦𝑛𝑧 : 𝑛 ∈ N⟩,

A2 = 𝑅⟨𝑦, 𝑧𝑥𝑛𝑦, 𝑧𝑥𝑛𝑧 : 𝑛 ∈ N⟩,

A1,2 = A1 · {𝑦, 𝑧} · A2, A2,1 = A2 · 𝑧 · A1.
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While 𝑅 [X] and 𝑅⟨X⟩ are finitely generated k-algebras, their diagonal components are not.

The next proposition makes clear the fact that for matrix polynomial extensions

with commutative diagonal components, one may assume the commuting variables

context.

Proposition 2.4. Every matrix polynomial algebra extension 𝑅⟨𝑬 , Y ; 𝑪⟩ with com-

mutative diagonal components is a natural quotient of a matrix polynomial algebra

extension 𝑅 [𝑬 ,X] with commuting variables where X and Y have equipotent com-

ponents.

Proof. We may consider a copy X of Y with pairwise disjoint components, together

with bijections X𝑖, 𝑗 Y𝑖, 𝑗 , 𝑥 𝑥, for 𝑖, 𝑗 ∈ J1 , 𝑛K. Thus the labelled quiver

QX is an ordinary abstract quiver since X has pairwise disjoint components, and

elementary matrix-terms in the free matrix polynomial extension 𝑅⟨𝑬 ,X⟩ identify

precisely with paths of the quiver QX. Obviously there is a natural surjective algebra

morphism 𝜋 : 𝑅⟨𝑬 ,X⟩ 𝑅⟨𝑬 , Y ; 𝑪⟩ with

𝜋 (𝒆) = 𝒆 and 𝜋 (𝑥) = 𝜋 (𝑥𝒆𝑖, 𝑗 ) = 𝑥𝒆𝑖, 𝑗 for all 𝒆 ∈ 𝑬 , 𝑖, 𝑗 ∈ J1 , 𝑛K and 𝑥 ∈ X𝑖, 𝑗 .

Our aim is to show that the above map factors through 𝑅 [𝑬 ,X]. Thus arbitrarily

given 𝑖, 𝑗 ∈ J1 , 𝑛K and paths 𝜔,𝜔 ′ ∈ QX (𝑖, 𝑗), and writing 𝜔 for the term in commut-

ing variables along 𝜔, assuming that 𝜔 = 𝜔 ′, we have to show that 𝜋 (𝜔) = 𝜋 (𝜔 ′).
To this end we shall proceed by induction on the length ℓ (𝜔) of 𝜔. The base of

the induction being trivial, suppose that ℓ (𝜔) is positive and the result proved for

all paths with length less than ℓ (𝜔). One may write 𝜔 = 𝑥𝑢 and 𝜔 ′ = 𝑥 ′𝑢 ′ for

some arrows 𝑖 𝑥 𝑘 and 𝑖
𝑥 ′

𝑘 ′ and for some subpaths 𝑢 ∈ QX (𝑘, 𝑗) and 𝑢 ′ ∈ QX (𝑘 ′, 𝑗).
There are the two following cases to consider.

a) The case where 𝑥 ′ = 𝑥 . Then, 𝑘 ′ = 𝑘 and 𝑢 = 𝑢 ′ so that by the induction

hypothesis, 𝜋 (𝑢) = 𝜋 (𝑢 ′) and 𝜋 (𝜔) = 𝑥𝜋 (𝑢) = 𝑥𝜋 (𝑢 ′) = 𝜋 (𝜔 ′).
b) The case where 𝑥 ′ ≠ 𝑥 . Observe that the equality 𝜔 = 𝜔 ′ (of terms in commuting

variables) means that 𝜔 and 𝜔 ′ consist of exactly the same arrows in possibly

different order in case these paths include a cyclic subpath. Since here the first

arrow in 𝜔 ′ is distinct from the first arrow in 𝜔, forcibly we have: 𝜔 ′ = (𝑥 ′𝑣 ′) (𝑥𝑣)𝑣 ′′

for some cyclic subpaths 𝑥 ′𝑣 ′, 𝑥𝑣 ∈ QX (𝑖, 𝑖) and some path 𝑣 ′′ ∈ QX (𝑖, 𝑗). Now the

path 𝑤 ′′ = (𝑥𝑣) (𝑥 ′𝑣 ′)𝑣 ′′ ∈ QX (𝑖, 𝑗) shares the same first arrow with 𝜔, and the

words 𝜔 and 𝜔 ′′ in commuting variables are still equal. Hence by point (a) above
and by the fact that the diagonal components of 𝑅⟨𝑬 ,X; 𝑪⟩ are commutative, we
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compute:

𝜋 (𝜔) = 𝜋 (𝜔 ′′) = 𝜋 (𝑥𝑣)𝜋 (𝑥 ′𝑣 ′)𝜋 (𝑣 ′′) = 𝜋 (𝑥 ′𝑣 ′)𝜋 (𝑥𝑣)𝜋 (𝑣 ′′) = 𝜋 (𝜔 ′).

Thus 𝜋 factors through 𝑅 [𝑬 ,X], completing the proof of the proposition. □

In order to describe the center Z(A) of A, for every Λ = {𝑖1, . . . , 𝑖𝑝 } ⊂ J1 , 𝑛K we

let:

TΛ = T𝑖1 · · · T𝑖𝑝 and T ′
Λ = ⟨𝜔 : 𝜔 is a cycle in QX with 𝒊𝜔 ⊂ Λ⟩ ⊂ ⟨𝑿 ; 𝑪⟩. (2.3)

Proposition 2.5. Let A = k [𝑬 ,X] be a matrix polynomial ring, and set

𝑺 = k [TJ1 ,𝑛K].

(a) Then the monoid T ′
Λ for each Λ ⊂ J1 , 𝑛K is generated by terms along simple

cycles 𝜎 in QX with 𝒊𝜎 ⊂ Λ.

(b) Suppose that QX is connected. Then Z(A) identifies with Z = k [∩𝑛
𝑖=1 T𝑖 ].

Moreover when QX has only finitely many simple cycles, there are finite

subsets 𝝉Λ for Λ running through any family 𝐶 of subsets in J1 , 𝑛K with

T1= {𝜔 : 𝜔 ∈ QX (1, 1) and 𝒊𝜔 ∈ 𝐶}, such that:

𝝉J1 ,𝑛K · TJ1 ,𝑛K ⊂
𝑛
∩
𝑖=1

T𝑖 , 𝝉Λ ⊂
𝑛
∩
𝑖=1

T𝑖 ∩ {𝜔 : 𝜔 ∈ QX (1, 1) and 𝒊𝜔 = Λ} ⊂ 𝝉Λ· T ′
Λ .

In particular, k [∪Λ∈𝐶 𝝉Λ] + 𝝉J1 ,𝑛K· 𝑺 ⊂ Z ⊂ k +∑
Λ∈𝐶 𝝉Λ· k [T ′

Λ].

Proof. Notice that the monoid TJ1 ,𝑛K = T1 · · · T𝑛 obviously coincides with the

monoid T ′
J1 ,𝑛K generated by the terms 𝜔 for all 𝜔 ∈ QX (𝑖, 𝑖) with 𝑖 ∈ J1 , 𝑛K. For

each given non-empty subset Λ ⊂ J1 , 𝑛K and any non-simple cycle 𝜔 in QX with

𝒊𝜔 ⊂ Λ, it is clear that 𝜔 = 𝜔 ′𝜎𝜔 ′′ for some simple cycle 𝜎 and some cycle 𝜔 ′𝜔 ′′ in

QX with 𝒊𝜎 , 𝒊𝜔′𝜔′′ ⊂ Λ. Thus 𝜔 = 𝜎 ·𝜔 ′𝜔 ′′ with ℓ (𝜔 ′𝜔 ′′) < ℓ (𝜔). Hence by the way

of induction on the length of paths, it follows that 𝜔 is a product of terms along

simple cycles whose incidence sets are contained in Λ. Thus, T ′
Λ is generated by

terms along simple cycles 𝜎 in QX with 𝒊𝜎 ⊂ Λ.

Turning to part (b), suppose that QX is connected. For the sake of briefness,

set Tc = ∩𝑛
𝑖=1 T𝑖 . On one hand, every 𝑢 ∈ Z identifies with 𝑢 · 1𝑛 = 𝑢 · (𝒆1 + · · · + 𝒆𝑛)

lying in Z(A). On the other hand, since the matrix algebra A includes all the

elementary idempotent matrices, every u ∈ Z(A) has the form: u =
∑𝑛

𝑖=1 𝑢𝑖𝒆𝑖 with

𝑢𝑖 ∈ A𝑖 = 𝑅 [T𝑖 ] for each 𝑖 ∈ J1 , 𝑛K. For any 𝑖, 𝑗 ∈ J1 , 𝑛K with X𝑖, 𝑗 ≠ ∅, picking any

𝑥 ∈ X𝑖, 𝑗 one must have: 𝑥𝑢𝑖𝒆𝑖, 𝑗 = u · 𝑥𝒆𝑖, 𝑗 = 𝑥𝒆𝑖, 𝑗 · u = 𝑥𝑢 𝑗 𝒆𝑖, 𝑗 , showing that 𝑢𝑖 = 𝑢 𝑗

lies in A𝑖 ∩A𝑗 . Hence, the assumption that QX is connected yields that the 𝑢𝑖 ’s are

all equal to a common 𝑣 ∈ ∩𝑛
𝑖=1 A𝑖 . This proves that Z(A) identifies with Z = k [Tc].

Next, additionally assume that QX has only finitely many simple cycles and let 𝐶 be
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any family of subsets in J1 , 𝑛K with T1 = {𝜔 : 𝜔 ∈ QX (1, 1) and 𝒊𝜔 ∈ 𝐶}. Thus for

every term 𝜏 ∈ Tc, there is some Λ ∈ 𝐶 and 𝜔 ∈ QX (1, 1) with 𝜏 = 𝜔 and 𝒊𝜔 = Λ. Part

(a) shows that the commutative monoid T ′
Λ is finitely generated (by terms along

simple cycles 𝜎 with 𝒊𝜎 ⊂ Λ). So, Dickson’s Lemma [3, §4, Theorem 5, Exercises 7

] applies yielding a finite subset 𝝉Λ with

𝝉Λ ⊂ Tc ∩ {𝜔 : 𝜔 ∈ QX (1, 1) and 𝒊𝜔 = Λ} ⊂ 𝝉Λ· T ′
Λ .

To complete the proof of (b), it only remains to observe that 𝝉J1 ,𝑛K· TJ1 ,𝑛K ⊂ Tc. But

then the latter is clear because variables mutually commute. Thus every element in

𝝉J1 ,𝑛K· TJ1 ,𝑛K is still a term along some cycle 𝜔 with 𝒊𝜔 = J1 , 𝑛K, while for any such

cycle 𝜔 the term 𝜔 lives in Tc = ∩𝑛
𝑖=1 T𝑖 . □

Example 2.6. (a) Let the matrix polynomial ring extensions A = k [X] and

A′ = k [X′] be given respectively by the following labelled quivers:

1 2 3

𝑥 𝑧 𝑦

𝑦

𝑡

𝑧

𝑡
and 1 2 3

𝑥 𝑧𝑧

𝑦

𝑡

𝑦, 𝑧

𝑡

𝑥
❍ We have 𝑺 = k [𝑥,𝑦, 𝑧,𝑦𝑡, 𝑧𝑡] and computing, we get Z = k⊕𝑦𝑧𝑡 ·k [𝑧]⊕𝑦𝑧𝑡2·𝑺.
❍ Likewise for A′, we have 𝑺 ′ = k [𝑥, 𝑧,𝑦𝑡, 𝑧𝑡, 𝑥𝑡2], while a more involved

computation yields that Z′ = k ⊕ 𝑦𝑡 · k [𝑧] ⊕ 𝝉J1,2 ,3K · 𝑺 ′ with 𝝉J1,2 ,3K =

{𝑦𝑧𝑡2, 𝑦2𝑡2, 𝑥𝑡2}.
(b) Let the matrix polynomial ring A = k [X] be defined by the labelled quiver:

2 5

1 3 4 6𝑥

𝑦 𝑧

𝑥

𝑦 𝑋

𝑧 𝑥

𝑥

𝑦

where 𝑋 is any set of variables. Thus 𝑺 = k [𝑥, 𝑥𝑦, 𝑥𝑦𝑧, 𝑥2𝑧], and computing

we obtain that Z = k ⊕ 𝑥3𝑦𝑧 · k [𝑥3𝑦𝑧, 𝑥𝑦].

Usage of free matrix polynomial algebras in deformation theory of mod-

ules. Assume here a base field k. For every family (𝑉𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 of finite-dimensional

k-vector spaces, the associated ‘free matrix ring’ of [5, §5, p. 105] is the free matrix

polynomial algebra k((𝑉𝑖, 𝑗 )𝑖, 𝑗 ) = k⟨X⟩ where each X𝑖, 𝑗 = {𝑥(𝑠)
𝑖, 𝑗

: 1 ≤ 𝑠 ≤ 𝑑𝑖, 𝑗 } is a

basis of 𝑉𝑖, 𝑗 , 𝑖, 𝑗 ∈ J1 , 𝑛K. The corresponding formal matrix ring k⟨⟨X⟩⟩ consists

of infinite linear combinations of elementary matrix-terms from T . Given a family

𝑽 = (𝑉1, . . . ,𝑉𝑛) of left modules over an algebra 𝐴, [11] introduced a noncommutative

deformation functor Def𝑽 : alg𝑛 Set from the category of finite-dimensional 𝑛-

pointed algebras to the category of sets. Under the condition that the cohomological

k-vector spaces Ext1𝐴 (𝑉𝑗 ,𝑉𝑖 ) and Ext2𝐴 (𝑉𝑗 ,𝑉𝑖 ) are finite-dimensional, [5, Theorem 5.2]

computes a pro-representing hull 𝐻 (𝑽 ) for Def𝑽 as a quotient of a formal matrix
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ring k⟨⟨X⟩⟩, where each X𝑖, 𝑗 is a k-basis for the dual vector space
(
Ext1𝐴 (𝑉𝑗 ,𝑉𝑖 )

)∗
for

all 𝑖, 𝑗 ∈ J1 , 𝑛K. In some favourable cases, 𝐻 (𝑽 ) is a quotient of a matrix polynomial

algebra as illustrated by the next borrowed example.

Example 2.7 ([17, Theorem 19]). For a base field k, the k-algebra of the ‘affine

moduli’ (pro-representing hull) for the GL3 (k)-orbits of M3 (k) was computed as a

quotient of the noetherian matrix polynomial algebra


k [𝑥1, 𝑥2, 𝑥3] k⟨𝑦(1)1,2 , 𝑦

(2)
1,2 , 𝑦

(3)
1,2⟩ k⟨𝑧(1)1,3, 𝑧

(2)
1,3, 𝑧

(3)
1,3⟩

0 k [𝑦1, 𝑦2] k⟨𝑧(1)2,3, 𝑧
(2)
2,3⟩

0 0 k [𝑧]

.
3. Noetherian matrix polynomial extensions

The main objective here is to investigate conditions under which the ring A =

𝑅⟨𝑬 ,X; 𝑪⟩ is left (resp., right or bilateral) noetherian.

3.1. Noetherianity for semigroup modules. Notice that the elementary idem-

potent matrices 𝒆1, . . . , 𝒆𝑛 form a complete system of orthogonal idempotents for A:

1A = 𝒆1 + · · · + 𝒆𝑛 and 𝒆𝑖𝒆 𝑗 = 0 for all 𝑖 ≠ 𝑗 in J1 , 𝑛K. We start with the following

lemma, whose proof we shall drop relies on basic well-know facts from abstract

algebra.

Lemma 3.1. Let 𝐴 be any k-algebra together with a complete system of orthogonal

idempotents e1, . . . , e𝑛, set 𝐴𝑖 = e𝑖𝐴e𝑖 for every 𝑖 ∈ J1 , 𝑚K. Then a given left 𝐴-

module 𝑀 is noetherian precisely when each left 𝐴𝑖-module e𝑖𝑀 is, for 𝑖 ∈ J1 , 𝑛K. If

moreover each ring 𝐴𝑖 for 𝑖 ∈ J1 , 𝑛K is left noetherian, then 𝑀 is noetherian precisely

when it is finitely generated.

Of course for any k-algebras 𝐴 and 𝐵, the above lemma also applies to right

𝐴-modules (since these are just left modules over the opposite algebra 𝐴◦ of 𝐴),

as well as to bilateral 𝐴-𝐵-modules (since the latter are just left modules over the

algebra 𝐴 ⊗k 𝐵
◦).

We shall need to apply this lemma to the set T of elementary matrix-terms, so

we make precise the notion of noetherianity for (subsets in) semigroups.

Definition 3.2. Let S, S′ be two (multiplicative) semigroups.

(a) A bilateral S-S′-module (or briefly, a bilateral semigroup module) is any non-

empty set 𝑀 together with multiplications S ×𝑀 𝑀, (𝜆,𝑢) 𝜆 · 𝑢
and 𝑀 × S 𝑀, (𝑢, 𝜆′) 𝑢 · 𝜆′ such that for all 𝑢 ∈ 𝑀, 𝜆, 𝜇 ∈ S and
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𝜆′, 𝜇 ′ ∈ S′,

(𝜆𝜇) · 𝑢 = 𝜆 · (𝜇 · 𝑢), 𝑢 · (𝜆′𝜇 ′) = (𝑢 · 𝜆′) · 𝜇 ′, (𝜆 · 𝑢) · 𝜆′ = 𝜆 · (𝑢 · 𝜆′).

We require the identity axiom whenever the given semigroups are monoids.

This definition specializes to one-sided modules.

(b) Let 𝑀 be a bilateral S-S′-module, and 𝑇 ⊂ 𝑀. A left submodule of 𝑇 is any

non-empty subset 𝑈 ⊂ 𝑇 with (S · 𝑈 ) ∩𝑇 ⊂ 𝑈 , where S · 𝑈 = {𝜆 · 𝑢 : 𝜆 ∈
S, 𝑢 ∈ 𝑈 }. And we say that 𝑈 is generated by some 𝑋 ⊂ 𝑈 provided

𝑈 = 𝑋 ∪ ((S ·𝑋 ) ∩𝑇 ); where one should notice that when S is a monoid it is

already granted that 𝑋 ⊂ S · 𝑋 since we require the identity axiom in this

case.

Likewise, one gets right submodules and bilateral submodules in 𝑇 .

(c) A subset 𝑇 of a bilateral S-S′-module 𝑀 is called left (or right, bilateral)

noetherian provided every left (or resp., right, bilateral) submodule in 𝑇 is

finitely generated.

The analogue of the next proposition in abstract algebra, stated here for semi-

group modules, is an easy and standard fact.

Proposition 3.3. Let S be a semigroup, and 𝑀1, . . . , 𝑀𝑟 be left (or right, bilateral)

semigroup S-modules for some non-zero 𝑟 ∈ N. Then, the disjoint union ⊎𝑟
𝑖=1𝑀𝑖 is

noetherian precisely when each of the 𝑀𝑖 ’s is. In particular if the semigroup S is left

(or right, bilateral) noetherian, then every left (or resp., right, bilateral) semigroup

S-module is noetherian precisely when it is finitely generated.

Proof. It is enough to consider only the case of left semigroup modules; the reader

would also want to notice that coproducts in the category of S-modules are simply

given by disjoint unions. For the first claim of the proposition, it readily follows by

Definition 3.2(c) that every submodule of a noetherian left S-module is noetherian;

so if ⊎𝑟
𝑖=1𝑀𝑖 is noetherian, then the same holds for each of the 𝑀𝑖 ’s. Conversely, if

the semigroup S-modules 𝑀1, . . . , 𝑀𝑟 are noetherian, then the disjoint union ⊎𝑟
𝑖=1𝑀𝑖

is noetherian as well because every submodule in ⊎𝑟
𝑖=1𝑀𝑖 arises as a disjoint union

𝑇 = ⊎𝑖∈Λ𝑇𝑖 for some Λ ⊂ J1 , 𝑟K and submodules 𝑇𝑖 ⊂ 𝑀𝑖 , 𝑖 ∈ Λ.

We then continue with the proof of the second claim of the proposition. By

definition, every noetherian S-module is already finitely generated. Conversely,

suppose that the semigroup S is left noetherian and let a left S-module 𝑀 be

generated by a finite subset 𝑋 = {𝑥1, . . . , 𝑥𝑟 }. Thus 𝑀 = 𝑋 ∪S𝑋 , and we have to

prove that 𝑀 is noetherian. By the above paragraph, the coproduct of 𝑟 copies of S
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(as semigroup left module over itself) is the noetherian left S-module given by the

disjoint union ∪𝑟
𝑖=1 S × {𝑖}. We get a surjective morphism 𝑓 : ∪𝑟

𝑖=1 S × {𝑖} S𝑋

with 𝑓 (𝜆, 𝑖) = 𝜆𝑥𝑖 for all 𝜆 ∈ S and 𝑖 ∈ J1 , 𝑟K, showing that the S-module S𝑋 is

noetherian as an homomorphic image of a noetherian module, whence the module

𝑀 = 𝑋 ∪S𝑋 is noetherian as well since also 𝑋 is finite. □

In view of Proposition 3.3, Lemma 3.1 applies to semigroups, yielding the next

remark.

Remark 3.4. In the semigroup T ∪{0} of elementary matrix-terms, T is left (right

or bilateral) noetherian precisely when each monoid T𝑖 is left (right or bilateral)

noetherian while each bilateral T𝑖-T𝑗 -module T𝑖, 𝑗 is finitely generated as left (or

resp., right, bilateral) module, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛.

A (left, right or bilateral) noetherian semigroup needs not be finitely generated

as semigroup; the following crucial lemma sheds more light.

Lemma 3.5. Let S be a semigroup with a length function ℓ : S N such

that the set S0 = {𝜀 ∈ S : ℓ (𝜀) = 0} is finite and for all 𝛼 ∈ S\S0 and 𝛽 ∈ S,

ℓ (𝛽) < min(ℓ (𝛽𝛼), ℓ (𝛼𝛽)). If S is bilateral noetherian, then S is finitely generated

as semigroup. Consequently, every bilateral noetherian submonoid in the monoid

⟨𝑿 ; 𝑪⟩ is a finitely generated monoid.

Proof. The last statement in the lemma is an immediate application of the main

part by considering the usual additive length function on words. Turning to the

main part, since by assumption the subset S0 of length-0 elements is finite, we may

assume that S0 does not coincide with S. The assumption on ℓ : S N ensures

that S\S0 is a bilateral ideal of S. Thus when S is bilateral noetherian, it comes

that the ideal S\S0 is generated by finitely many elements 𝛼1, . . . , 𝛼𝑛 ∈ S\S0. We

will now show that S coincides with S0 [𝛼1, . . . , 𝛼𝑛], the sub-semigroup generated

over S0 by 𝛼1, . . . , 𝛼𝑛. Given 𝛼 ∈ S, we will proceed by induction on ℓ (𝛼). The base

of induction being obviously given, suppose that ℓ (𝛼) ≥ 1 and the result proved

for all 𝛽 ∈ S with ℓ (𝛽) < ℓ (𝛼). We may further assume that 𝛼 is not already

one of the elements 𝛼1, . . . , 𝛼𝑛; then 𝛼 ∈ S\(S0 ∪{𝛼1, . . . , 𝛼𝑛}) and for some 𝛽, 𝛽 ′ ∈ S

and 𝑠 ∈ J1 , 𝑛K, we have 𝛼 ∈ {𝛽𝛼𝑠 , 𝛼𝑠𝛽, 𝛽𝛼𝑠𝛽 ′}. But the hypotheses of the lemma

ensures that ℓ (𝛽) < ℓ (𝛼) (in case 𝛼 ∈ {𝛽𝛼𝑠 , 𝛼𝑠𝛽}) or max(ℓ (𝛽), ℓ (𝛽 ′)) < ℓ (𝛼) (in case

𝛼 = 𝛽𝛼𝑠𝛽
′). Whence, the induction hypothesis applies yielding that 𝛽 or both 𝛽

and 𝛽 ′ belong to S0 [𝛼1, . . . , 𝛼𝑛], so that, 𝛼 belongs to S0 [𝛼1, . . . , 𝛼𝑛] as well. Hence

S = S0 [𝛼1, . . . , 𝛼𝑛], completing the proof of the lemma. □
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We include the following lemma which specializes to one-sided modules, whose

proof readily follows from the definition of semigroup ring extensions and is omitted.

Lemma 3.6. Let 𝐴 = 𝑅 [B] be any semigroup ring extension of 𝑅, together with sub-

extensions 𝑅′[B′] and 𝑅′′[B′′] for some B′,B′′ ⊂ B and some subalgebras 𝑅′, 𝑅′′ ⊂ 𝑅.

If 𝐴 is a bilateral noetherian 𝑅′[B′]-𝑅′′[B′′]-module, then B is bilateral noetherian

(for the bilateral B′-B′′-module structure on B∪{0}).

We must now draw attention to the point that non-familiarity with pitfalls in

attempts to generalize the Hilbert Basis Theorem ([8, §7.10], [2, Theorem 7.5])

to noncommutative monoid ring extensions may lead to a wrong impression that

the converse of Lemma 3.6 above would be true and easily provable. The rest of

this section investigates the converse of Lemma 3.6 for matrix polynomial algebra

extensions.

3.2. Lifting the Hilbert Basis Theorem to matrix polynomial algebras.

For the rest of this section, we shall restrict the shape of commutativity relations

imposed on some variables to central relations:
𝑪 = 𝑿c × 𝑿 for some 𝑿c ⊂ 𝑿 , meaning that 𝑿 splits as 𝑿 = 𝑿c ∪𝑿nc where

𝑿c consists of central variables and 𝑿nc of free non-commuting variables.


(3.1)

A deep analysis of the structure of the semigroup T ∪ {0} of elementary matrix-

terms is necessary to reach a precise statement about the noetherianity of T and of

A = 𝑅⟨𝑬 ,X; 𝑪⟩. We start by characterizing one-sided noetherianity for submonoids

in the ambient monoid ⟨𝑿 ; 𝑪⟩.

Lemma 3.7. Let 𝑇 be a submonoid in ⟨𝑿 ; 𝑪⟩. Then 𝑇 is left (or, right) noetherian

if and only if 𝑇 is commutative and finitely generated.

Proof. Every finitely generated commutative monoid is clearly noetherian, as a

quotient of a free commutative monoid in finitely many variables. Moreover, every

noetherian submonoid in ⟨𝑿 ; 𝑪⟩ must be finitely generated by virtue of Lemma 3.5.

Assuming that the submonoid 𝑇 ⊂ ⟨𝑿 ; 𝑪⟩ is left or right noetherian, it remains to

prove that 𝑇 is also commutative. We consider the case that 𝑇 is left noetherian;

the case that 𝑇 is right noetherian shall be seen to be similar. Recall by our

assumption (3.1) that the center of ⟨𝑿 ; 𝑪⟩ is the free commutative submonoid over

the subset 𝑿c ⊂ 𝑿 , while 𝑿nc = 𝑿\𝑿c consists of free non-commuting variables. So

⟨𝑿nc⟩ stands for the free monoid in non-commuting variables from 𝑿nc , and it holds

that:
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every 𝑡 ∈ ⟨𝑿 ; 𝑪⟩ can be expressed in a unique way as 𝑡 = 𝛿𝜏 with var(𝛿) ⊂ 𝑿c

and 𝜏 ∈ ⟨𝑿nc⟩.
Now let 𝜔 = 𝛿𝜏 and 𝜔 ′ = 𝛿 ′𝜏 ′ in 𝑇 , with var(𝛿), var(𝛿 ′) ⊂ 𝑿c and 𝜏, 𝜏 ′ ∈ ⟨𝑿nc⟩,
and with ℓ (𝜏) ≤ ℓ (𝜏 ′). If ℓ (𝜏) = 0 (so that, 𝜏 = 1), then there is nothing to show.

So we may assume that ℓ (𝜏 ′) ≥ ℓ (𝜏) ≥ 1. Then we will show that the non-trivial

words 𝜏 and 𝜏 ′ (in non-commuting variables) do commute. By assumption, the left

ideal 𝑇 {𝜔 ′𝜔𝑘 : 1 ≤ 𝑘 ∈ N} = {𝑡𝜔 ′𝜔𝑘 : 𝑡 ∈ 𝑇, 1 ≤ 𝑘 ∈ N} must be generated by

finitely many elements 𝜔 ′𝜔1, . . . , 𝜔 ′𝜔𝑚 for some natural number 𝑚. In particular

for 𝑘 ≥ ℓ (𝜏 ′) +𝑚, there exist some 𝑠 ∈ J1 , 𝑚K and a term 𝑡 = 𝑢𝛾 ∈ 𝑇 with var(𝑢) ⊂ 𝑿c

and 𝛾 ∈ ⟨𝑿nc⟩ such that

𝜔 ′𝜔𝑘 = 𝑡𝜔 ′𝜔𝑠 , that is, 𝛿 ′𝛿𝑘𝜏 ′𝜏𝑘 = 𝑢𝛿 ′𝛿𝑠𝛾𝜏 ′𝜏𝑠 .

Since 𝑘 − 𝑠 ≥ ℓ (𝜏 ′) +𝑚 − 𝑠 ≥ ℓ (𝜏 ′) ≥ 1, it holds that: 𝑢 = 𝛿𝑘−𝑠 and 𝜏 ′𝜏𝑘−𝑠 = 𝛾𝜏 ′. By

Euclidean division we may write ℓ (𝜏 ′) = 𝑞ℓ (𝜏) +𝑟 for some 𝑞, 𝑟 ∈ N with 0 ≤ 𝑟 < ℓ (𝜏).
But, ℓ (𝜏) ≤ ℓ (𝜏 ′) ≤ 𝑘 −𝑠 ≤ ℓ (𝜏𝑘−𝑠 ), so that, 1 ≤ 𝑞 ≤ 𝑘 −𝑠 and the relation 𝜏 ′𝜏𝑘−𝑠 = 𝛾𝜏 ′

shows that 𝜏 ′ is a suffix of 𝜏𝑘−𝑠 and:

𝜏 ′ = 𝜆′𝜏𝑞 and 𝜏 = 𝜆𝜆′ for some 𝜆, 𝜆′ ∈ ⟨𝑿nc⟩ with 𝜆′ ≠ 𝜏 .

Next, applying once more the left noetherianity of 𝑇 to the left ideal generated by

the set {𝜔′2𝜔𝑘 : 1 ≤ 𝑘 ∈ N}, as before and for a sufficiently large 𝑙 ∈ N, we must

have:

𝜏′2𝜏𝑙𝜏𝑞+2 = 𝛾 ′𝜏′2 for some 𝛾 ′ ∈ ⟨𝑿nc⟩, that is,

𝜏′2𝜏𝑙 · 𝜆 · (𝜆′𝜆𝜆′) · 𝜏𝑞 = 𝛾 ′ · (𝜆′𝜏𝑞)𝜆′𝜏𝑞 = 𝛾 ′ · (𝜆′𝜏𝑞−1) · (𝜆𝜆′𝜆′)𝜏𝑞 .

Given that (𝜆′𝜆𝜆′) · 𝜏𝑞 and (𝜆𝜆′𝜆′)𝜏𝑞 are both suffixes with common length for the

word 𝜏′2𝜏𝑙𝜏𝑞+2 = 𝛾 ′𝜏′2, they must be equal, forcing that 𝜆′𝜆 = 𝜆𝜆′. Therefore, the

terms 𝜏 = 𝜆𝜆′ and 𝜏 ′ = 𝜆′𝜏𝑞 commute. This completes the proof of the lemma. □

We then continue with a complete description of commutative submonoids in

⟨𝑿 ; 𝑪⟩.

Proposition 3.8. Let 𝜏, 𝜏 ′ ∈ ⟨𝑿nc⟩.

(a) If 𝜏 and 𝜏 ′ commute in ⟨𝑿nc⟩ then they arise as powers of a common sub-

term.

(b) If 𝜏𝑘=𝜏′𝑘
′
for some non-zero 𝑘, 𝑘 ′ ∈ N, then both 𝜏 and 𝜏 ′ are powers of a

common subterm.

(c) Every commutative submonoid 𝑇 in ⟨𝑿 ; 𝑪⟩ is contained in the submonoid

generated by 𝑿c ∪ {𝜆} for some 𝜆 ∈ ⟨𝑿nc⟩.
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Proof. Giving commuting terms 𝜏, 𝜏 ′ ∈ ⟨𝑿nc⟩, with ℓ (𝜏) ≤ ℓ (𝜏 ′), we will proceed

by induction on ℓ (𝜏𝜏 ′) to show that 𝜏 and 𝜏 ′ are powers of a common subword. If

ℓ (𝜏) = 0, then obviously 𝜏 = 1 = 𝜏′0. So, suppose that 1 ≤ ℓ (𝜏) ≤ ℓ (𝜏 ′). Then the

relation 𝜏𝜏 ′ = 𝜏 ′𝜏 shows clearly that 𝜏 is a prefix of 𝜏 ′ and we may write 𝜏 ′ = 𝜏𝜏 ′′

for some 𝜏 ′′ ∈ ⟨𝑿nc⟩. If 𝜏 ′′ = 1, then 𝜏 and 𝜏 ′ coincide and the result is obvious.

Next, supposing that 𝜏 ′′ ≠ 1, the equation 𝜏𝜏𝜏 ′′ = 𝜏𝜏 ′′𝜏 yields that 𝜏𝜏 ′′ = 𝜏 ′′𝜏 with

ℓ (𝜏𝜏 ′′) < ℓ (𝜏𝜏 ′). Hence the induction hypothesis yields some 𝜆 ∈ ⟨𝑿nc⟩ with 𝜏 = 𝜆𝑘

and 𝜏 ′′ = 𝜆𝑘
′
, so that 𝜏 ′ = 𝜆𝑘+𝑘

′
as well. This proves part (a) of the proposition.

Accepting that part (b) holds, we will prove (c). Thus let 𝑇 be a commutative

submonoid in ⟨𝑿 ; 𝑪⟩. If 𝑇 is contained in the center of ⟨𝑿 ; 𝑪⟩, then we are done.

Otherwise, one can find a term 𝜆 ∈ ⟨𝑿nc⟩ with the following properties:

❍ 𝜆 is non-trivial and is not a proper power of another word,

❍ it holds for some term 𝛿 with var(𝛿) ⊂ 𝑿c and non-zero 𝑙 ∈ 𝑁 that 𝛿𝜆𝑙 ∈ 𝑇 .

Now, every 𝜔 ∈ 𝑇 can be expressed as: 𝜔 = 𝑢𝜏 with var(𝑢) ⊂ 𝑿c and 𝜏 ∈ ⟨𝑿nc⟩.
Since 𝜔 · 𝛿𝜆𝑙 = 𝛿𝜆𝑙 · 𝜔, it follows that 𝜆𝑙 commutes with 𝜏 , so that by part (a) of

the proposition, 𝜆𝑙 = 𝛾𝑘 and 𝜏 = 𝛾𝑟 for some 𝛾 ∈ ⟨𝑿nc⟩ and some non-zero 𝑘, 𝑟 ∈ N.

But then, since 𝜆 is non-trivial and is not a proper power of another word, part (b)
applied to the equality 𝜆𝑙 = 𝛾𝑘 (with 𝑙 ≥ 1) forces 𝛾 to be a power of 𝜆, so that 𝜏 is

a power of 𝜆 as well, proving that 𝑇 is, as desired, contained in the submonoid of

⟨𝑿 ; 𝑪⟩ generated by 𝑿c ∪ {𝜆}.
We shall now prove part (b). Assume that 𝜏, 𝜏 ′ ∈ ⟨𝑿nc⟩ are terms with ℓ (𝜏) ≤

ℓ (𝜏 ′), such that 𝜏𝑘 = 𝜏′𝑘
′
for some non-zero 𝑘, 𝑘 ′ ∈ N. Then 𝑘ℓ (𝜏) = 𝑘 ′ℓ (𝜏 ′) and

𝑘 ≥ 𝑘 ′. We may assume that 𝑘 and 𝑘 ′ are co-prime. Indeed, if 𝑑 is the greatest

common divisor of 𝑘 and 𝑘 ′ and we set 𝑙 = 𝑘/𝑑 and 𝑙 ′ = 𝑘 ′/𝑑, then 𝑙ℓ (𝜏) = 𝑙 ′ℓ (𝜏 ′)
and the equation

𝜏𝑙 · (𝜏𝑙 )𝑑−1 = 𝜏′𝑙
′ · (𝜏′𝑙 ′)𝑑−1

shows that 𝜏𝑙 = 𝜏′𝑙
′
. So, we suppose that 𝑘 and 𝑘 ′ are co-prime. The relation

𝑘ℓ (𝜏) = 𝑘 ′ℓ (𝜏 ′) shows that 𝑘 ′ divides ℓ (𝜏), so letting 𝑝 = ℓ (𝜏)/𝑘 ′, we may write

𝜏 = 𝜏1 · · · 𝜏𝑘′ as product of 𝑘 ′ subterms with common length 𝑝. Next, writing the

Euclidean division of 𝑘 by 𝑘 ′ as 𝑘 = 𝑞𝑘 ′ + 𝑟 , we have that 𝑞 ≥ 1 (since 𝑘 ≥ 𝑘 ′),

1 ≤ 𝑟 < 𝑘 ′ (since 𝑘 and 𝑘 ′ are co-prime), ℓ (𝜏 ′) = 𝑘ℓ (𝜏)/𝑘 ′ = 𝑞ℓ (𝜏) + 𝑟𝑝, and the

relation 𝜏𝑘 = 𝜏′𝑘
′
rewrites as:

𝜏𝑞 · (𝜏1 · · · 𝜏𝑟 ) · (𝜏𝑟+1 · · · 𝜏𝑘′) · 𝜏𝑘−𝑞−1 = 𝜏′𝑘
′
= 𝜏𝑘−𝑞−1 · (𝜏1 · · · 𝜏𝑘′−𝑟 ) · (𝜏𝑘′−𝑟+1 · · · 𝜏𝑘′) · 𝜏𝑞 .
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The latter implies that 𝜏𝑞 · (𝜏1 · · · 𝜏𝑟 ) = 𝜏 ′ = (𝜏𝑘′−𝑟+1 · · · 𝜏𝑘′)𝜏𝑞, and using the fact that

𝜏 = 𝜏1 · · · 𝜏𝑘′ is a product of 𝑘 ′ subterms with common length, it follows that

(𝜏1, . . . . . . , 𝜏𝑘′−𝑟 , 𝜏𝑘′−𝑟+1, . . . , 𝜏𝑘′) = (𝜏𝑘′−𝑟+1, . . . , 𝜏𝑘′, 𝜏1, . . . , 𝜏𝑘′−𝑟 ),

showing that the 𝑘 ′-length list (𝜏𝑘′−𝑟+1, . . . , 𝜏𝑘′, 𝜏1, . . . , 𝜏𝑘′−𝑟 ) is 𝑟 -permutable. Here,

a list 𝝀 = (𝜆0, . . . , 𝜆𝑚−1) (of objects) is called 𝑟 -permutable when

𝝀 = (𝜆0, . . . , 𝜆𝑟−1, . . . , 𝜆𝑚−1) = (𝜆𝑟 , . . . . . . , 𝜆𝑚−1, 𝜆0, . . . , 𝜆𝑟−1).

But since gcd(𝑘 ′, 𝑟 ) = 1, we claim that 𝜏1 = 𝜏2 = · · · = 𝜏𝑘′ , showing that 𝜏 = 𝜏𝑘
′

1

and 𝜏 ′ = 𝜏𝑘1 , as desired. For our last claim, let 1 ≤ 𝑟 < 𝑚 be two integers, and

𝝀 = (𝜆0, . . . , 𝜆𝑚−1) an 𝑟 -permutable list of objects with gcd(𝑚, 𝑟 ) = 1. The proof

that 𝜆0 = · · · = 𝜆𝑚−1 proceeds by induction on 𝑚 where for the induction step (with

𝑚 ≥ 2 and 𝑟 ≥ 2), one uses the Euclidean division of 𝑚 by 𝑟 . □

We shall need a few additional notations for the sequel. For each 𝑖 ∈ J1 , 𝑛K,

T s
𝑖 stands for the submonoid of T𝑖 generated by all 𝜎 for simple cycles 𝜎 ∈ QX (𝑖, 𝑖).

We recall that a monoid S is left cancellative (or, right cancellative) provided for

all 𝑢, 𝑣 ∈ 𝑇 , 𝜆 ∈ S and 𝜆′ ∈ S′,

if 𝜆 · 𝑢 = 𝜆 · 𝑣 ∈ 𝑇 then 𝑢 = 𝑣, or respectively, if 𝑢 · 𝜆′ = 𝑣 · 𝜆′ ∈ 𝑇 then 𝑢 = 𝑣 .

𝑇 is cancellative when it is left cancellative and right cancellative.

Given a finite subset 𝝉 = {𝜏1, . . . , 𝜏𝑚} in some (multiplicative) monoid, for each

Λ ⊂ N𝑚, we let 𝝉Λ = {𝝉𝛼 = 𝜏
𝛼1
1 · · · 𝜏𝛼𝑚𝑚 : 𝛼 = (𝛼1, . . . , 𝛼𝑚) ∈ Λ}. We then consider the

following condition for pairs T′ ⊂ T of submonoids of a commutative cancellative

monoid S, together with a subset 𝝉 = {𝜏1, . . . , 𝜏𝑚} ⊂ S\T′.

1 ∉ (S\{1})S, T\T′⊂ (T′\{1}) [𝝉 ] and 𝜆𝑘𝜏
N
𝑘
∩T is infinite for some 𝜆𝑘 ∈ T, 1≤𝑘 ≤𝑚.

(3.2)

In the commuting variables context, recall from (2.3) the notation TΛ = T𝑖1 · · · T𝑖𝑝
for each Λ = {𝑖1 · · · 𝑖𝑝 } ⊂ J1 , 𝑛K; we shall also let T s

Λ = T s
𝑖1
· · · T s

𝑖𝑝
.

Lemma 3.9. Assume the commuting variables context, and that QX contains only

finitely many simple cycles. Then for the evidently cancellative monoid S = TJ1 ,𝑛K

and for every Λ ⊂ J1 , 𝑛K, the triple (T s
Λ, TΛ, S) satisfies condition (3.2) for the finite

subset 𝝉 of all terms 𝜎 such that 𝜎 is a simple cyclic subpath of some cycle in QX (𝑖, 𝑖)
with 𝑖 ∈ Λ and 𝜎 ∉ T s

Λ.
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Proof. Write T for the free commutative monoid over 𝑿 . It is evident that 1 ∉

(S\{1}) · S since S ⊂ T and this holds for T . Write Λ = {𝑖1 · · · 𝑖𝑝 } for 𝑝 ∈ J1 , 𝑛K.
By definition, 𝝉 consists of finitely many terms 𝜏𝑘 = 𝜎𝑘 with 1 ≤ 𝑘 ≤ 𝑚 for some

𝑚 ∈ N, where each 𝜎𝑘 is a simple cyclic subpath of some cycle 𝜐𝑘 ∈ QX ( 𝑗𝑘 , 𝑗𝑘 ) with
𝑗𝑘 ∈ {𝑖1, . . . , 𝑖𝑝 }. Thus for 𝜆𝑘 = 𝜐𝑘 for each 𝑘 ∈ J1 , 𝑚K, we see that 𝜆𝑘𝜏

N
𝑘
⊂ TΛ. Every

element 𝑢 ∈ TΛ can be expressed as 𝑢 = 𝑢1 · · ·𝑢𝑝 with 𝑢𝑘 = 𝑤𝑘 for some cycle or

empty path 𝜔𝑘 ∈ QX (𝑖𝑘 , 𝑖𝑘 ), 1 ≤ 𝑘 ≤ 𝑝. Assuming that 𝑢 ∉ T s
Λ, there must exist

some 𝑘 ∈ J1 , 𝑝K such that 𝑤𝑘 properly contains a cyclic subpath 𝜎 with 𝜎 ∉ T s
Λ. So

𝜔𝑘 = 𝜐𝜎𝜐 ′ for some cycle 𝜔 ′ = 𝜐𝜐 ′ ∈ QX (𝑖𝑘 , 𝑖𝑘 ), and setting 𝑢 ′ =
∏

𝑠≠𝑘 𝑢𝑠 , it holds

that:

𝜎 ∈ 𝝉 , 𝑢 = 𝑢 ′ ·𝜔 ′𝜎 with 𝜔 ′ ∈ QX (𝑖𝑘 , 𝑖𝑘 ), 𝜔 ′ ≠ 1 and 𝑢 ′𝜔 ′𝜎N = {𝑢 ′𝜐𝜎𝑟𝜐 ′ : 𝑟 ∈ N} ⊂ TΛ .

It follows by the way of induction on the length of paths that for every 𝑢 ∈ TΛ\T
s
Λ,

there is a non-zero multi-index 𝛿 ∈ {0, 1}𝑚 together with a term 𝜆 ∈ T s
Λ such that

𝜆 ≠ 1 and 𝑢 ∈ 𝜆𝝉
N𝑚
𝛿 ⊂ T with N𝑚

𝛿
= {𝛼 ∈ N𝑚 : 𝛼𝑘 ≠ 0 if and only if 𝛿𝑘 ≠ 0, 1 ≤ 𝑘 ≤ 𝑚}.

This proves that (T s
Λ, TΛ, S) satisfies a more stronger version of condition (3.2). □

Beside the main objective of this section, we obtain a precise characterisation of

commutative noetherian monoids arising as products of diagonal components of T .

Lemma 3.10. Let T′ ⊂ T be submonoids of a commutative cancellative monoid S,

and 𝝉 = {𝜏1, . . . , 𝜏𝑚} ⊂ S\T′. Assume that the monoid T is noetherian and let 𝜆, 𝜏 ∈ S

such that 𝜆𝜏N ∩ T is infinite. Then a positive power of 𝜏 lies in T. If additionally

(T′,T, S) satisfies (3.2), then a positive power of each of the terms 𝜏, 𝜏1, . . . , 𝜏𝑚 lies

in T′.

Proof. We assume that T is noetherian and let 𝜆, 𝜏 ∈ S with 𝜆𝜏N ∩ T infinite. Then

the T-submodule in T generated by the set 𝜆𝜏N ∩ T must be generated by finitely

many terms 𝜆𝜏𝑘1 , . . . , 𝜆𝜏𝑘𝑝 for some 𝑝 ∈ N and integers 𝑘1 < 𝑘2 < · · · < 𝑘𝑝 . By

assumption there is some integer 𝑘 > 𝑘𝑝 with 𝜆𝜏𝑘 ∈ T, and it holds that 𝜆𝜏𝑘 = 𝑡 ·𝜆𝜏𝑘𝑠

for some 𝑡 ∈ T and 𝑠 ∈ J1 , 𝑝K. Since by hypothesis the monoid S is cancellative, we

get that 𝜏𝑘−𝑘𝑠 = 𝑡 is a positive power of 𝜏 lying in T.

Next, suppose in addition that (T′,T, S) satisfies (3.2). The latter shows that

T ⊂ T′[𝜏1, . . . , 𝜏𝑚] while 𝜆𝑘𝜏N𝑘 ∩T is infinite for some 1 ≠ 𝜆𝑘 ∈ T, 1 ≤ 𝑘 ≤ 𝑚, and the

previous paragraph already yields a positive integer 𝑎𝑘 ∈ N such that 𝜏𝑎𝑘
𝑘

∈ T. Let

us prove that a positive power of each of the terms 𝜏1, . . . , 𝜏𝑚 already lies in T′. But

then, assuming for some 𝑚′ ∈ J1 , 𝑚K that for every 𝑘 ∈ J1 , 𝑚K a positive power 𝜏
𝑝𝑘
𝑘

lives in T′[𝜏1, . . . , 𝜏𝑚′], it is enough to show that a positive power 𝜏
𝑝′
𝑘

𝑘
of each 𝜏𝑘 lies in
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T′[𝜏1, . . . , 𝜏𝑚′−1] as well. We already have that 𝜏𝑎
𝑚′ ∈ T for some non-zero 𝑎 = 𝑎𝑚′ ∈ N.

If 𝜏𝑎
𝑚′ ∈ T′, then take 𝑝 ′

𝑚′ = 𝑎. Otherwise, (3.2) yields that 𝜏𝑎
𝑚′ = 𝑡𝜏

𝛼1
𝑘1

· · · 𝜏𝛼𝑟
𝑘𝑟

for some

term 1 ≠ 𝑡 ∈ T′, some indices 1 ≤ 𝑘1 < 𝑘2 < . . . < 𝑘𝑟 ≤ 𝑚 and positive integers

𝛼1, . . . , 𝛼𝑟 . Then if 𝑘𝑟 ≤ 𝑚′−1, then 𝜏𝑎
𝑚′ is already in T′[𝜏1, . . . , 𝜏𝑚′−1] and once again

one lets 𝑝 ′
𝑚′ = 𝑎. If not, let 𝑠 ∈ J1 , 𝑟K be the least integer with 𝑘𝑠 ≥ 𝑚′. Since by

assumption 𝜏
𝑝𝑘
𝑘

belongs to T′[𝜏1, . . . , 𝜏𝑚′] for all 𝑘 ∈ J1 , 𝑚K, letting 𝑎′ = 𝑝𝑘𝑠 · · · 𝑝𝑘𝑟
shows that 𝜏𝑎𝑎

′
𝑚′ = 𝜆𝑡𝑎

′
𝜏
𝑛1

1 · · · 𝜏𝑛𝑚′
𝑚′ for some 𝜆 ∈ T′ and some 𝑛1, . . . , 𝑛𝑚′ ∈ N. But then,

𝜆𝑡𝑎
′
≠ 1 because 𝑡 ≠ 1 and 1 ∉ S · (S\{1}) according to (3.2). Since moreover the

monoid S is cancellative, one must have 𝑎𝑎′ > 𝑛𝑚′ , so that putting 𝑝 ′
𝑚′ = 𝑎𝑎′ − 𝑛𝑚′

yields a positive power 𝜏
𝑝′
𝑚′

𝑚′ of 𝜏𝑚′ belonging to T′[𝜏1, . . . , 𝜏𝑚′−1]. Thus in all cases,

we get a positive power 𝜏
𝑝′
𝑚′

𝑚′ lying in T′[𝜏1, . . . , 𝜏𝑚′−1]. Next for any other 𝑘 ∈ J1 , 𝑚K
with 𝑘 ≠ 𝑚′, by assumption 𝜏

𝑝𝑘
𝑘

∈ T′[𝜏1, . . . , 𝜏𝑚′], so that letting 𝑝 ′
𝑘
= 𝑝𝑘𝑝

′
𝑚′ yields

that 𝜏
𝑝′
𝑘

𝑘
= (𝜏𝑝𝑘

𝑘
)𝑝′𝑚′ is a positive power of 𝜏𝑘 that belongs to T′[𝜏1, . . . , 𝜏𝑚′−1]. This

completes the proof that a positive power of each of the terms 𝜏1, . . . , 𝜏𝑚 lies in T′.

In particular now letting 0 ≠ 𝑝𝑘 ∈ N with 𝜏
𝑝𝑘
𝑘

∈ T′, and (in view of the first

paragraph) letting 0 ≠ 𝑝 ∈ N with 𝜏𝑝 ∈ T ⊂ T′[𝜏1, . . . , 𝜏𝑚], it holds that 𝜏𝑝𝑝1 · · ·𝑝𝑚 ∈ T′

as well. This completes the proof the lemma. □

We include a converse of Lemma 3.10 in the next proposition of a more general

and independent interest where, when specialized to monoid ring extensions 𝑹 =

k [T] for a submonoid T of a commutative monoid S, one should observe that a

term 𝜏 ∈ S is integral over 𝑹 if and only if a positive power of 𝜏 lives in T.

Proposition 3.11. For a commutative k-algebra 𝑺 and a finite subset 𝒗 ⊂ 𝑺, let

𝑹 ′ ⊂ 𝑹 ⊂ 𝑹 ′[𝒗] be k-subalgebras in 𝑺 such that 𝒗 is integral over 𝑹. Then the algebra

𝑹 is noetherian or respectively finitely generated if 𝑹 ′ is.

Proof. Let 𝒗 = {𝑣1, . . . , 𝑣𝑚} ⊂ 𝑺; by hypotheses there are monic polynomials 𝑓𝑖 =

𝑥𝑛𝑖 +∑𝑛𝑖−1
𝑗=0 𝑓𝑖, 𝑗𝑥

𝑗 ∈ 𝑹 [𝑥] with 𝑓𝑖 (𝑣𝑖 ) = 0. Put 𝑭 = {𝑓𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛𝑖 − 1}
and consider the k-subalgebra 𝑺 ′ = 𝑹 ′[𝑭 ] ⊂ 𝑹. Since 𝒗 is integral over 𝑺 ′, it follows

(by [7, Theorem VIII.5.2]) that the ring 𝑺 ′[𝒗] is a finitely generated 𝑺 ′-module.

Now assuming that the ring 𝑹 ′ is noetherian, it follows (by the Hilbert Basis

Theorem) that the commutative ring extension 𝑺 ′ = 𝑹 ′[𝑭 ] is noetherian as well

(because 𝑭 is finite), and the finitely generated 𝑺 ′-module 𝑺 ′[𝒗] is noetherian. But
then, 𝑹 is a 𝑺 ′-submodule of the noetherian 𝑺 ′-module 𝑺 ′[𝒗], so 𝑹 is a noetherian

(and hence, a finitely generated) 𝑺 ′-submodule; in particular the ring 𝑹 is noether-

ian. Likewise if 𝑹 ′ is finitely generated over k, then it is already noetherian and

the previous discussion shows that 𝑹 is generated as an 𝑺 ′-module by some finite
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set 𝑈 , so that, 𝑹 = 𝑺 ′[𝑈 ] = 𝑹 ′[𝑭 ∪𝑈 ] is a finitely generated k-algebra as a finite

type extension of a finitely generated k-algebra. □

We can now state the main theorem for this section, which precisely lifts the

Hilbert Basis Theorem to matrix polynomial algebras under the assumption (3.1)

that the set of variables splits between central variables and free non-commuting

variables. When a given path 𝜔 in QX (𝑖, 𝑗) contains a simple cycle 𝜎, one may

define the multiplicity m𝜎 (𝜔) of 𝜎 in 𝜔 as the largest 𝑚 ∈ N such that

𝜔 = 𝜔1𝜎𝜔2𝜎 · · ·𝜔𝑚𝜎𝜔𝑚+1 for some paths 𝜔1, . . . , 𝜔𝑚+1.

Below, for prescribed integers 0 ≠ m𝜎 ∈ N for all simple cycles 𝜎 in QX, we set:

Q𝑖, 𝑗 = {𝜔 ∈ QX (𝑖, 𝑗) : m𝜎 (𝜔) < m𝜎 for any simple cyclic subpath 𝜎 of 𝜔}, 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Theorem 3.12. The ring 𝑅⟨𝑬 ,X; 𝑪⟩ is left noetherian precisely when 𝑅 and T are;

and T is left noetherian if and only if X is finite and for all 𝑖, 𝑗 ∈ J1 , 𝑛K, each T𝑖 is

commutative while for any simple cycle 𝜎 ∈ QX ( 𝑗, 𝑗) with QX (𝑖, 𝑗) ≠ ∅, there is a

prescribed 0 ≠ m𝜎 ∈ N such that a permutation of 𝜎m𝜎 lies in T s
𝑖 while 𝜔𝜎m𝜎 ∈ T s

𝑖 𝜔

for every 𝜔 ∈ Q𝑖, 𝑗 .

While the corresponding statement for right noetherianity is immediate, it’s

worth observing that the theorem refines in the commuting variables context as it

follows.

Remark 3.13. The ring 𝑅 [𝑬 ,X] is left (right, or bilateral) noetherian precisely

when 𝑅 is while X is finite and for all 𝑖, 𝑗 ∈ J1 , 𝑛K and any simple cycle 𝜎 ∈ QX (𝑘, 𝑘)
with QX (𝑖, 𝑘),QX (𝑘, 𝑗) ≠ ∅, a positive power of 𝜎 lies in T s

𝑖 (or resp., in T s
𝑗 or T s

𝑖 ·T s
𝑗 ).

So the only fragment still left open is the following question.

Problem 3.14. Suppose that T is bilateral noetherian while the subset 𝑿nc ⊂ 𝑿

of free non-commuting variables is non-empty. Is it true that 𝑅⟨𝑬 ,X; 𝑪⟩ is bilateral
noetherian, or can one prove that each diagonal monoid T𝑖 is commutative?

The proof of Theorem 3.12 and Remark 3.13. One first observes that the

left (resp, right, bilateral) noetherianity of the matrix ring extension 𝑅 · 𝑬 , (with
finite 𝑅-basis given by the multiplicatively closed subset 𝑬 ⊂ E of basic elementary

matrices), is equivalent to that of the coefficient algebra 𝑅. One recalls in view of

Remark 2.2 (2.2) that A = 𝑅 · T is the semigroup ring with multiplicative 𝑅-basis T .

We shall now continue by splitting the proof of Theorem 3.12 and Remark 3.13 in

several statements.



THE STRUCTURE OF MATRIX POLYNOMIAL ALGEBRAS 155

Statement 3.1. The ring A = 𝑅⟨𝑬 ,X; 𝑪⟩ is left noetherian precisely when 𝑅 and T

are. The same holds for bilateral noetherianity in the commuting variables context.

Proof. If A is left (or resp., right, bilateral) noetherian, then so is T according to

Lemma3.6; the same holds for the algebra 𝑅 ·𝑬 (and hence for 𝑅) since A = 𝑅 ·𝑬⊕kAX

where AX = XA is the ideal generated by elementary matrix-variables.

Conversely, assuming that both 𝑅 and T are left noetherian, we want to show

that A is left noetherian. By virtue of Remark 3.4, each submonoid T𝑖 ⊂ ⟨𝑿 ; 𝑪⟩ is

left noetherian and T𝑖, 𝑗 is a finitely generated left T𝑖 -module. But then, thanks to

Lemma 3.7, each monoid T𝑖 is commutative and finitely generated and, since also

each T𝑖, 𝑗 is already a finitely generated left T𝑖 -module for all 𝑖, 𝑗 , it follows that X

is finite. Letting 𝑖, 𝑗 ∈ J1 , 𝑛K, it also follows from the previous discussion that the

diagonal component A𝑖 = 𝑅T𝑖 of A is left noetherian as a quotient of an ordinary

polynomial ring extension of the left noetherian ring 𝑅 by finitely many commuting

independent variables. For 𝑖 ≠ 𝑗 , since A𝑖, 𝑗 = 𝑅 · T𝑖, 𝑗 while the left T𝑖 -module T𝑖, 𝑗 is

finitely generated, it readily follows that the left A𝑖 -module A𝑖, 𝑗 is finitely generated,

and hence, left noetherian because A𝑖 is already a noetherian ring. We conclude by

virtue of Lemma 3.1 that A is left noetherian.

Likewise in the commuting variables context, if 𝑅 and T are bilateral noetherian,

then so is the ring 𝑅 [𝑬 ,X] by repeating the same arguments as before with the

expression ‘left noetherian’ replaced by ‘bilateral noetherian’, while for all 𝑖, 𝑗 ∈
J1 , 𝑛K, the expression ‘left T𝑖 -module’ is replaced by ‘bilateral T𝑖-T𝑗 -module’. □

For the proof of the second part of Theorem 3.12 (and of Remark 3.13), beside

the ring A = 𝑅⟨𝑬 ,X; 𝑪⟩ it shall be necessary to consider at the same time the matrix

polynomial ring 𝑅 [𝑬 ,X] in commuting variables. So for the sake of clarity we need

(only in this proof) alternative notations for terms in commutating variables: let

𝑖, 𝑗 ∈ J1 , 𝑛K; for all 𝜔 ∈ QX (𝑖, 𝑗) and every term 𝜆 = 𝜔 ∈ T𝑖, 𝑗 (in not necessarily

commuting variables),

❍ we write
˜
𝜆 =

˜
𝜔 for the corresponding term in commuting variables,

❍ we also write T for the set of elementary matrix-terms in commuting variables;

Ts
𝑖 ⊂ T𝑖 stands for the submonoid generated by terms along simple cycles at

point 𝑖.

Thus T is naturally a quotient of T with canonical projection T T, 𝜆𝒆𝑖, 𝑗
˜
𝜆𝒆𝑖, 𝑗

for all 𝑖, 𝑗 ∈ J1 , 𝑛K and 𝜆 ∈ T𝑖, 𝑗 .
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Statement 3.2. Assuming that T is left noetherian, its shape is as described by

Theorem 3.12. Likewise, if T is bilateral noetherian while we are in the commuting

variables context, then its shape is as described by Remark 3.13.

Proof. With the assumption that T is left noetherian, the same holds for T as

well. From the previous paragraph, it is already proved that X is finite and for

every 𝑖, 𝑗 ∈ J1 , 𝑛K, each T𝑖 is a finitely generated commutative monoid while each

bilateral T𝑖-T𝑗 -module T𝑖, 𝑗 is left noetherian. Now fixing 𝑖, Proposition 3.8(c) also

grants that there is some term 𝜐𝑖 ∈ ⟨𝑿nc⟩ such that T𝑖 is contained in the submonoid

⟨𝑿c ∪ {𝜐𝑖 }⟩ of ⟨𝑿 ; 𝑪⟩ generated by 𝑿c ∪ {𝜐𝑖 }. Here one recalls that 𝑿c consists of

central variables while 𝑿nc = 𝑿\𝑿c consists of free non-commuting variables; in

particular the submonoid ⟨𝑿nc⟩ is also the free non-commutative monoid generated

over 𝑿nc . It follows for all 𝜔,𝜔 ′ ∈ QX (𝑖, 𝑖) that if
˜
𝜔 =

˜
𝜔 ′, then it already holds in T𝑖

that 𝜔 = 𝜔 ′. Hence, the canonical projection T𝑖 T𝑖 , 𝜆
˜
𝜆 is an isomorphism

of monoids.

Let 𝜎 ∈ QX ( 𝑗, 𝑗) be any simple cycle with QX (𝑖, 𝑗) ≠ ∅ and pick any path 𝜔 ∈
QX (𝑖, 𝑗). We want to show that there is a positive integer 𝑚 (depending on both

𝜎 and 𝜔) such that
˜
𝜎𝑚 lies in T s

𝑖 up to a permutation of variables while 𝜔𝜎𝑚 ∈
T s
𝑖 𝜔. But having in view the canonical isomorphism T𝑖

∼ T𝑖 , 𝜆
˜
𝜆, we have

to prove that there is a positive integer 𝑚 together with a term 𝜐 ∈ T s
𝑖 such that

˜
𝜎𝑚 =

˜
𝜐 ∈ Ts

𝑖 and 𝜔𝜎𝑚 = 𝜐𝜔. The term 𝜎 satisfies 𝜔𝜎𝑟 = 𝜔𝜎𝑟 ∈ T𝑖, 𝑗 for all 𝑟 ∈ N.

Since by assumption T𝑖, 𝑗 is a noetherian T𝑖 -module, the T𝑖 -submodule generated

by the set 𝜔𝜎N = {𝜔𝜎𝑙 : 𝑙 ∈ N} must be generated by finitely many elements

from 𝜔𝜎N, implying that there exists some 𝜆 ∈ T𝑖 and some positive 𝑟 ∈ N with

𝜔𝜎𝑟 = 𝜆𝜔. In particular passing to T𝑖 , it holds that
˜
𝜎𝑟 =

˜
𝜆 and the term 𝜆 is, up

to a permutation of variables, a positive power of the term 𝜎 lying in T𝑖 . But then,

for the commutative monoid S generated by terms along all simple cycles in QX,

Lemma3.9 yields that (Ts
𝑖 ,T𝑖 , S) satisfies condition (3.2) and relying on Lemma3.10,

we deduce that a positive power
˜
𝜎𝑚 belongs to Ts

𝑖 ; one may take 𝑚 = 𝑝𝑟 to be a

multiple of 𝑟 for some 𝑝 ≥ 1. It follows that

𝜔𝜎𝑚 = 𝜔𝜎𝑝𝑟 = 𝜔 (𝜎𝑟 )𝑝 = 𝜆𝑝𝜔 with
˜
𝜆𝑝 =

˜
𝜎𝑚 ∈ Ts

𝑖 .

Thus as desired, 𝑚 and the term 𝜐 = 𝜆𝑝 are such that
˜
𝜎𝑚 =

˜
𝜐 ∈ Ts

𝑖 while 𝜔𝜎𝑚 = 𝜐𝜔.

Since once again the left T𝑖 -module T𝑖, 𝑗 must be generated by a finite subset

Σ ⊂ T𝑖, 𝑗 (while T𝑖 is also commutative), applying the previous paragraph for 𝜔

running over the finite set Σ shows that there exists a positive integer m𝜎 (now
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depending only on 𝜎) such that 𝜎m𝜎 lies in T s
𝑖 up to a permutation of variables

while 𝜔𝜎m𝜎 ∈ T s
𝑖 𝜔 for all 𝜔 ∈ QX (𝑖, 𝑗). This completes the proof that every left

noetherian T has its shape described as in the second part of Theorem 3.12.

Likewise, specializing to the commuting variables context (so that, A = 𝑅 [𝑬 ,X]
and in this case the alternative notation T coincides with T ), suppose that T is

bilateral noetherian. Then the technical issue due in the general case to the presence

of non-necessarily commuting variables disappears. For all 𝑖, 𝑗 ∈ J1 , 𝑛K and any cycle

𝜎 ∈ QX (𝑘, 𝑘) with QX (𝑖, 𝑘),QX (𝑘, 𝑗) ≠ ∅, as before (in the second paragraph of this

proof), the bilateral noetherianity of T𝑖, 𝑗 yields more easily that a positive power

of 𝜎 lies in T𝑖T𝑗 . But again, the triple (Ts
𝑖T

s
𝑗 , T𝑖T𝑗 , S) satisfies condition (3.2) and

relying on Lemma 3.10, one deduces that a positive power of 𝜎 lies in Ts
𝑖T

s
𝑗 , showing

that the shape of T is, as desired, described by Remark 3.13. □

We now turn to the sufficiency in the second part of Theorem 3.12 and Re-

mark 3.13.

Statement 3.3. Assume that X is finite and each T𝑖 is commutative for all 𝑖 ∈
J1 , 𝑛K.

(a) If moreover for all 𝑖, 𝑗 ∈ J1 , 𝑛K with QX (𝑖, 𝑗) ≠ ∅ and for any simple cycle

𝜎 ∈ QX ( 𝑗, 𝑗), there is a positive m𝜎 ∈ N such that
˜
𝜎m𝜎 ∈ Ts

𝑖 while 𝜔𝜎
m𝜎 ∈ T s

𝑖 𝜔

for every 𝜔 ∈ Q𝑖, 𝑗 , then T is left noetherian.

(b) Likewise in the commuting variables context, if for all 𝑖, 𝑗, 𝑘 ∈ J1 , 𝑛K with

QX (𝑖, 𝑘),QX (𝑘, 𝑗) ≠ ∅ and for any simple cycle 𝜎 ∈ QX (𝑘, 𝑘), there is a

positive m𝜎 ∈ N such that 𝜎m𝜎 ∈ T s
𝑖 · T s

𝑗 , then T is bilateral noetherian.

Proof. Since for the bilateral noetherianity claimed by part (b) the additional

assumption is weaker than the one in part (a), we start with the proof of (b)
and we shall see how this proof specializes and extends to a proof of the one-sided

noetherianity claimed by part (a). Thus we are in the commuting variables context,

and having in view Lemma 3.7 and Remark 3.4, arbitrarily fixing 𝑖, 𝑗 ∈ J1 , 𝑛K we

have to show that:

the commutative monoid T𝑖 and the bilateral T𝑖-T𝑗 -module T𝑖, 𝑗 are finitely

generated.

The finiteness of X implies that the number of simple paths in QX is finite. In

particular for all 𝑘, 𝑘 ′ ∈ J1 , 𝑛K, the monoids T s
𝑘
⊂ T𝑘 and T s

𝑘
T s
𝑘′ are finitely generated.

And letting 𝝉 consist of all terms 𝜎 with 𝜎 a simple cyclic subpath of some cycle in

QX (𝑘, 𝑘), and 𝝊 consist of all terms 𝜎 with 𝜎 a simple cyclic subpath of some cycle
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in QX (𝑟, 𝑟 ) for 𝑟 ∈ {𝑘, 𝑘 ′}, it is already granted by Lemma 3.9 that

T s
𝑘
⊂ T𝑘 ⊂ T s

𝑘
[𝝉 ] and T s

𝑘
T s
𝑘′ ⊂ T𝑘T𝑘′ ⊂ (T s

𝑘
T s
𝑘′) [𝝊] .

It follows that the monoids T𝑖 and T𝑖T𝑗 are already finitely generated by relying on

Proposition 3.11 (applied to the monoid ring extensions k [T𝑖 ] and k [T𝑖T𝑗 ]). Thus

the only case not (concretely) dealt with by Proposition 3.11 concerns the semigroup

module T𝑖, 𝑗 when 𝑖 ≠ 𝑗 . So continuing with the case that 𝑖 ≠ 𝑗 , it suffices for our

purpose to show that each T𝑖, 𝑗 is finitely generated as T s
𝑖 T

s
𝑗 -module (or, just as

T𝑖T𝑗 -module). For every simple cycle 𝜎 appearing as subpath of a path from 𝑖 to

𝑗 , we let m𝜎 be the smallest non-zero natural number such that 𝜎m𝜎 lies in T s
𝑖 · T s

𝑗 .

Recall that the multiplicity of a simple cycle 𝜎 in a given path 𝜔 ∈ QX (𝑖, 𝑗) has

been defined as the largest 𝑚 ∈ N such that

𝜔 = 𝜔1𝜎𝜔2𝜎 · · ·𝜔𝑚𝜎𝜔𝑚+1 for some paths 𝜔1, . . . , 𝜔𝑚+1.

Since there are only finitely many simple paths, we get a finite subset Q𝑖, 𝑗 ⊂ QX (𝑖, 𝑗)
consisting of all paths 𝜔 from 𝑖 to 𝑗 such that the multiplicity of any simple cyclic

subpath 𝜎 in 𝜔 is less than m𝜎 . Write T𝑖, 𝑗 ⊂ T𝑖, 𝑗 for the finite subset of all terms

𝜔 with 𝜔 ∈ Q𝑖, 𝑗 . Let 𝜔 ∈ QX (𝑖, 𝑗) be arbitrarily given. If 𝜔 lies in Q𝑖, 𝑗 , then it is

already granted that 𝜔 ∈ T𝑖, 𝑗 . Assuming that 𝜔 does not lie in Q𝑖, 𝑗 , it holds that

𝜔 contains a simple cycle 𝜎 whose multiplicity in 𝜔 is greater or equal to 𝑚 = m𝜎 .

Thus we have:

𝜔 = 𝜔1𝜎𝜔2𝜎 · · ·𝜔𝑚𝜎𝜔𝑚+1 for some paths 𝜔1, . . . , 𝜔𝑚+1.

Clearly, 𝜔 ′ = 𝜔1 · · ·𝜔𝑚+1 is still a path from 𝑖 to 𝑗 with ℓ (𝜔 ′) < ℓ (𝜔), and it holds

that 𝜔 = 𝜎𝑚 · 𝜔 ′ with 𝜎𝑚 ∈ T s
𝑖 · T s

𝑗 (because 𝑚 = m𝜎). Whence, the proof that the

term 𝜔 for every 𝜔 ∈ QX (𝑖, 𝑗) lies in T s
𝑖 T

s
𝑗 ·T𝑖, 𝑗 is completed by the way of induction

on the length of paths. Thus, we have proved that each commutative monoid T𝑖

is finitely generated and each T𝑖, 𝑗 is a finitely generated T𝑖T𝑗 -module, so that T is

bilateral noetherian.

We now turn to the proof of part (a). Here A = 𝑅⟨𝑬 ,X; 𝑪⟩ and the variables do

not necessarily commute, thus we shall also make use of the alternative notation

T for the ‘semigroup’ of elementary matrix-terms in commuting variables. The

specific assumption is that: for all 𝑖, 𝑗 ∈ J1 , 𝑛K with QX (𝑖, 𝑗) ≠ ∅ and for any simple

cycle 𝜎 ∈ QX ( 𝑗, 𝑗), there is a positive m𝜎 ∈ N with
˜
𝜎m𝜎 ∈ Ts

𝑖 and 𝜔𝜎m𝜎 ∈ T s
𝑖 𝜔 for

every 𝜔 ∈ Q𝑖, 𝑗 . But then, it is already granted by the above paragraph that each

T𝑖 is finitely generated, so that the same is true for T𝑖 because of the canonical
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isomorphism T𝑖
∼ T𝑖 , 𝜆

˜
𝜆. We now proceed as above to show that each

bilateral module T𝑖, 𝑗 is generated as left module by the finite subset

T𝑖, 𝑗 = {𝜔 : 𝜔 ∈ Q𝑖, 𝑗 }.

We will proceed by induction on the length of paths. Let 𝜔 ∈ QX (𝑖, 𝑗) be arbitrarily
given. If 𝜔 lies in Q𝑖, 𝑗 , then it is already granted that 𝜔 ∈ T𝑖, 𝑗 . Assume that 𝜔 does

not lie in Q𝑖, 𝑗 and the desired result holds for all paths 𝜔 ′ ∈ QX (𝑘, 𝑘 ′) with ℓ (𝜔 ′) <
ℓ (𝜔). It follows that 𝜔 contains a simple cycle 𝜎 ∈ QX (𝑘, 𝑘) whose multiplicity

in 𝜔 is greater or equal to 𝑚 = m𝜎 . Thus we have: 𝜔 = 𝜔1𝜎𝜔2𝜎 · · ·𝜔𝑚𝜎𝜔𝑚+1 for

some paths 𝜔1 ∈ QX (𝑖, 𝑘), 𝜔2 . . . , 𝜔𝑚 ∈ QX (𝑘, 𝑘) and 𝜔𝑚+1 ∈ QX (𝑘, 𝑗). But since each

monoid T𝑘 is commutative, it holds that

𝜔 = 𝜔1𝜎
𝑚𝜔 ′ with 𝜔 ′ = 𝜔2 · · ·𝜔𝑚𝜔𝑚+1.

Now because ℓ (𝜔1) < ℓ (𝜔), the induction hypothesis applies, showing that 𝜔1 = 𝜆𝜔 ′′

for some 𝜆 ∈ T𝑖 and some 𝜔 ′′ ∈ Q𝑖,𝑘 . And by assumption, there exists some 𝜐 ∈ T𝑖

such that 𝜔 ′′𝜎𝑚 = 𝜐𝜔 ′′ (because 𝑚 = m𝜎 while 𝜔 ′′ ∈ Q𝑖,𝑘). So we get:

𝜔 = 𝜔1𝜎
𝑚𝜔 ′ = 𝜆𝜐𝜔 ′′𝜔 ′, with ℓ (𝜔 ′′𝜔 ′) < ℓ (𝜔).

Thus another application of the induction hypothesis yields that 𝜔 ′′𝜔 ′ lies in T𝑖 ·T𝑖, 𝑗 ,

implying that 𝜔 lies in T𝑖 ·T𝑖, 𝑗 as well. Hence each bilateral module T𝑖, 𝑗 is as claimed

a finitely generated T𝑖 -module. This completes the proof that T is left noetherian.

The proof of Theorem 3.12 and Remark 3.13 is now finished. □

4. Matrix (polynomial) algebras with Cayley-Hamilton structures

For this section, the base ring k is a field of characteristic zero. The noncommu-

tative geometry of Cayley-Hamilton algebras studied by [14] is well known: every

affine Cayley-Hamilton algebra 𝐴 of degree 𝑛 over the field of complex numbers

may be reconstructed as witness algebra of the commutative geometry space of

trace-preserving 𝑛-dimensional representations of 𝐴. We address the obvious but

rather delicate question of recognizing which matrix(-polynomial) algebras admit

any Cayley-Hamilton structure.

It shall be necessary for our purpose to fully recall the setup for Cayley-Hamilton

structures. With 0 ≠ 𝑛 ∈ N fixed as usual, for countably many variables 𝑥𝑘 , 1 ≤ 𝑘 ∈
N we recall the elementary symmetric functions σ𝑘 and the power sum functions

s𝑘 :

σ𝑘 = σ𝑘 (𝑥1, . . . , 𝑥𝑛) =
∑

1≤𝑖1<· · ·<𝑖𝑘≤𝑛
𝑥𝑖1 · · · 𝑥𝑖𝑘 , s𝑘 = s𝑘 (𝑥1, . . . , 𝑥𝑛) =

𝑛∑
𝑖=1

𝑥𝑘𝑖 , 1 ≤ 𝑘 ≤ 𝑛.
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Let S𝑛 be the symmetric group on 𝑛 symbols; it is classical that both sets {σ1, . . . ,σ𝑛}
and {s1, . . . , s𝑛} are two algebra bases of the k-algebra of symmetric polynomials

k [𝑥1, . . . , 𝑥𝑛]S𝑛 = {𝑓 ∈ k [𝑥1, . . . , 𝑥𝑛] : ∀𝜏 ∈ S𝑛, 𝑓 (𝑥𝜏 (1) , . . . , 𝑥𝜏 (𝑛) ) = 𝑓 (𝑥1, . . . , 𝑥𝑛)}.

The well-known Newton identities [14, Eq. (1.2)] relating the σ𝑘 ’s and the s𝑘 ’s are:

(−1)𝑘𝑘σ𝑘 +
𝑘−1∑
𝑖=1

(−1)𝑖σ𝑖s𝑘−𝑖 = 0, with σ0 = 1.

Now, recursively expressing the elementary symmetric polynomials in terms of the

Newton power sum polynomials, one deduces the first item of the next crucial

remark.

Remark 4.1. (a) There are universal polynomials h𝑘 ∈ Q[𝑥1, . . . , 𝑥𝑘 ] with

h0 = 1, (−1)𝑘𝑘h𝑘 =
𝑘−1∑
𝑖=0

(−1)𝑖+1h𝑖𝑥𝑘−𝑖 and σ𝑘 = h𝑘 (s1, . . . , s𝑘 ) for 1 ≤ 𝑘 ≤ 𝑛, (4.1)

where with each fixed 𝑛 and for all 𝑘 ∈ J1 , 𝑛K, it is understood that

σ𝑘 = σ𝑘 (𝑥1, . . . , 𝑥𝑛) and s𝑘 = s𝑘 (𝑥1, . . . , 𝑥𝑛).
(b) If 𝑀 ∈ M𝑛 (k) is any matrix with 𝑛 eigenvalues 𝜆1, . . . , 𝜆𝑛 (counted with

multiplicities), then the characteristic polynomial of 𝑀 expands as

χ
𝑀 (𝑡) = det(𝑡1𝒏 −𝑀) = 𝑡𝑛 +

𝑛∑
𝑘=1

(−1)𝑘σ𝑘 (𝜆1, . . . , 𝜆𝑛)𝑡𝑛−𝑘

= 𝑡𝑛 +
𝑛∑

𝑘=1
(−1)𝑘h𝑘 (tr(𝑀), . . . , tr(𝑀𝑘 ))𝑡𝑛−𝑘 ,

where tr : M𝑛 (k) k is the natural trace map on matrices.

Definition 4.2. (a) A trace map on an algebra 𝐴 is a k-linear map

tr : 𝐴 Z(𝐴) satisfying the following additional properties for all 𝑎, 𝑏 ∈
𝐴:

tr (𝑎𝑏) = tr (𝑏𝑎), tr (tr(𝑎)𝑏) = tr (𝑎)tr(𝑏).

In this case, there is for every 𝑎 ∈ 𝐴 a formal Cayley-Hamilton polynomial

of degree 𝑛:

χ
𝑎 (𝑡) = χ

𝑎,tr (𝑡) = 𝑡𝑛 +
𝑛∑

𝑘=1
(−1)𝑘h𝑘 (tr (𝑎), . . . , tr (𝑎𝑘 ))𝑡𝑛−𝑘 .

(b) An algebra 𝐴 with trace map tr is called Cayley-Hamilton of degree 𝑛 if:

tr (1𝐴) = 𝑛1𝐴 and χ
𝑎 (𝑎) = 0 for all 𝑎 ∈ 𝐴.

Let (𝐴, tr ) be any Cayley-Hamilton algebra of degree 𝑛, generated over tr (𝐴)
by at most 𝑚 elements. View M𝑚

𝑛 = M𝑛 (k) ⊕ · · · ⊕ M𝑛 (k), the direct sum of

𝑚-copies of the full matrix ring M𝑛 = M𝑛 (k), as a commutative geometric space
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with coordinate ring given by the polynomial ring k [M𝑚
𝑛 ] = k [𝑥(𝑘)

𝑖, 𝑗
: 1 ≤ 𝑖, 𝑗 ≤

𝑛, 1 ≤ 𝑘 ≤ 𝑚] in 𝑚 · 𝑛2 commuting variables. Then both k [M𝑚
𝑛 ] and M𝑛 (k [M𝑚

𝑛 ])
carry a natural Gl𝑛-action. The invariant theoretical presentation theorem [14,

Theorem 1.17] states that there is a canonical ideal 𝑁𝐴 ⊂ k [M𝑚
𝑛 ] such that 𝐴 and

tr (𝐴) arise as Gl𝑛-invariant algebras

𝐴 = M𝑛 (k [M𝑚
𝑛 ]/𝑁𝐴)Gl𝑛 and tr (𝐴) =

(
k [M𝑚

𝑛 ]/𝑁𝐴

)Gl𝑛 .

Thus the degree 𝑛 free Cayley-Hamilton algebra, trace-generated by at most 𝑚

elements, is just the matrix polynomial extension of k by𝑚 generic matrix-variables

𝑋𝑘 = (𝑥(𝑘)
𝑖, 𝑗

)𝑖, 𝑗 , 𝑘 = 1, . . . ,𝑚, in the ordinary commuting variables 𝑥(𝑘)
𝑖, 𝑗

for 1 ≤ 𝑖, 𝑗 ≤
𝑛, 1 ≤ 𝑘 ≤ 𝑚.

For finite-dimensional C-algebras 𝐴, the algebraic reconstruction theorem can

be used to describe all Cayley-Hamilton structures on 𝐴 while restricting the range

of the trace map to the base field, [14, Proposition 2.13]. However the arguments

from [14, Proposition 2.13] do not lift to the present context, as stressed by the

following remark.

Remark 4.3. The invariant theoretical and the geometric reconstruction theorems

of Cayley-Hamilton algebras do not provide a mean to recognize whether a given

matrix polynomial algebra admits a trace map making it Cayley-Hamilton.

For our purpose, it shall be necessary to resort to the abstract definition of

Cayley-Hamilton algebras and delicately work out the recurrence relation (4.1)

defining the universal polynomials involved in the Cayley-Hamilton identities. Our

main contribution in this section is the following characterisation result which par-

allels [14, Proposition 2.13].

Theorem 4.4. Let the coefficient algebra 𝑅 be a domain and A = 𝑅 [𝑬 ,X] a con-

nected matrix polynomial ring extension. Then A is Cayley-Hamilton of degree

𝑟 ∈ J1 , 𝑛K for some trace map tr : A A precisely when 𝑟 = 𝑛, the diagonal

components of A coincides and the trace map tr is induced as the restriction of the

natural trace map on matrices.

The rest of this section is devoted to essentially proving the above theorem. The

sufficiency in the theorem is easy and follows by the fact that for any subalgebra

𝐴 of a full matrix algebra M𝑛 (𝑅) over a commutative ring 𝑅 such that 𝐴 is stable

under the natural trace map tr : M𝑛 (𝑅) 𝑅, the algebra 𝐴 endowed with the

restriction 𝐴 𝐴, 𝑎 tr(𝑎) · 1𝑛 is Cayley-Hamilton of degree 𝑛.
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For the necessity part in Theorem 4.4, we need some preparation before we can

uncover the specific effect of an eligible trace map providing A with a Cayley-

Hamilton structure. Returning to Cayley-Hamilton identities, we define for every

variable 𝑧 the polynomial:

π𝑛 (𝑧) =
𝑛−1∏
𝑘=0

(𝑧 − 𝑘) = 𝑧 · (𝑧 − 1) · · · (𝑧 − (𝑛 − 1)) .

Lemma 4.5. For each 𝑘 ∈ N, set ℏ0 (𝑧) = h0 (𝑧) = 1 and ℏ𝑘 (𝑧) = h𝑘 (𝑧, . . . , 𝑧) (with

𝑘 components all equal to 𝑧). Then the ℏ𝑘 ’s satisfy the following relations for all

𝑛 ∈ N:

𝑛!ℏ𝑛 (𝑧) = π𝑛 (𝑧) =
𝑛−1∏
𝑘=0

(𝑧 − 𝑘), (−1)𝑛𝑛!
𝑛∑

𝑘=0
(−1)𝑘ℏ𝑘 (𝑧) =

1

𝑧
π𝑛+1 (𝑧) =

𝑛∏
𝑘=1

(𝑧 − 𝑘). (4.2)

Proof. The polynomials h𝑘 = h𝑘 (𝑥1, . . . , 𝑥𝑘 ) ∈ Q[𝑥1, . . . , 𝑥𝑘 ], for 𝑘 ∈ N, satisfy by

virtue of Remark 4.1 the recurrence relation:

h0 = 1, (−1)𝑘𝑘h𝑘 =
𝑘−1∑
𝑖=0

(−1)𝑖+1h𝑖𝑥𝑘−𝑖 for 𝑘 ≥ 1.

So the ℏ𝑘 ’s satisfy the recurrence relation:

(−1)𝑘𝑘ℏ𝑘 (𝑧) = 𝑧
𝑘−1∑
𝑖=0

(−1)𝑖+1ℏ𝑖 (𝑧) for 𝑘 ≥ 1.

We will prove the validity of both identities given by (4.2) using induction on 𝑛.

We have ℏ0 (𝑧) = h0 = 1, and ℏ1 (𝑧) = h1 (𝑧) = 𝑧 =
∑1−1

𝑘=0 (𝑧 − 𝑘), while (−1)1 · 1 ·∑1
𝑘=0 (−1)𝑘ℏ𝑘 (𝑧) = −(1 + (−𝑧)) = (𝑧 − 1), showing that (4.2) holds for 𝑛 = 1. Turning

to the induction step, assuming that (4.2) has been proved for a given 𝑛 ≥ 1, let us

prove that (4.2) holds for 𝑛 + 1. Since (−1)𝑛+1 (𝑛 + 1)ℏ𝑛+1 (𝑧) = −𝑧∑𝑛
𝑘=0 (−1)𝑘ℏ𝑘 (𝑧), on

one hand we have:

(−1)𝑛+1 (𝑛 + 1)!ℏ𝑛+1 (𝑧) = −𝑧𝑛!
𝑛∑

𝑘=0
(−1)𝑘ℏ𝑘 (𝑧)

= −𝑧 (−1)𝑛
𝑛∏

𝑘=1
(𝑧 − 𝑘) = (−1)𝑛+1

𝑛∏
𝑘=0

(𝑧 − 𝑘),

so that, (𝑛 + 1)!ℏ𝑛+1 (𝑧) =
∏𝑛

𝑘=0 (𝑧 − 𝑘). On the other hand, we get the following

computations (where in the second row, one invokes the induction hypothesis and
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the already computed value of (𝑛 + 1)!ℏ𝑛+1 (𝑧)):

(−1)𝑛+1 (𝑛 + 1)!
𝑛+1∑
𝑘=0

(−1)𝑘ℏ𝑘 (𝑧) = −(𝑛 + 1) (−1)𝑛𝑛!
𝑛∑

𝑘=0
(−1)𝑘ℏ𝑘 (𝑧)

+ (−1)𝑛+1 (𝑛 + 1)! · (−1)𝑛+1ℏ𝑛+1 (𝑧)

= −(𝑛 + 1)
𝑛∏

𝑘=1
(𝑧 − 𝑘)+

𝑛∏
𝑘=0

(𝑧 − 𝑘)=
𝑛∏

𝑘=1
(𝑧 − 𝑘) ·

(
−(𝑛 + 1) + 𝑧

)
=

𝑛+1∏
𝑘=1

(𝑧 − 𝑘).

Hence, (4.2) holds for 𝑛 + 1 and this completes the proof of the lemma. □

The next key lemma computes for an eligible trace tr on an arbitrary algebra 𝐴

the possible values of tr (𝑒) for every idempotent element 𝑒 ∈ 𝐴.

Lemma 4.6. Let 𝐴 be any k-algebra endowed with a trace map tr . Let 1 ≤ 𝑛 ∈ N

and write χ
𝑎 for the associated degree 𝑛 formal Cayley-Hamilton polynomial of

𝑎 ∈ 𝐴.

(a) For every idempotent 𝑒 ∈ 𝐴, it holds that

(−1)𝑛𝑛!χ𝑒 (𝑒) = (tr (𝑒) − 𝑛𝑒) ·
𝑛−1∏
𝑘=1

(tr (𝑒) − 𝑘).

(b) Suppose that (𝐴, tr ) is Cayley-Hamilton of degree 𝑛, torsion-free as a module

over the k-subalgebra tr (𝐴), while 1 = 𝑒1 + · · · + 𝑒𝑝 is a sum of non-zero

orthogonal idempotents for some 𝑝 ∈ N. Then, either tr (𝑒1), . . . , tr (𝑒𝑛) ∈
J1 , 𝑛 − 1K and 𝑝 ≤ ∑𝑝

𝑖=1 tr (𝑒𝑖 ) = 𝑛, or tr (𝑒𝑖 ) = 𝑛𝑒𝑖 for all 𝑖 ∈ J1 , 𝑝K and the

idempotents 𝑒𝑖 ’s are necessarily central.

Proof. Remember that since k is a field with characteristic zero, the field Q of

rational numbers identifies with a subring of the center of the k-algebra 𝐴. The

degree 𝑛 formal Cayley-Hamilton polynomial associated with tr is given for every

𝑎 ∈ 𝐴 by:

χ
𝑎 (𝑥) = 𝑥𝑛 +

𝑛∑
𝑘=1

(−1)𝑘h𝑘 (tr (𝑎), . . . , tr (𝑎𝑘 ))𝑥𝑛−𝑘 .

So for an idempotent 𝑒 ∈ 𝐴, since 𝑒𝑘 = 𝑒 for all 𝑘 ≥ 1 and recalling by definition

that ℏ𝑘 (𝑧) = h𝑘 (𝑧, . . . , 𝑧) for all 𝑘, with ℏ0 (𝑧) = h0 = 1, we get that:

χ
𝑒 (𝑒) = 𝑒 ·

𝑛−1∑
𝑘=0

(−1)𝑘ℏ𝑘 (tr (𝑒)) + (−1)𝑛ℏ𝑛 (tr (𝑒)).
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Now multiplying the above by (−1)𝑛𝑛! and invoking Lemma 4.5, we get:

(−1)𝑛𝑛!χ𝑒 (𝑒) = −𝑛𝑒 · (−1)𝑛−1 (𝑛 − 1)!
𝑛−1∑
𝑘=0

(−1)𝑘ℏ𝑘 (tr (𝑒)) + 𝑛!ℏ𝑛 (tr (𝑒))

= −𝑛𝑒
𝑛−1∏
𝑘=1

(tr (𝑒) − 𝑘) +
𝑛−1∏
𝑘=0

(tr (𝑒) − 𝑘) .

Thus,

(−1)𝑛𝑛!χ𝑒 (𝑒) = (tr (𝑒) − 𝑛𝑒) ·
𝑛−1∏
𝑘=1

(tr (𝑒) − 𝑘) . (†)

Let us now assume that (𝐴, tr ) is Cayley-Hamilton of degree 𝑛, torsion-free as

a module over the k-subalgebra tr (𝐴) ⊂ Z(𝐴). Also let 1 = 𝑒1 + · · · + 𝑒𝑝 be a

decomposition as a sum of non-zero orthogonal idempotents 𝑒1, . . . , 𝑒𝑝 for some

𝑝 ∈ N. For every idempotent 𝑒 ∈ 𝐴, since by assumption 𝐴 is a torsion-free module

over tr (𝐴), the Cayley-Hamilton identity χ
𝑒 (𝑒) = 0, together with the relation (†)

above, show that

tr (𝑒) ∈ {1, 2 . . . , (𝑛 − 1), 𝑛𝑒}.

Still because (𝐴, tr ) is Cayley-Hamilton of degree 𝑛, we know that tr (1) = 𝑛. Putting

𝜆𝑖 = tr (𝑒𝑖 ) for 1 ≤ 𝑖 ≤ 𝑝, we have to solve the problem given by the following system:
𝜆1 + 𝜆2 + · · · + 𝜆𝑝 = 𝑛

𝜆𝑖 ∈ {1, 2 . . . , (𝑛 − 1), 𝑛𝑒𝑖 } for 1 ≤ 𝑖 ≤ 𝑝.
(‡)

We claim that: either 𝜆𝑖 = 𝑛𝑒𝑖 for all 𝑖 ∈ J1 , 𝑝K, or the 𝜆𝑖 ’s are all positive in-

tegers in J1 , 𝑛 − 1K. Indeed, assuming the contrary, we have that both subsets

Λ = {𝑖 ∈ J1 , 𝑝K : 1 ≤ 𝜆𝑖 ≤ 𝑛 − 1} and Λ′ = J1 , 𝑝K\Λ are non-empty. Then (‡) yields

that: ∑
𝑖∈Λ

𝜆𝑖 + 𝑛
∑
𝑗 ∈Λ′

𝑒 𝑗 = 𝑛 = 𝑛 · 1 = 𝑛
𝑝∑

𝑘=1
𝑒𝑘 ,

and it follows that
∑

𝑖∈Λ 𝜆𝑖 = 𝑛
∑

𝑘∈Λ 𝑒𝑘 . Thus piking any 𝑗 ∈ Λ′ and multiplying

the last equation by 𝑒 𝑗 yields that (∑𝑖∈Λ 𝜆𝑖 )𝑒 𝑗 = 𝑛𝑒 𝑗
∑

𝑘∈Λ 𝑒𝑘 = 0 while (∑𝑖∈Λ 𝜆𝑖 ) is

a non-zero positive integer, which implies that 𝑒 𝑗 = 0 and this last relation is a

contradiction. Hence our claim holds: either (𝜆1, . . . , 𝜆𝑝 ) = (𝑛𝑒1, . . . , 𝑛𝑒𝑝 ) and in

this case the 𝑒𝑖 ’s are necessarily central elements, or 𝜆1, . . . , 𝜆𝑝 ∈ J1 , 𝑛 − 1K and

𝑝 ≤ ∑𝑝

𝑖=1 𝜆𝑖 = 𝑛. □

Returning to the statement of Theorem 4.4, let tr : A A be any trace

map. By definition, tr (A) is contained in the center Z(A) of A. But A is by

assumption connected, that is, the associated labelled quiver QX is connected;

Proposition 2.5(b) shows that Z(A) = Z · 1𝑛 with Z = ∩𝑛
𝑖=1A𝑖 . Hence any given

trace map on A arises as a trace map tr : A Z � Z · 1𝑛 A while A does
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not reduces to its diagonal algebra in case 𝑛 ≥ 2. With this observation, the ne-

cessity part of Theorem 4.4 becomes the object of the next slightly more general

proposition, where a matrix subalgebra in a full matrix ring is always assumed to

include all the basic elementary idempotent matrices.

Proposition 4.7. Let 𝑅 be any k-algebra without zero-divisors, and 𝐴 = (𝐴𝑖, 𝑗 )𝑖, 𝑗 ⊂
M𝑛 (𝑅) any matrix subalgebra together with a trace map tr : 𝐴 𝑅 such that 𝐴

is Cayley-Hamilton of some degree 𝑟 ∈ J1 , 𝑛K, with 𝐴 ≠ diag(𝐴) in case 𝑛 ≥ 2. Then

necessarily, 𝑟 = 𝑛, the trace map tr is induced as the restriction of the natural trace

map on matrices while the diagonal components of 𝐴 coincide with a subalgebra

𝑍 ⊂ 𝑅 acting centrally on 𝐴.

Proof. Since 𝑅 does not contain zero-divisors, the matrix algebra M𝑛 (𝑅), as well
the matrix subalgebra 𝐴, are torsion-free as left 𝑅-modules. Recall that we write the

basic elementary matrices as 𝒆𝑖, 𝑗 , with 𝒆𝑖 = 𝒆𝑖,𝑖 , and the diagonal components of 𝐴 as

𝐴𝑖 = 𝐴𝑖,𝑖 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Write the identity matrix as 1𝑛 = 𝒆1 + · · · + 𝒆𝑛. It holds for all

𝑖 ≠ 𝑗 in J1 , 𝑛K and any 𝛼 ∈ 𝐴𝑖, 𝑗 that tr (𝛼𝒆𝑖, 𝑗 ) = tr (𝒆𝑖 ·𝛼𝒆𝑖, 𝑗 ) = tr (𝛼𝒆𝑖, 𝑗 · 𝒆𝑖 ) = tr (0) = 0.

Hence the formal trace of every matrix a =
∑

1≤𝑖, 𝑗≤𝑛 𝑎𝑖, 𝑗 𝒆𝑖, 𝑗 ∈ 𝐴 depends only on its

diagonal components:

tr (a) = ∑
1≤𝑖≤𝑛

tr (𝑎𝑖,𝑖𝒆𝑖 ).

Next, for countably many variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, . . . , and having

in view Remark 4.1, recall that there are universal polynomials

h𝑘 = h𝑘 (𝑥1, . . . , 𝑥𝑘 ) ∈ Q[𝑥1, . . . , 𝑥𝑘 ], 𝑘 ∈ N, defined by the recurrence relations:

h0 = 1, (−1)𝑚𝑚h𝑚 =
𝑚−1∑
𝑘=0

(−1)𝑘+1h𝑘𝑥𝑚−𝑘 , 𝑚 ≥ 1. (I)

If 𝑛 = 1, then 𝑟 = 1 and the degree-one Cayley-Hamilton identity for every 𝑎 ∈ 𝐴 is

given by: 0 = χ
𝑎 (𝑎) = 𝑎− tr (𝑎), which amounts to the equality tr (𝑎) = 𝑎, so that the

desired result is trivial. We continue the proof with 𝑛 ≥ 2. Thus 1𝑛 = 𝒆1 + · · · + 𝒆𝑛

is a sum of orthogonal idempotent matrices 𝒆1, . . . , 𝒆𝑛, at least one of which is

non-central because in this case, by assumption 𝐴 does not reduce to its diagonal

diag(𝐴). Since moreover 𝐴 is torsion-free as a left 𝑅-module while by assumption

tr takes its values in 𝑅 (which identifies to the subring 𝑅 · 1𝑛 ⊂ 𝐴), part (b) of

Lemma 4.6 shows that tr (𝑒1), . . . , tr (𝑒𝑛) are 𝑛 positive integers whose sum equals 𝑟 .

But then since 𝑟 ≤ 𝑛, the only possible solution for 𝑟 and for the tr (𝑒𝑖 )’s is given

by: 𝑟 = 𝑛 and tr (𝒆𝑖 ) = 1 for all 𝑖 ∈ J1 , 𝑛K.
Fixing any 𝑖 ∈ J1 , 𝑛K and any non-zero element 𝛼 ∈ 𝐴𝑖 , our purpose is to prove

that tr (𝛼𝒆𝑖 ) is necessarily given by 𝛼 . In view of Remark 4.1, the degree 𝑛 formal
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Cayley-Hamilton polynomial of 𝛼𝒆𝑖 is given by

χ
𝛼𝒆𝑖 (𝑥) = 𝑥𝑛 +

𝑛∑
𝑘=1

𝜇𝑘𝑥
𝑛−𝑘 with 𝜇𝑘 = (−1)𝑘h𝑘 (tr (𝛼𝒆𝑖 ), . . . , tr (𝛼𝑘𝒆𝑖 )), 1 ≤ 𝑘 ≤ 𝑛.

Using a backward induction we will show that 𝜇𝑚 = 0 for 𝑚 = 𝑛, 𝑛 − 1, . . . , 2. The

degree 𝑛 Cayley-Hamilton identity χ
𝛼𝒆𝑖 (𝛼𝒆𝑖 ) = 0 expands as:

𝛼𝑛𝒆𝑖 +
𝑛−1∑
𝑘=1

𝜇𝑘𝛼
𝑛−𝑘𝒆𝑖 + 𝜇𝑛1𝐴 = 𝛼𝑛𝒆𝑖 +

𝑛−1∑
𝑘=1

𝜇𝑘𝛼
𝑛−𝑘𝒆𝑖 + 𝜇𝑛𝒆𝑖 + 𝜇𝑛 · ∑

𝑗≠𝑖

𝒆 𝑗 = 0.

Since the elementary matrices form an 𝑅-basis of M𝑛 (𝑅), it follows that 𝜇𝑛 = 0.

Next, letting 𝑚 ∈ J2 , 𝑛 − 1K and assuming that 𝜇𝑘 = 0 for 𝑚 + 1 ≤ 𝑘 ≤ 𝑛, let us show

that 𝜇𝑚 = 0 as well. Since moreover 𝐴 is torsion-free as a left 𝑅-module while 𝛼 is a

non-zero element of 𝑅, the degree 𝑛 Cayley-Hamilton equation for 𝛼𝒆𝑖 simplifies to

the equation:

𝛼𝑚𝒆𝑖 +
𝑚−1∑
𝑘=1

𝜇𝑘𝛼
𝑚−𝑘𝒆𝑖 + 𝜇𝑚𝒆𝑖 = 0.

Applying the map tr to the last equation and using the already granted fact that

tr (𝒆𝑖 ) = 1 together with the property that tr is tr (𝐴)-linear, we get:

tr (𝛼𝑚𝒆𝑖 ) +
𝑚−1∑
𝑘=1

𝜇𝑘tr (𝛼𝑚−𝑘𝒆𝑖 ) + 𝜇𝑚 = 0. (II)

Substituting the 𝜇𝑘 ’s by their values in terms of the h𝑘 ’s and using the recurrence

relation given by (I), we compute:

tr (𝛼𝑚𝒆𝑖 ) +
𝑚−1∑
𝑘=1

𝜇𝑘tr (𝛼𝑚−𝑘𝒆𝑖 ) =
𝑚−1∑
𝑘=0

(−1)𝑘h𝑘 (tr (𝛼𝒆𝑖 ), . . . , tr (𝛼𝑘𝒆𝑖 ))tr (𝛼𝑚−𝑘𝒆𝑖 )

= −(−1)𝑚𝑚h𝑚 (tr (𝛼𝒆𝑖 ), . . . , tr (𝛼𝑚𝒆𝑖 ))

= −𝑚𝜇𝑚 .

So equation (II) becomes (1 − 𝑚)𝜇𝑚 = 0, showing that 𝜇𝑚 = 0 because 𝑚 ≥ 2.

We conclude that 𝜇𝑚 = 0 for all 𝑚 ∈ J2 , 𝑛K, and the degree 𝑛 Cayley-Hamilton

equation for 𝛼𝒆𝑖 simplifies to the equation 0 = 𝛼𝒆𝑖 − tr (𝛼𝒆𝑖 )𝒆𝑖 =
(
𝛼 − tr (𝛼𝒆𝑖 )

)
𝒆𝑖 ,

forcing that tr (𝛼𝒆𝑖 ) = 𝛼 since M𝑛 (𝑅) is torsion-free as a left 𝑅-module. Recalling

that by the definition of a trace map we must have tr (𝐴) · 1𝑛 ⊂ Z(𝐴), it follows

that each element 𝛼1𝑛 = tr (𝛼𝒆𝑖 )1𝑛 must live in Z(𝐴) and 𝛼 necessarily belongs to

each diagonal component 𝐴 𝑗 for all 𝑗 ∈ J1 , 𝑛K. Since 𝑖 ∈ J1 , 𝑛K and 𝛼 ∈ 𝐴𝑖 were

arbitrary, we have therefore proved that the diagonal components of 𝐴 necessarily

coincide with a commutative subalgebra 𝑍 ⊂ 𝑅 acting centrally on 𝐴, while for

every matrix a =
∑

1≤𝑖, 𝑗≤𝑛 𝑎𝑖, 𝑗 𝒆𝑖, 𝑗 ∈ 𝐴 it holds that tr (a) = ∑𝑛
𝑖=1 tr (𝑎𝑖,𝑖𝒆𝑖 ) =

∑𝑛
𝑖=1 𝑎𝑖,𝑖 .

This completes the proof of the proposition, as well as the proof of Theorem 4.4.

□
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5. Matrix skew polynomial extensions

Generalizing the framework of the three preceding sections, our purpose is to

examine the structure of matrix polynomial extensions over a skew polynomial

ring. By an 𝑅-ring or a ring extension of 𝑅 is meant any k-algebra containing 𝑅 as

a k-subalgebra. Given a finite set 𝒙 = {𝑥1, . . . , 𝑥𝑚} of 𝑚 variables, we denote the set

of all terms in 𝒙 by:

𝑻 (𝒙) = 𝑻 (𝑥1, . . . , 𝑥𝑚) = {𝒙𝒓 = 𝑥
𝑟1
1 · · · 𝑥𝑟𝑚𝑚 : 𝒓 = (𝑟1, . . . , 𝑟𝑚) ∈ N𝑚}.

5.1. A more complex structure of matrix skew polynomial extensions.

It helps recalling from the general framework of [16, §3] the following concept.

Definition 5.1. An 𝑅-ring 𝑅 [𝑥 ;𝛼, 𝛿], where 𝑥 is a variable, 𝛼 : 𝑅 𝑅 a conjuga-

tion map and 𝛿 : 𝑅 𝑅 an 𝛼-derivation, is called a (univariate) skew polynomial

extension or an Ore extension of 𝑅 provided,

❍ as left 𝑅-module, 𝑅 [𝑥 ;𝛼, 𝛿] is (not necessarily freely) generated by the set 𝑻 (𝑥),
❍ the associative multiplication of 𝑅 [𝑥 ;𝛼, 𝛿], explicitly written using a symbol, say,

★, is defined such that for every 𝑘, 𝑙 ∈ N and 𝑎 ∈ 𝑅 we have:

𝑥𝑘𝑥𝑙 = 𝑥𝑘+𝑙 , 𝑎 ★ 𝑥𝑘 = 𝑎𝑥𝑘 and the Ore-rule: 𝑥 ★ 𝑎 = 𝛼 (𝑎)𝑥 + 𝛿 (𝑎).

A skew polynomial ring 𝑅 [𝑥 ;𝛼] with a zero derivation is called a graded skew

polynomial ring. When the variable 𝑥 is algebraically independent over 𝑅, one

recovers ordinary Ore extension [6]. One can iterate the above process to form

multivariate iterated skew polynomial rings.

We start by illustrating on a simple example how the structure of a matrix skew

polynomial algebra may be very hard to predict.

Example 5.2. Consider three independent variables 𝑥,𝑦, 𝑡 over k, and let the set

of elementary matrix-variables X be given by the labelled quiver:

QX : 1 2𝑥 𝑦
𝑦

𝑥

(a) Over 𝑅 = k [𝑡], the matrix polynomial ring 𝑅 [X] in commuting variables is

neither left nor right noetherian; one easily computes:

𝑅 [X] = 𝑅
[ 𝑥 𝑦
𝑥 𝑦

]
=
𝑅 [𝑥] + 𝑥𝑦𝑺 𝑦𝑺

𝑥𝑺 𝑅 [𝑦] + 𝑥𝑦𝑺

 with 𝑺 = 𝑅 [𝑥,𝑦] = k [𝑡, 𝑥,𝑦] .

a) Let [(b)] 𝑹 = k [𝑡] [𝑥 ; id, d
d𝑡 ] [𝑦; id,

d
d𝑡 ] be the iterated skew polynomial ring

with trivial conjugation maps and where the derivations are given by the

derivative with respect to the variable 𝑡 . Then the matrix skew polynomial
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extension A of k [𝑡], generated as subalgebra of M2 (𝑹) by {𝒆1, 𝒆2} ∪X, is

quickly checked to coincide with all of M2 (𝑹); but this is something not

directly captured by QX.

(c) Now choosing some 0 ≠ 𝑒 ∈ N and 0 ≠ 𝑐 ∈ k, let the ground polynomial ring

be a graded skew polynomial ring 𝑹 = k [𝑥] [𝑦;𝛼], where 𝛼 is the k-algebra

map with 𝛼 (𝑥) = 𝑐𝑥𝑒 + 1. If 𝑐 = 1 then 𝑹 is simply the monoid ring ex-

tension of k by the non-commutative monoid (Γ, ◦) = ⟨𝑥,𝑦 : 𝑦𝑥 = 𝑥𝑒𝑦⟩; in
general 𝑹 is a skew monoid ring extension of k by Γ, see Definition 5.6

below. Let A = k [X;𝛼] be the matrix skew polynomial extension of k

by X. For instance, the cycle 1
𝑦

2 𝑥 1 yields in A1 the element:

𝑦 ★ 𝑥 = 𝛼 (𝑥)𝑦 = (𝑐𝑥𝑒 + 1)𝑦. One would naturally expect that A1 be described

as a skew monoid ring extension of k by the submonoid T1 ⊂ Γ given by

T1 = {1 = 𝒆1, 𝜔 = 𝑥1 ◦ · · · ◦ 𝑥𝑚 with 𝜔 : 1
𝑥1

𝑖2 · · · 𝑖𝑚
𝑥𝑚 1 a cycle in QX}.

However when 𝑐 ∈ k is not a zero-divisor, it appears that for every 0 ≠ 𝑎 ∈ k

and 1 ≠ 𝜏 ∈ T1, the monomial 𝑎𝜏 does not even live in A1! For instance,

by computing in A the products of elementary matrix-variables along all

cycles 𝜔 ∈ QX (1, 1) containing at most two occurrences of the variable 𝑦

while not containing the only loop at 1, we see that:

𝑦 ★ 𝑥 = 𝛼 (𝑥)𝑦,𝑦2 ★ 𝑥 = 𝛼2 (𝑥)𝑦2 = (𝑐𝛼 (𝑥)𝑒 + 1)𝑦2, (𝑦 ★ 𝑥)2 = 𝛼 (𝑥)𝛼2 (𝑥)𝑦2,

indicating that for all 0 ≠ 𝑎 ∈ k and 𝑚 ∈ N, none of the monomials

𝑎𝑥𝑚𝑦, 𝑎𝑥𝑚𝑦2 lies in A1. Actually it will require developing sophisticated

tools for a rigorous proof that 𝑎𝜏 ∉ A1 for every 0 ≠ 𝑎 ∈ k and 1 ≠ 𝜏 ∈ T1.

This reveals how complex the structure of a diagonal component of A is!

5.2. Noetherianity of matrix skew polynomial extensions in one variable.

With the above illustration, it’s worth starting with a careful examination of the

structure of matrix skew polynomial extensions A over a univariate skew polynomial

ring 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿]. The diagonal components of A are special 𝑅-subrings in 𝑹, and

we definitely need to investigate some aspect of their arithmetic. As in Section 3,

this subsection and the following one aim at investigating the noetherianity.

Since we allow 𝑻 (𝑥) to be only a (not necessarily free) left 𝑅-generating set for

𝑹, we do not immediately have a well defined degree function over 𝑹. However, we

may still consider the following filtration: 𝑹𝑚 = 𝑅𝑚 [𝑥 ;𝛼, 𝛿] = 𝑅{𝑥𝑠 : 0 ≤ 𝑠 ≤ 𝑚} for

𝑚 ∈ N.
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Definition 5.3. Let 𝑚 ∈ N. For each algebraic expression 𝜉 =
∑𝑚

𝑠=0 𝑎𝑠𝑥
𝑠 of an

element 𝑓 ∈ 𝑹 with 𝑎0, . . . , 𝑎𝑚 ∈ 𝑅 and 𝑎𝑚 ≠ 0, we loosely write:

lc(𝑓 ) = lc(𝜉) = 𝑎𝑚 and M(𝑓 ) = M(𝜉) = 𝑎𝑚𝑥
𝑚

for the leading coefficient and the maximal (or leading) monomial of the expression

𝜉 .

Thus rigorously, the leading coefficient function and the maximal monomial func-

tion are defined not directly as maps over 𝑹, but they are understood as well defined

maps on algebraic ‘expressions’. We obtain the following theorem, extending the

subbilateral noetherianity result of [16, Theorem 3.6] to 𝑅-subrings of 𝑹.

Theorem 5.4. Let 𝑺 ⊂ 𝑅 [𝑥 ;𝛼, 𝛿] be any 𝑅-subring of a skew polynomial ring, such

that 𝑥𝑝 lies in 𝑹𝑝−1 + 𝑺 for some positive 𝑝 ∈ N. Then, if 𝑅 is right noetherian while

𝛼 is surjective then every right 𝑺-submodule of 𝑹 is finitely generated. Likewise, if

𝑅 is left noetherian while 𝛼 is bijective then every left 𝑺-submodule of 𝑹 is finitely

generated.

Of course, this theorem already includes the statement that the given 𝑅-subring

𝑺 is right noetherian whenever 𝑅 is while 𝛼 is surjective; and 𝑺 is left noetherian if

the same holds for 𝑅 while 𝛼 is bijective.

Proof. Let us denote by ‘⊛’ the multiplication of the graded skew polynomial ring

𝑅 [𝑥 ;𝛼] associated with 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿]. Recall that we set 𝑹𝑚 =
∑𝑚

𝑠=0 𝑅𝑥
𝑠 . For all

𝑎, 𝑏 ∈ 𝑅 and 𝑚,𝑚′ ∈ N, the Ore rule of Definition 5.1 shows that

𝑎𝑥𝑚 ★𝑏𝑥𝑚
′
= 𝑎𝑥𝑚 ⊛𝑏𝑥𝑚

′ + 𝑣 = 𝑎𝛼𝑚 (𝑏)𝑥𝑚+𝑚′ + 𝑣 for some 𝑣 ∈ 𝑹𝑚+𝑚′−1,

where one also sets 𝑹−1 = 0; in particular, 𝑹𝑚 ★ 𝑹𝑚′ ⊂ 𝑹𝑚+𝑚′ . As an 𝑅-subring of 𝑹,

the ring 𝑺 contains the coefficient algebra 𝑅. By assumption,

we may let 0 ≠ 𝑝 ∈ N and 𝜉 = 𝑥𝑝 + 𝜁 ∈ 𝑺 with 𝜁 ∈ 𝑹𝑝−1. (★)

One could choose 𝑝 as the smallest positive integer with the desired property, but

this does not matter for the rest of the proof. The commutative monoid 𝑻 (𝑥𝑝 ) is ob-
viously noetherian; by Euclidean division by 𝑝, the 𝑻 (𝑥𝑝 )-module 𝑻 (𝑥) is generated
by the subset {1, 𝑥, 𝑥2, . . . , 𝑥𝑝−1}, hence 𝑻 (𝑥) is a noetherian 𝑻 (𝑥𝑝 )-module.

Let 0 ≠ 𝑀 ⊂ 𝑅 [𝑥 ;𝛼, 𝛿] be any left or right 𝑺-submodule; assume that 𝛼 is sur-

jective for the right module context, or bijective for the left module context. In

view of Definition 5.3 recall that: for every element 𝑓 ∈ 𝑹 given by an algebraic

expression 𝑓 = 𝑎𝑥𝑚 + 𝑣 with 0 ≠ 𝑎 ∈ 𝑅 and 𝑣 ∈ 𝑹𝑚−1, we write:

lc(𝑓 ) = 𝑎 and M(𝑓 ) = 𝑎𝑥𝑚 .
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We define the following filtration of 𝑀:

𝑀0 = 𝑀 ∩ 𝑅 and 𝑀𝑚 = {𝑎𝑥𝑚 + 𝑣 ∈ 𝑀 : 0 ≠ 𝑎 ∈ 𝑅 and 𝑣 ∈ 𝑹𝑚−1} for 1 ≤ 𝑚 ∈ N.

With 𝑀 is associated a set M(𝑀) of maximal monomials and a subset of terms

T ⊂ 𝑻 (𝑥):

M(𝑀) = {M(𝑓 ) = 𝑎𝑥𝑚 : 𝑚 ∈ N, 𝑓 = 𝑎𝑥𝑚 + 𝑣 ∈ 𝑀 for some 0 ≠ 𝑎 ∈ 𝑅 and 𝑣 ∈ 𝑹𝑚−1},

T = {𝑥𝑚 : 𝑚 ∈ N and 𝑎𝑥𝑚 ∈ M(𝑀) for some 0 ≠ 𝑎 ∈ 𝑅}.

Then, T is a submodule of the noetherian 𝑻 (𝑥𝑝 )–module 𝑻 (𝑥). Indeed let 𝑚 ∈ N

with 𝑥𝑚 ∈ T; so there is some 𝑓 = 𝑎𝑥𝑚 + 𝑣 ∈ 𝑀 with 0 ≠ 𝑎 ∈ 𝑅 and 𝑣 ∈ 𝑹𝑚−1. We get

that:

❍ when 𝑀 is a right 𝑺-module, then 𝑓 ★𝜉 = (𝑎𝑥𝑚 + 𝑣)★ (𝑥𝑝 + 𝜁 ) = 𝑎𝑥𝑚+𝑝 + 𝑣 ′ ∈ 𝑀 with

𝑣 ′ = 𝑎𝑥𝑚 ★ 𝜁 + 𝑣 ★ 𝜉 ∈ 𝑹𝑚+𝑝−1, showing that 𝑥𝑚+𝑝 ∈ T;

❍ when 𝑀 is a left 𝑺-module (while 𝛼 is injective), then 𝜉 ★ 𝑓 = 𝛼𝑝 (𝑎)𝑥𝑚+𝑝 + 𝑣 ′ ∈ 𝑀

with 𝛼𝑝 (𝑎) ≠ 0 while 𝑣 ′ = (𝑥𝑝 ★ 𝑎𝑥𝑚 − 𝑥𝑝 ⊛ 𝑎𝑥𝑚) + 𝑥𝑝 ★ 𝑣 + 𝜁 ★ 𝑓 rewrites as a poly-

nomial in 𝑹𝑚+𝑝−1, hence 𝑥𝑚+𝑝 ∈ T.

Next, since the 𝑻 (𝑥𝑝 )–module 𝑻 (𝑥) is noetherian, its 𝑻 (𝑥𝑝 )-submodule T is gen-

erated by a finite subset Σ = {𝑥𝑝1 , . . . , 𝑥𝑝𝑟 } ⊂ T for some positive 𝑟 ∈ N and some

integers 0 ≤ 𝑝1 < · · · < 𝑝𝑟 , pairwise non congruent modulo 𝑝. We have now gathered

enough facts to adapt the generalized proof about the (subbilateral) noetherianity

of the skew polynomial ring 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿] ([16, Theorem 3.6]) to the case of its

𝑅-subring 𝑺.

Starting with the right module context, let 𝑀 ⊂ 𝑹 be any right 𝑺-submodule.

Assuming that the map 𝛼 : 𝑅 𝑅 is surjective and choosing a right inverse map

(not necessarily a ring morphism) 𝛼 ′ : 𝑅 𝑅 with 𝛼𝛼 ′ = id, we have to prove

that 𝑀 is finitely generated. For each 𝑘 ∈ J1 , 𝑟K and every 𝑙 ∈ N, we define:

ℭ𝑘,𝑙 = {lc(𝑓 ) = 𝑎 : 𝑎 ≠ 0 and 𝑓 ∈ (𝑎𝑥𝑝𝑘+𝑙𝑝 + 𝑹𝑝𝑘+𝑙𝑝−1) ∩𝑀}𝑅 ⊂ 𝑅. (†)

For a fixed 𝑘, since T is a 𝑻 (𝑥𝑝 )-submodule of 𝑻 (𝑥) we get an increasing sequence

of right ideals: ℭ𝑘,0 ⊂ ℭ𝑘,1 ⊂ · · · ⊂ ℭ𝑘,𝑙 ⊂ ℭ𝑘,𝑙+1 · · · , which by the right noetherianity

of the ring 𝑅 must stabilize. So it holds for some 𝑚𝑘 ∈ N that ℭ𝑘,𝑙 = ℭ𝑘,𝑚𝑘
for every

integer 𝑙 ≥ 𝑚𝑘 . Still by the right noetherianity of 𝑅, for each 𝑙 ∈ J0 , 𝑚𝑘K there is

a positive 𝑛𝑘,𝑙 ∈ N together with a finite subset 𝐹𝑘,𝑙 = {𝑓𝑘,𝑙,𝑠 : 1 ≤ 𝑠 ≤ 𝑛𝑘,𝑙 } ⊂ 𝑀𝑝𝑘+𝑙𝑝

such that ℭ𝑘,𝑙 = {c𝑘,𝑙,𝑠 = lc(𝑓𝑘,𝑙,𝑠 ) : 1 ≤ 𝑠 ≤ 𝑛𝑘,𝑙 }𝑅. By construction, 𝑀 = ∪𝑚∈N𝑀𝑚;

we will show that the finite set 𝐹 = ∪𝑟
𝑘=1

∪𝑚𝑘
𝑠=0 𝐹𝑘,𝑠 is a generating set for the right

𝑺-module 𝑀. To this end, given 𝑚 ∈ N and any 0 ≠ 𝑓 ∈ 𝑀𝑚, we shall proceed by

induction on 𝑚 to prove that 𝑓 lies in 𝐹 ★ 𝑺.
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i) The base case ‘𝑚 = 0’. Then 𝑓 ∈ 𝑀0 = 𝑀 ∩ 𝑅 is a non-zero constant

polynomial; so 1 = 𝑥0 ∈ 𝑇 and forcibly 𝑝1 = 0 and since ℭ0,0 = 𝐹0,0𝑅 ⊂ 𝑅, it

follows that 𝑓 already lies in 𝐹0,0𝑅 ⊂ 𝐹 ★ 𝑺.

Moving to the induction step, suppose that 𝑚 ≥ 1 and that 𝑀𝑚′ ⊂ 𝐹 ★ 𝑺

for all 0 ≤ 𝑚′ ≤ 𝑚 − 1. There are 𝑘 ∈ J1 , 𝑟K and 𝑙 ∈ N with:

𝑚 = 𝑝𝑘 + 𝑙𝑝 and 𝑓 = 𝑎𝑥𝑚 + 𝑣 for some 0 ≠ 𝑎 = lc(𝑓 ) ∈ 𝑅 and 𝑣 ∈ 𝑹𝑚−1.

We distinguish the two following cases and recall that we write ‘⊛’ for the

multiplication of the graded skew polynomial extension 𝑅 [𝑥 ;𝛼].
ii) The case ‘0 ≤ 𝑙 ≤ 𝑚𝑘 ’. Here, 𝐹𝑘,𝑙 ⊂ 𝐹 , 𝑎 ∈ ℭ𝑘,𝑙 and for some 𝑎𝑠 ∈ 𝑅, 1 ≤ 𝑠 ≤

𝑛𝑘,𝑙 , we get:

𝑎 =

𝑛𝑘,𝑙∑
𝑠=1

c𝑘,𝑙,𝑠𝑎𝑠 and M(𝑓 ) =
𝑛𝑘,𝑙∑
𝑠=1

c𝑘,𝑙,𝑠𝑎𝑠𝑥
𝑚 =

𝑛𝑘,𝑙∑
𝑠=1

M(𝑓𝑘,𝑙,𝑠 ) ⊛ 𝛼 ′𝑚 (𝑎𝑠 ).

Thus the polynomial ℎ = 𝑓 −∑𝑛𝑘,𝑙
𝑠=1 𝑓𝑘,𝑙,𝑠 ★ 𝛼 ′𝑚 (𝑎𝑠 ) lies in 𝑀 and rewrites as

an element in 𝑀𝑚′ for some 𝑚′ ∈ J0 , 𝑚 − 1K. So the induction hypothesis

shows that ℎ ∈ 𝐹 ★𝑺, so that, 𝑓 = ℎ +∑𝑛𝑘,𝑙
𝑠=1 𝑓𝑘,𝑙,𝑠 ★𝛼 ′𝑚 (𝑎𝑔) lies in 𝐹 ★𝑺 as well.

iii) The case ‘𝑙 > 𝑚𝑘 ’. Here, 𝑎 ∈ ℭ𝑘,𝑙 ⊂ ℭ𝑘,𝑚𝑘
and for some 𝑎𝑠 ∈ 𝑅, 1 ≤ 𝑠 ≤ 𝑚𝑘 ,

it holds that 𝑎 =
∑𝑛𝑘,𝑚𝑘

𝑠=1 c𝑘,𝑚𝑘,𝑠
𝑎𝑠 , (and computing in 𝑅 [𝑥 ;𝛼]) we get:

M(𝑓 ) =
𝑛𝑘,𝑚𝑘∑
𝑠=1

c𝑘,𝑚𝑘,𝑠
𝑎𝑠𝑥

𝑝𝑘+𝑚𝑘𝑝𝑥 (𝑙−𝑚𝑘 )𝑝

=

𝑛𝑘,𝑚𝑘∑
𝑠=1

c𝑘,𝑚𝑘,𝑠
𝑥𝑝𝑘+𝑚𝑘𝑝 ⊛ 𝛼 ′𝑝𝑘+𝑚𝑘𝑝 (𝑎𝑠 )𝑥 (𝑙−𝑚𝑘 )𝑝

=

𝑛𝑘,𝑚𝑘∑
𝑠=1

M(𝑓𝑘,𝑚𝑘,𝑠
) ⊛ 𝛼 ′𝑝𝑘+𝑚𝑘𝑝 (𝑎𝑠 )𝑥 (𝑙−𝑚𝑘 )𝑝 .

In view of (★), recall that 𝜉 = 𝑥𝑝 + 𝜁 ∈ 𝑺 with 𝜁 ∈ 𝑹𝑝−1;

so 𝜉𝑙−𝑚𝑘 ∈ 𝑺 ∩ 𝑹 (𝑙−𝑚𝑘 )𝑝 and M(𝜉𝑙−𝑚𝑘 ) = 𝑥 (𝑙−𝑚𝑘 )𝑝 . Hence letting

ℎ = 𝑓 −∑𝑛𝑘,𝑚𝑘
𝑠=1 𝑓𝑘,𝑚𝑘,𝑠

★ 𝛼 ′𝑝𝑘+𝑚𝑘𝑝 (𝑎𝑠 )𝜉𝑙−𝑚𝑘 gives a rightful element of 𝑀 which

rewrites as a polynomial in 𝑀𝑚′ for some 𝑚′ ∈ J0 , 𝑚 − 1K. The in-

duction hypothesis shows that ℎ lies in 𝐹 ★ 𝑺, thus the polynomial 𝑓 =

ℎ +∑𝑚𝑘
𝑠=1 𝑓𝑘,𝑚𝑘,𝑠

★ 𝛼 ′𝑝𝑘+𝑚𝑘𝑝 (𝑎𝑠 )𝜉𝑙−𝑚𝑘 lives in 𝐹 ★ 𝑺 as well.

This finishes the proof that every right 𝑺-submodule of 𝑹 is finitely generated.

Turning to the statement of the theorem on left modules, we use the follow-

ing strategy to convert it to a statement about right modules. Here the specific

assumption is that the conjugation map 𝛼 : 𝑅 𝑅 is an automorphism, so we

let 𝛼−1 : 𝑅 𝑅 for its inverse. For every k-algebra 𝐵 with ring multiplication
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written as ‘★’; the opposite algebra 𝐵◦ is still the k-module 𝐵 whose ring multipli-

cation written as ‘★◦’ is given by: 𝑎 ★◦ 𝑏 = 𝑏 ★ 𝑎 for all 𝑎, 𝑏 ∈ 𝐵. Now the opposite

ring of 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿] is checked to coincide with the univariate skew polynomial

extension 𝑹◦ = 𝑅◦ [𝑥 ;𝛼−1,−𝛿𝛼−1]. Hence for every left 𝑺-submodule 𝑀 ⊂ 𝑹, that is,

𝑀 is a right 𝑺◦-submodule of 𝑹◦, the first part of the theorem yields that 𝑀 is a

finitely generated right 𝑺◦-module, which means that 𝑀 is a finitely generated left

𝑺-module. □

Corollary 5.5. Let A = 𝑅⟨𝑬 ,X;𝛼, 𝛿⟩ be any matrix skew polynomial extension over

a univariate skew polynomial ring 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿]. Then A is left noetherian if 𝑅 is

left noetherian while 𝛼 is bijective and for all 𝑖, 𝑗 ∈ J1 , 𝑛K with QX (𝑖, 𝑗),QX ( 𝑗, 𝑗) ≠ ∅
it also holds that QX (𝑖, 𝑖) ≠ ∅. A is right noetherian if 𝑅 is right noetherian while

𝛼 is surjective and for all 𝑖, 𝑗 ∈ J1 , 𝑛K with QX (𝑖, 𝑖),QX (𝑖, 𝑗) ≠ ∅ it also holds that

QX ( 𝑗, 𝑗) ≠ ∅.

Proof. Arbitrarily let 𝑖, 𝑗 ∈ J1 , 𝑛K with 𝑗 ≠ 𝑖. Given the corresponding assumption

for the statement about the one-sided (left or right) noetherianity, by virtue of

Lemma 3.1 we have to prove that each diagonal component A𝑖 is one-sided noe-

therian while each bilateral A𝑖-A𝑗 -module A𝑖, 𝑗 is finitely generated as a one-sided

module. Each A𝑖 is an 𝑅-subring of 𝑹 = 𝑅 [𝑥 ;𝛼, 𝛿]. If QX contains no cycle at 𝑖, then

A𝑖 coincides with the coefficient algebra 𝑅, otherwise, A𝑖 contains a positive power

of the variable 𝑥 . Thus, Theorem 5.4 applies showing that A𝑖 is left noetherian (or

right noetherian) if the same holds for 𝑅 while the conjugation map is bijective (or

resp., surjective).

Next, each A𝑖, 𝑗 is a bilateral A𝑖-A𝑗 -submodule of 𝑹, to which is attached (just as

in the proof of Theorem 5.4) the following subset of terms in 𝑻 (𝑥):

T𝑖, 𝑗 = T(A𝑖, 𝑗 ) = {𝑥𝑚 : ∃𝑎 ∈ 𝑅\{0} with 𝑎𝑥𝑚 ∈ A𝑖, 𝑗 + 𝑹𝑚−1}

⊇ {𝜔 : 𝜔 ∈ QX (𝑖, 𝑗)},

where 𝑹𝑚 =
∑𝑚

𝑠=0 𝑅𝑥
𝑠 for every 𝑚 ∈ N. We have the two following exclusive cases to

consider.

i) The case that QX (𝑖, 𝑗) is finite. Let 𝑚 be the maximal length of paths

in QX (𝑖, 𝑗). Then T𝑖, 𝑗 ⊂ {1, 𝑥, 𝑥2, . . . , 𝑥𝑚}, and A𝑖, 𝑗 is a submodule of the

bilateral 𝑅-submodule 𝑹𝑚 generated as a one-sided 𝑅-module by the finite

set {1, 𝑥, 𝑥2, . . . , 𝑥𝑚}. Thus when 𝑅 is left or right noetherian, then so is 𝑹𝑚

and consequently A𝑖, 𝑗 is already finitely generated as a left (or resp., as a

right) 𝑅-module.
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ii) The case that QX (𝑖, 𝑗) is infinite. Since 𝑖 ≠ 𝑗 , the set QX (𝑖, 𝑗) contains a non-

simple path. For the statement of the corollary about left noetherianity, the

hypothesis on X yields that A𝑖 contains a positive power of the variable 𝑥 ;

hence Theorem 5.4 applies showing that A𝑖, 𝑗 is a finitely generated left A𝑖 -

module. And for the statement of the corollary about right noetherianity,

the hypothesis on X yields that A𝑗 contains a positive power of the variable

𝑥 ; once again Theorem 5.4 applies showing that A𝑖, 𝑗 is a finitely generated

right A𝑗 -module.

This completes the proof of the corollary. □

5.3. Multivariate matrix skew polynomial extensions by a free commu-

tative term-ordered monoid. There seems to be no way one can iterate the

strategy of Corollary 5.5 without imposing stronger conditions on X than it is nec-

essary in the case of the matrix polynomial ring 𝑅 [𝑬 ,X] in commuting variables.

This is not a surprise because (as pointed out just before Theorem 3.12), even a

monoid ring extension of a noetherian commutative algebra by a left noetherian

monoid S needs not be left noetherian. However the obstructions may be overcome

over a division k-algebra when S also has nice combinatorial properties; we shall

record this last fact for matrix skew polynomial extensions. For our purpose, we

need to recall the following notions.

Definition 5.6 ([16, Definition 4.8, Note 4.9]). (a) A term-ordering on a

monoid Γ is a strict well-ordering ‘<’ on Γ such that for all 𝜆, 𝜆′, 𝜏 ∈ Γ, the

following implication holds:

𝜆 < 𝜆′ =⇒ 𝜏𝜆 < 𝜏𝜆′ and 𝜆𝜏 < 𝜆′𝜏 .

One denotes by ‘≤’ the associated large ordering, and calls Γ (or more

precisely, (Γ, <)) a term-ordered monoid.

(b) A (not necessarily graded) skew monoid ring extension of 𝑅 by a term-

ordered monoid (Γ, <) is any 𝑅-ring 𝑹 freely generated as a left 𝑅-module by

Γ, and the induced maximal term-function T : 𝑹\{0} (Γ, <) satisfies
the property that

for all 𝑓 , 𝑔 ∈ 𝑹 with 𝑓 𝑔 ≠ 0, T(𝑓 𝑔) ≤ T(𝑓 )T(𝑔),

where the term T(𝑓 ) is the smallest 𝜏 ∈ Γ with 𝑓 ∈ 𝑅{𝜆 ∈ Γ : 𝜆 ≤ 𝜏}. Ob-

viously, for all 𝑓 , 𝑔 ∈ 𝑹 with 𝑓 , 𝑔, 𝑓 + 𝑔 ≠ 0, it holds that T(𝑓 + 𝑔) ≤
max(T(𝑓 ),T(𝑔)). Hence, the maximal term-function is an instance of a
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pseudo-valuation on 𝑹. Correspondingly there are automatically a lead-

ing coefficient map lc and a maximal monomial map M such that for all

0 ≠ 𝑓 ∈ 𝑹,

M(𝑓 ) = lc(𝑓 )T(𝑓 ), and 𝑓 −M(𝑓 ) is either zero or T(𝑓 −M(𝑓 )) < T(𝑓 ).

Further unfolding the very compact definition given by point (b), the multipli-

cation of 𝑹, written as ‘★’, is described by the following lines. Associated with

the pseudo-valuation T : 𝑹\{0} (Γ, <), there is for every 𝜆 ∈ Γ: a conjuga-

tion map 𝛼𝜆 : 𝑅 𝑅, a twist map 𝔮𝜆 : Γ 𝑹, 𝜏 𝔮𝜆,𝜏 and a derivation map

𝛿𝜆 : 𝑹 𝑹, satisfying the following Ore-like rule for 𝑎 ∈ 𝑅 and 𝜏 ∈ Γ:

𝜆 ★ 𝑎 = 𝛼𝜆 (𝑎)𝜆 + 𝛿𝜆 (𝑎) and 𝜆 ★ 𝜏 = 𝔮𝜆,𝜏 · 𝜆𝜏 + 𝛿𝜆 (𝜏),

with T(𝛿𝜆 (𝑎)) < 𝜆 and T(𝛿𝜆 (𝜏)) < 𝜆𝜏 .
(5.1)

One henceforth writes: 𝑹 = 𝑅 [Γ;𝜶 ,𝔮, 𝜹], with 𝜶 = (𝛼𝜆)𝜆∈Γ, 𝜹 = (𝛿𝜆)𝜆∈Γ and 𝐪 =

(𝔮𝜆)𝜆∈Γ. Refer to each 𝔮𝜆,𝜏 as a twist coefficient.

Fix a term-ordering ‘<’ on (𝑻 (𝒙), ·) and let our ground ring 𝑹 = 𝑅 [𝑻 (𝑥);𝜶 ,𝔮, 𝜹]
be a skew polynomial extension of 𝑅 by the free commutative term-ordered monoid

(𝑻 (𝒙), ·, <). Let us mention that this setting includes (and is clearly not limited

to) Kredel-solvable polynomial rings [9,10], [15, §49.4.2], which in their turn, in-

clude interesting algebras from Geometry such as Weyl algebras and their quantized

versions.

As usual also fix a seed (𝑬 ,X) with associated labelled quiver QX. Here, 𝑬 is

a multiplicatively closed subset of the canonical basis E of M𝑛 (𝑅) containing all

the elementary idempotents matrices, and X ⊂ {𝑥𝒆𝑖, 𝑗 : 𝑥 ∈ 𝒙, 1 ≤ 𝑖, 𝑗 ≤ 𝑛} is an 𝑬-

saturated set of elementary matrix-variables. Thus we can form the matrix skew

polynomial algebra extension A = 𝑅⟨𝑬 ,X;𝜶 ,𝔮, 𝜹⟩ of 𝑅 by the seed (𝑬 ,X) over 𝑹

or over the term-ordered monoid (𝑻 (𝒙), ·, <): A is an 𝑅-subring of the full matrix

ring M𝑛 (𝑹) generated by 𝑬 ∪X. We continue to denote by T the set of elementary

matrix-terms (over the commutative monoid (𝑻 (𝒙), ·)): so for all 𝑖, 𝑗 ∈ J1 , 𝑛K,

T𝑖, 𝑗 = {𝜔 = 𝑥1 · · · 𝑥𝑚 with 𝜔 : 𝑖
𝑥1

𝑖2 · · · 𝑖𝑚
𝑥𝑚

𝑗 a path in QX}.

Recall that T s
𝑖 is the submonoid of T𝑖 generated by terms along simple cycles at 𝑖.

We have the following extension of Theorem 3.12 to the present setting when the

coefficient algebra is a division ring.

Theorem 5.7. Let A = 𝑅⟨𝑬 ,X;𝜶 ,𝔮, 𝜹⟩ be a matrix skew polynomial extension of

a division k-algebra 𝑅 over the commutative term-ordered monoid (𝑻 (𝒙), ·, <), such
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that each conjugation map is bijective and each twist coefficient is non-zero. Then

A is left (right, or bilateral) noetherian provided X is finite and for all 𝑖, 𝑗 ∈ J1 , 𝑛K
and any simple cycle 𝜎 ∈ QX (𝑘, 𝑘) with QX (𝑖, 𝑘),QX (𝑘, 𝑗) ≠ ∅, a positive power of 𝜎

lives in T s
𝑖 (or resp., in T s

𝑗 or T s
𝑖 · T s

𝑗 ).

Proof. We write the proof only for the statement about left noetherianity, leaving

the other cases to the reader. Here it shall be sufficient that the conjugation maps

are only injective. By virtue of Lemma 3.1, arbitrarily given 𝑖, 𝑗 ∈ J1 , 𝑛K and any left

A𝑖 -submodule 𝑀 ⊂ A𝑖, 𝑗 , it suffices to show that 𝑀 is finitely generated. First notice

that for any non-zero polynomial 𝑓 ∈ 𝑀 with M(𝑓 ) = 𝑎𝜏 where 0 ≠ 𝑎 = lc(𝑓 ) ∈ 𝑅

and 𝜏 = T(𝑓 ), one gets a monic polynomial 𝑎−1 𝑓 ∈ 𝑀 with M(𝑓 ) = 𝜏 . Next,

since by hypothesis each conjugation map 𝛼𝜆 : 𝑅 𝑅 is injective and each twist

coefficient 𝔮𝜆,𝜏 is non-zero for all 𝜆, 𝜏 ∈ 𝑻 (𝒙), the Ore-rule (5.1) yields that for

all 0 ≠ 𝑓 , 𝑔 ∈ 𝑹 with M(𝑓 ) = 𝑎𝜆 and M(𝑔) = 𝑏𝜏 : M(𝑓 ★ 𝑔) = 𝑎𝛼𝜆 (𝑏) 𝔮𝜆,𝜏 𝜆𝜏 and

T(𝑓 ★𝑔) = T(𝑓 )T(𝑔) = 𝜆𝜏 . In particular for any path 𝜔 : 𝑖
𝑥1

𝑖2 · · · 𝑖𝑚
𝑥𝑚

𝑗 from 𝑖

to 𝑗 in QX, we have:

T(𝑥1 ★ 𝑥2 ★ · · ·★ 𝑥𝑚) = 𝑥1 · · · 𝑥𝑚 = 𝜔.

Hence the monoid T𝑖 = {𝜔 = 𝑥1 · · · 𝑥𝑚 with 𝜔 : 𝑖
𝑥1

𝑖2 · · · 𝑖𝑚
𝑥𝑚

𝑖 a path in QX} con-

sists of all the leading terms T(𝑓 ) for 0 ≠ 𝑓 ∈ A𝑖 , while the set 𝑇 = {T(𝑓 ) : 0 ≠

𝑓 ∈ 𝑀} is forcibly a T𝑖 -submodule in T𝑖, 𝑗 . As illustrated by Example 5.2(b), one
is aware that T𝑖 needs not be contained in A𝑖 at all, the latter is only an 𝑅-

subring of the skew polynomial subextension 𝑅 [T𝑖 ;𝜶 ,𝔮, 𝜹] ⊂ 𝑹. The hypothesis

on the shape of X is the precise condition ensuring by virtue of Theorem 3.12

the left noetherianity of the matrix polynomial ring 𝑅 [𝑬 ,X] in commuting vari-

ables. Thus T𝑖 is a noetherian commutative monoid while T𝑖, 𝑗 is a finitely gener-

ated left T𝑖 -module, so that, the T𝑖 -submodule 𝑇 ⊂ T𝑖, 𝑗 must be as well generated

by a finite set T(𝐹 ) = {𝜏𝑠 = T(𝑓𝑠 ) = M(𝑓𝑠 ) : 1 ≤ 𝑠 ≤ 𝑁 } for some finite subset

𝐹 = {𝑓1, . . . , 𝑓𝑁 } ⊂ 𝑀\{0} consisting of monic polynomials. We claim that 𝐹 gen-

erates the A𝑖 -module 𝑀. Assuming the contrary, the set {T(𝑓 ) : 𝑓 ∈ 𝑀\(A𝑖 ★ 𝐹 )}
would be a non-empty subset of the term ordered monoid (𝑻 (𝒙), ·, <), and so, it

must contain a smallest element 𝜏 = T(𝑓 ) = M(𝑓 ) for some monic polynomial

𝑓 ∈ 𝑀\(A𝑖 ★𝐹 ). But for some 𝑠 ∈ J1 , 𝑁 K and 𝜆 ∈ T𝑖 it holds that T(𝑓 ) = 𝜆𝜏𝑠 . Letting

𝑢 ∈ A𝑖 be a monic polynomial with M(𝑢) = 𝜆, the polynomial ℎ = 𝑓 − 𝔮−1
𝜆,𝜏𝑠

𝑢 ★ 𝑓𝑠 still

belongs to 𝑀\(A𝑖 ★ 𝐹 ) because so does 𝑓 while 𝔮−1
𝜆,𝜏𝑠

𝑢 ★ 𝑓𝑠 ∈ A𝑖 ★ 𝐹 . But then we see

that:

M(𝔮−1
𝜆,𝜏𝑠

𝑢 ★ 𝑓𝑠 ) = 𝔮−1
𝜆,𝜏𝑠

M(𝜆 ★ 𝜏𝑠 ) = 𝔮−1
𝜆,𝜏𝑠

𝔮𝜆,𝜏𝑠𝜆𝜏𝑠 = M(𝑓 ),
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showing that T(ℎ) < T(𝑓 ) = 𝜏 and yielding a contradiction to the minimality of

𝜏 . Hence, the left A𝑖 -submodule 𝑀 ⊂ A𝑖 is generated by 𝐹 and this completes the

proof that A is left noetherian. □
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