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Abstract − As an extension of the trapezoidal fuzzy number, the generalised trapezoidal hesitant

fuzzy number is an effective mathematical tool for handling uncertainty and vagueness in decision-

making problems. Considering that the quasi-distance measure has a strong ability to process and

analyse data, we initiated some novel quasi-distance measures to measure the strength of the re-

lationship between generalised trapezoidal hesitant fuzzy numbers in this paper. Moreover, based

on the proposed measures, a new multi-criteria decision-making approach is proposed to address

uncertain real-life situations. Finally, a practical application of the proposed approach is also illus-

trated to demonstrate the effectiveness and applicability.

Subject Classification (2020): 03E72, 94D05.

1. Introduction

Since multiple-criteria decision-making (MCDM) problem is an inevitable part of our real life under some

ambiguity and imprecision environment, fuzzy sets introduced [1] is more realistic for the decision maker

to provide his uncertain linguistic term. Then, Torra [2] and Torra and Narukawa [3] developed hesitant

fuzzy sets which the membership degrees of an element of universe set to a given set only by crisp numbers

between 0 and 1. So far, many authors have studied on the fuzzy sets and hesitant fuzzy sets in [4–13] and

especially in on real number set R. For example, Fahmi et al [14, 15] have defined the concept of triangular

cubic hesitant fuzzy number. Amin et al. [16] have propound aggregation operators for triangular cubic

linguistic hesitant fuzzy set. Hussain et al. [17] have defined some new operation laws for the trapezoidal

linguistic cubic fuzzy numbers including Hamming distance. They have also developed a TOPSIS method

to solve the MCDM problems. Peng [18] has developed a multiple attribute decision-making (MADM) ap-

proach based on Archimedean t-norm and t-conorm in which the attribute values take the form of hesitant

trapezoidal fuzzy elements. Similarly, trapezoidal fuzzy hesitant numbers have been defined and applied to

several practical problems, on MADM in [19], on closeness degree and defuzzification technique of hesitant
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trapezoidal fuzzy number in [20]. Moreover, Fahmi et al. [21] have introduced the idea of trapezoidal cubic

hesitant fuzzy number and proposed a TOPSIS method. Fahmi et al. [22] then has proposed some new

operation laws for trapezoidal cubic hesitant fuzzy numbers and their aggregation operators and Fahmi et

al. [23] has defined some new operation laws for the trapezoidal linguistic cubic fuzzy number and Ham-

ming distance of the numbers. Afterwards, Fahmi et al. [24] have developed an MADM method based on

trapezoidal cubic fuzzy numbers.

Recently, Deli and Karaaslan [25] have defined the generalised trapezoidal hesitant fuzzy number as a gen-

eralisation of the hesitant fuzzy set and generalised fuzzy numbers and it permits the membership degrees

of an subset of real numbers to a set to be represented as several possible fuzzy values and therefore it is

easier to work on the generalised hesitant fuzzy numbers. Deli [26] then has proposed an advanced type

of TOPSIS method to selecting an appropriate robot among the alternative robots under MADM problems

by introducing some novel ordered distance measures including Hamming distance measure, Euclidean

distance measure, λ-generalised distance measure, λ-generalised Hausdorff distance measure, λ-hybrid

Hamming distance, hybrid Euclidean distance and λ-generalised hybrid distance measure on generalised

trapezoidal hesitant fuzzy numbers.

In this paper, considering that the quasi-distance measure has a strong ability to process and analyse data

and expanding the ordered distance measures given in Deli [26], we initiate some novel not-ordered quasi-

distance measures to measure the strength of the relationship between generalised trapezoidal hesitant

fuzzy numbers. Moreover, based on the proposed measures, a new MCDM approach is proposed to ad-

dress uncertain real-life situations. Finally, a practical application of proposed approach is illustrated to

demonstrate the effectiveness. This paper is derived from the second author’s master’s thesis [27].

2. Preliminary

In this section, some concepts and operations of fuzzy sets, hesitant fuzzy sets and generalised trapezoidal

hesitant fuzzy numbers (GTHF-numbers) are briefly reviewed. More detailed explanations related to the

fuzzy sets, hesitant fuzzy sets and generalised hesitant fuzzy numbers can be found in [1–3, 7, 21, 25, 26, 28].

Definition 2.1. [1] Let X be a non-empty set. A fuzzy set A on X is defined as:

A = {〈x,µA(x)〉 : x ∈ X }

where µA is a membership function from X to [0,1].

Definition 2.2. [2, 3] Let X be a non-empty set. A hesitant fuzzy set A on X is defined as

A = {〈x,ξ(x) = {ξi : i = 1,2, ..., l A(x)}〉 : x ∈ X }

where ξ(x) is a set of some values in [0,1], denoting the possible membership degrees of the element x ∈ X

to the set A and ξ = ξ(x) is called a hesitant fuzzy element (HFE). Here, l A(x) is the number of elements in

ξ(x), for x ∈ X in hesitant fuzzy set A.

Definition 2.3. [25] Let X be a space of points (objects), ξi ∈ [0,1] (i ∈ I = {1,2, ...,n} or {1,2, ...,m} or ...) and

a,b,c,d ∈ R such that a ≤ b ≤ c ≤ d . Then, in the set of real numbers R, a generalised trapezoidal hesitant
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fuzzy number (GTHF-number) can be represented as

ξN = 〈(a,b,c,d); {ξi : ξi ∈ ξ(x),ξ(x) is a set of some values in [0,1]}〉

whose membership functions can be described as follows:

µi
A(x) =



(x −a)ξi /(b −a), a ≤ x < b

ξi , b ≤ x ≤ c

(d −x)ξi /(d − c), c < x ≤ d

0, other wi se

In the paper, for focusing on GTHF- numbers, note that the set of all GTHF-number on Rwill be denoted by

Φ.

Definition 2.4. [25] Let ξN = 〈(a,b,c,d);ξ(x)〉, ξ1
N = 〈(a1,b1,c1,d1);ξ1 = ξ1(x)〉, ξ2

N = 〈(a2,b2,c2,d2);ξ2 =
ξ2(x)〉 ∈Φ and γ ̸= 0 be any real number. Then,

i. ξ1
N +ξ2

N = 〈(a1 +a2,b1 +b2,c1 + c2,d1 +d2);∪ξ1
1∈ξ1,ξ2

1∈ξ2 {ξ1
1 +ξ2

1 −ξ1
1.ξ2

1}〉

ii. ξ1
N ·ξ2

N =


〈(a1a2,b1b2,c1c2,d1d2);∪ξ1

1∈ξ1,ξ2
1∈ξ2 {ξ1

1.ξ2
1}〉(d1 > 0,d2 > 0)

〈(a1d2,b1c2,c1b2,d1a2);∪ξ1
1∈ξ1,ξ2

1∈ξ2 {ξ1
1.ξ2

1}〉(d1 < 0,d2 > 0)

〈(d1d2,c1c2,b1b2, a1a2);∪ξ1
1∈ξ1,ξ2

1∈ξ2 {ξ1
1.ξ2

1}〉(d1 < 0,d2 < 0)

iii. γξN = 〈(γa,γb,γc,γd);∪ξ∈ξ(x){1− (1−ξ)γ}〉(γ≥ 0)

iv. (ξN )γ = 〈(aγ,bγ,cγ,dγ);∪ξ∈ξ(x){ξ
γ}〉(γ≥ 0)

Definition 2.5. [26] Let ξ1
N , ξ2

N ∈Φ, then the distance measure between ξ1
N and ξ2

N is defined as DGT HF (ξ1
N ,ξ2

N )

which satisfies the following properties:

i. 0 ≤ DGT HF (ξ1
N ,ξ2

N ) ≤ 1

ii. DGT HF (ξ1
N ,ξ2

N ) = 0 ⇔ ξ1
N = ξ2

N

iii. DGT HF (ξ1
N ,ξ2

N ) = DGT HF ((ξ1
N ,ξ2

N ))

Note 2.6. [26] Let ξ1
N = 〈(a1,b1,c1,d1); {ξ1

i : ξ1
i ∈ ξ1(x), ξ1(x) is a set of some values in [0,1]}〉 and ξ2 = 〈(a2,b2,

c2,d2); {ξ2
i : ξ2

i ∈ ξ2(x),ξ2(x) is a set of some values in [0,1]}〉 be two GTHF-numbers and l 1 and l 2 be number

of value ξ1
i in ξ1(x) and ξ2

i in ξ2(x), respectively. Generally, since we have l 1 ̸= l 2 we should increase the

smallest one until both of them have the same number to compare them. Therefore, thought the paper, he

used to add a value to the smallest one by adding the value ξ1
k = min{ξ1

i : ξ1
i ∈ ξ1(x)} to compare them.

Example 2.7. Suppose that ξ1
N = 〈(1,5,6,9); {0.1,0.5, 0.3,0.4}〉 and ξ2

N = 〈(1,4,6,10); {0.1,0.5}〉 be two THF-

numbers. Then, we have l 2 = 2 < ξ1
N = 4. To operate correctly, we should increase the value lξ2 until it has

the same number with l 1, as ξ2
N = 〈(1,4,6,10); {0.1,0.5,0.1,0.1}〉.

Definition 2.8. [26] Let ξ1
N = 〈(a1,b1,c1,d1); {ξ1

i : ξ1
i ∈ ξ1(x), ξ1(x) is a set of some values in [0,1]}〉, ξ2

N = 〈(a2,b2,

c2,d2); {ξ2
i : ξ2

i ∈ ξ2(x),ξ2(x) is a set of some values in [0,1]}〉 ∈Φ and lh = max{l 1, l 2}. Then,
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i. the Hamming distance measure between ξ1
N and ξ2

N , denoted by D H
GT HF (ξ1

N ,ξ2
N ), is defined as;

D H
GT HF (ξ1

N ,ξ2
N ) =

lh∑
i=1

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

8.lh

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣ (2.1)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

ii. the Euclidean distance measure between ξ1
N and ξ2

N , denoted by DE
GT HF (ξ1

N ,ξ2
N ), is defined as;

DE
GT HF (ξ1

N ,ξ2
N ) =

( lh∑
i=1

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

8.lh

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣2) 1
2

(2.2)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

iii. theλ-generalised distance measure between ξ1
N and ξ2

N forλ> 0, denoted by Dλ
GT HF (ξ1

N ,ξ2
N ), is defined

as;

Dλ
GT HF (ξ1

N ,ξ2
N ) =

( lh∑
i=1

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

8.lh

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣λ) 1
λ

(2.3)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

Remark 2.9. [26] Assume that ξ1
N , ξ2

N ∈Φ, lh = max{l 1, l 2} and Dλ
GT HF (ξ1

N ,ξ2
N ) be a λ-generalised distance

measure between ξ1
N and ξ2

N for λ> 0. Especially, if λ= 1, then the λ-generalised distance measure reduces

to the Hamming distance measure between ξ1
N and ξ2

N . If λ = 2, then the λ-generalised distance measure,

reduces to the the Euclidean distance measure between ξ1
N and ξ2

N .

Example 2.10. Assume that ξ1
N = 〈(0.07,0.09,0.12,0.17); {0.8,0.5,0.3,0.2}〉 and ξ2

N = 〈(0.2,0.5,0.6,0.8); {0.4,0.1}〉
be two GTHF-numbers. Then, for lh = 4 = max{4,2},

i. the Hamming distance measure D H
GT HF (ξ1

N ,ξ2
N ) between ξ1

N and ξ2
N is calculated as;

D H
GT HF (ξ1

N ,ξ2
N ) = ∑4

i=1

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
8.lh

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣
=

∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.8−0.4

)∣∣∣+
∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.5−0.1

)∣∣∣+
∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.3−0.1

)∣∣∣+
∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.2−0.1

)∣∣∣
= 0.0234
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ii. the Euclidean distance measure DE
GT HF (ξ1

N ,ξ2
N ) between ξ1

N and ξ2
N is calculated as;

DE
GT HF (ξ1

N ,ξ2
N ) =

(∑lh

i=1

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
8.lh

)
.(ξ1

σ(i ) −ξ2
σ(i ))

∣∣∣2) 1
2

=
(∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.8−0.4

)∣∣∣2
+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.5−0.1

)∣∣∣2
+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.3−0.1

)∣∣∣2
+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.2−0.1

)∣∣∣2) 1
2

= 0.0079

iii. the λ-generalised distance measure Dλ
GT HF (ξ1

N ,ξ2
N ) between ξ1

N and ξ2
N is calculated as; λ= 0.7,

D0.7
GT HF (ξ1

N ,ξ2
N ) =

(∑lh

i=1

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
8.lh

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣0.7) 1
0.7

=
(∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.8−0.4

)∣∣∣0.7
+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
(0.5−0.1

)∣∣∣0.7
+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.3−0.1

)|0.7+∣∣∣(0.122+0.172−0.072−0.092−0.62−0.82+0.22+0.52

8.4

)
.
(
0.2−0.1

)∣∣∣0.7) 1
0.7

= 0.0335

Definition 2.11. [26] Let ξ1
N = 〈(a1,b1,c1,d1); {ξ1

i : ξ1
i ∈ ξ1(x), ξ1(x) is a set of some values in [0,1]}〉, ξ2

N = 〈(a2,

b2,c2,d2); {ξ2
i : ξ2

i ∈ ξ2(x),ξ2(x) is a set of some values in [0,1]}〉 ∈ Φ. Then, based on Hausdorff metric, the

λ-generalised Hausdorff distance measure between ξ1
N and ξ2

N for λ,γ> 0, denoted by D HGT HF (ξ1
N ,ξ2

N ), is

defined as;

D HGT HF (ξ1
N ,ξ2

N ) = max
i

∣∣∣1

8

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣ (2.4)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

The hybrid distances is given as;

i. Combining the Equations 2.1 and 2.4 a γ-hybrid Hamming distance, denoted by γD H H
GT HF (ξ1

N ,ξ2
N ), is

defined as;

γD H H
GT HF (ξ1

N ,ξ2
N ) =

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)∣∣∣.( lh∑
i=1

γ.
∣∣∣(ξ1

σ(i ) −ξ2
σ(i )

)∣∣∣+ (1−γ).
(

maxi

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

∣∣∣)) (2.5)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.
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ii. Combining the Equations 2.2 and 2.4 a hybrid Euclidean distance, denoted by γD H E
GT HF (ξ1

N ,ξ2
N ), is

defined as;

γD H E
GT HF (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)∣∣∣.( lh∑
i=1

γ.

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣2
+ (1−γ).

(
maxi

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

∣∣∣)2)) 1
2

(2.6)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

iii. Combining the Equations 2.3 and 2.4 a λ-generalised hybrid distance, denoted by γD Hλ
GT HF (ξ1

N ,ξ2
N ), is

defined as;

γD Hλ
GT HF (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)
∣∣∣.( lh∑

i=1
γ.

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣λ+ (
1−γ).

(
maxi

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

∣∣∣)λ)) 1
λ

(2.7)

where ξ1
σ(i ) and ξ2

σ(i ) are the i . largest values in ξ1(x) and ξ2(x), respectively.

Example 2.12. Assume that ξ1
N = 〈(0.2,0.4,0.6,0.8); {0.7,0.6,0.5,0.3,0.2}〉 and ξ2

N = 〈(0.1,0.4,0.5,0.7); {0.9,0.3,

0.4}〉 be two GTHF-numbers. Then, for lh = 5 = max{5,3},

D HGT HF (ξ1
N ,ξ2

N ) = maxi

∣∣∣1
8

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)
.
(
ξ1
σ(i ) −ξ2

σ(i )

)∣∣∣
=

∣∣∣1
8

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)∣∣∣maxi

∣∣∣ξ1
σ(i ) −ξ2

σ(i )

∣∣∣
=

∣∣∣1
8

(
0.62 +0.82 −0.22 −0.42 −0.52 −0.72 +0.12 +0.42

)∣∣∣.max
{
0.2,0.3,0.1,0.1,0.2

}
= 0.0086

Now, we give the hybrid distance as;

i. Combining the Equations 2.1 and 2.4, 0.5-hybrid Hamming distance, denoted by 0.5D H H
GT HF (ξ1

N ,ξ2
N ),

is defined as;

0.5D H H
GT HF (ξ1

N ,ξ2
N ) =

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)
∣∣∣.(∑lh

i=1γ.|(ξ1
σ(i ) −ξ2

σ(i ))|+ (1−γ).(maxi |ξ1
σ(i ) −ξ2

σ(i )|)
)

= 0.1504

ii. Combining the Equations 2.2 and 2.4 a 0.5-hybrid Euclidean distance, denoted by 0.5D H E
GT HF (ξ1

N ,ξ2
N )),

is defined as;

0.5D H E
GT HF (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)
∣∣∣.

(
∑lh

i=1(0.5).|ξ1
σ(i ) −ξ2

σ(i ))|2|+ (1−0.5).(maxi |ξ1
σ(i ) −ξ2

σ(i )|)2)
) 1

2

= 0.2124

iii. Combining the Equations 2.3 and 2.4 a 0.5-generalised hybrid distance, denoted by 0.5D H 0.5
GT HF (ξ1

N ,ξ2
N ),
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is defined as;

0.5D H 0.5
GT HF (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
16.lh

)
∣∣∣.

(
∑lh

i=1(0.5).|ξ1
σ(i ) −ξ2

σ(i ))|0.5|+ (1−0.5).(maxi |ξ1
σ(i ) −ξ2

σ(i )|)0.5)
) 1

0.5

= 0.0754

3. Not-Ordered Quasi-Distance Measures on GTHF-Numbers

In this section, we gave not-ordered quasi-distance measures on GTHF-numbers and their properties based

on some definitions of hesitant fuzzy sets in [7] and GTHF-numbers in [25, 26, 28].

Definition 3.1. Let ξ1
N = 〈(a1,b1,c1,d1);ξ1

1〉 and ξ2
N = 〈(a2,b2,c2,d2);ξ2

1〉 be two GTHF-numbers. Then,

i. the Not-ordered Hamming quasi-distance measure between ξ1
N and ξ2

N , denoted by dNoH (ξ1
N ,ξ2

N ), is

defined as;

dNoH (ξ1
N ,ξ2

N ) = 1

4.k2.lp

∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

)
.
(
ξ1

1 −ξ2
1

)∣∣∣ (3.1)

where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and l is product of number of element ξ1

N and ξ2
N .

ii. the Not-ordered Euclidean quasi-distance measure between ξ1
N and ξ2

N , denoted by dNoE (ξ1
N ,ξ2

N ), is

defined as;

dNoE (ξ1
N ,ξ2

N ) =
( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ 1

4.k2.lp

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)
.
(
ξ1

1 −ξ2
1

)∣∣∣2) 1
2

(3.2)

where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and l is product of number of element ξ1

N and ξ2
N .

iii. the Not-orderedλ-generalised quasi-distance measure between ξ1
N and ξ2

N forλ> 0, denoted by dλ
NoG (ξ1

N ,ξ2
N ),

is defined as;

dλ
NoG (ξ1

N ,ξ2
N ) =

( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ 1

4.k2.lp

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)
.
(
ξ1

1 −ξ2
1

)∣∣∣λ) 1
λ

(3.3)

where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and l is product of number of element ξ1

N and ξ2
N .

iv. the Not-ordered the λ-generalised not ordered Hausdorff quasi-distance measure based on Hausdorff

metric, between ξ1
N and ξ2

N , denoted by dλ
NoH a(ξ1

N ,ξ2
N ), is defined as;

dλ
NoH a(ξ1

N ,ξ2
N ) = max

ξ1
1∈ξ1

N ,ξ2
1∈ξ2

N

∣∣∣ 1

4.k2

(
c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)
.
(
ξ1

1 −ξ2
1

)∣∣∣ (3.4)

where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
.

Theorem 3.2. Suppose that ξ1
N = 〈(a1,b1,c1,d1);ξ1

1(x
)〉, ξ2

N = 〈(a2,b2,c2,d2);ξ2
1(x

)〉 and ξ3
N = 〈(a3,b3,c3,d3);

ξ3
1 = ξ3(x

)〉 three GTHF-numbers and γ ̸= 0 be any real number. Then, for d ∈ {
dNoH ,dNoE ,dλ

NoG ,dλ
NoH a

}
, d

satisfies the following properties:
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i. 0 ≤ d(ξ1
N ,ξ2

N ) ≤ 1

ii. d(ξ1
N ,ξ2

N ) = d(ξ2
N ,ξ1

N )

iii. ξ1
N = ξ2

N ⇒ d(ξ1
N ,ξ2

N ) = 0

iv. d(ξ1
N ,ξ3

N )+d(ξ3
N ,ξ2

N

)≥ d(ξ1
N ,ξ2

N )

Proof.

Let ξ1
N = 〈(a1,b1,c1,d1);ξ1

1(x
)〉, ξ2

N = 〈(a2,b2,c2,d2);ξ2
1(x

)〉 and ξ3
N = 〈(a3,b3,c3,d3);ξ3

1 = ξ3(x
)〉 three GTHF-

numbers and γ ̸= 0 be any real number.

i. Let k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and lp is product of number of element ξ1

N and ξ2
N .

i. Since

0 ≤
∣∣∣(c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)∣∣∣≤ 4k2 and 0 ≤
∣∣∣(ξ1

1 −ξ1
2)∣∣∣≤ 1

we have

0 ≤
(∣∣∣(c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2).

(
ξ1

1 −ξ1
2)∣∣∣)≤ 4.k2

⇒ 0 ≤
( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2).
(
ξ1

1 −ξ1
2)∣∣∣)≤ 4.k2.lp

⇒ 0 ≤ 1
4.k2.lp

( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2).
(
ξ1

1 −ξ1
2)∣∣∣)≤ 1

⇒ 0 ≤ dNoH (ξ1
N ,ξ2

N

)≤ 1

ii.
dNoH (ξ1

N ,ξ2
N ) = 1

4.k2.lp

∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

)
.
(
ξ1

1 −ξ1
2)∣∣∣

= 1
4.k2.lp

( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
2 +d 2

2 −a2
2 −b2

2 − c2
1 −d 2

1 +a2
1 +b2

1).
(
ξ1

2 −ξ1
1)∣∣∣)

= dNoH (ξ2
N ,ξ1

N )

iii. Since ξ1
N and ξ2

N are identical then a = a1 = a2,b = b1 = b2,c = c1 = c2,d = d1 = d2,ξ= ξ1
N = ξ2

N . The

degree of quasi-distance ξ1
N and ξ2

N are calculated as follows

dNoH (ξ1
N ,ξ2

N ) = 1
4.k2.lp

∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

)
.
(
ξ1

1 −ξ1
2)∣∣∣

= 1
4.k2.lp

∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣(c +d −a −b − c −d +a +b
)
.
(
ξ−ξ

)∣∣∣
= 0
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iv.
dNoH (ξ1

N ,ξ2
N ) = 1

4.k2.lp

∑
ξ1

1∈ξ1,ξ2
1∈ξ2

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

)
.
(
ξ1

1 −ξ1
2)∣∣∣

= 1
4.k2.lp

∑
ξ1

1∈ξ1
N ,ξ2

1,ξ3
1∈ξ2

N

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 + c2
3 +d 2

3 −a2
3 −b2

3

−c2
2 −d 2

2 +a2
2 +b2

2 − c2
3 −d 2

3 +a2
3 +b2

3).
(
ξ1

1 −ξ1
2 −ξ1

3 +ξ1
3)∣∣∣

≤ ∑
ξ1

1∈ξ1
N ,ξ3

1∈ξ3
N

∣∣∣ 1
4.k2.lp

(c2
1 +d 2

1 −a2
1 −b2

1 − c2
3 −d 2

3 +a2
3 +b2

3).
(
ξ1

1 −ξ1
3)∣∣∣+

∑
ξ3

1∈ξ3
N ,ξ2

1∈ξ2
N

∣∣∣ 1
4.k2.lp

(c2
3 +d 2

3 −a2
3 −b2

3 − c2
2 −d 2

2 +a2
2 +b2

2).
(
ξ1

3 −ξ1
2)∣∣∣

= dNoH (ξ1
N ,ξ3

N )+dNoH (ξ3
N ,ξ2

N )

Similarly, for d ∈ {dNoE ,dλ
NoG ,dDNoH }, proof of theorem can be made.

Remark 3.3. Assume that dλ
NoG (ξ1

N ,ξ2
N ) be a Not-orderedλ-generalised quasi-distance measure between ξ1

N

and ξ2
N for λ > 0. Especially, if λ = 1, then the Not-ordered λ-generalised quasi-distance measure reduces

to the Not-ordered Hamming quasi-distance measure between ξ1
N and ξ2

N . If λ = 2, then the Not-ordered

λ-generalised quasi-distance measure, reduces to the Not-ordered Euclidean quasi-distance measure be-

tween ξ1
N and ξ2

N .

Example 3.4. Assume that ξ1
N = 〈(10,15,20,25); {0.7,0.8,0.5}〉 and ξ2

N = 〈(−13,−10,−7,−5); {0.9,0.2}〉 be two

GTHF-numbers. Then,

i. the Hamming quasi-distance measure dNoH (ξ1
N ,ξ2

N ) between ξ1
N and ξ2

N is calculated as;

dNoH (ξ1
N ,ξ2

N ) = 1
4.625.6

(∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.7−0.9

)∣∣∣+
∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.7−0.2

)∣∣∣+
∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10

)2).
(
0.8−0.9

)∣∣∣+
∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.8−0.2

)∣∣∣+
∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.5−0.9

)∣∣∣+
∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.5−0.2

)∣∣∣)
= 1

4.625.6

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)∣∣∣∣∣∣(0.7−0.9)+ (0.7−0.2)+ (0.8−0.9)+ (0.8−0.2)+ (0.5−0.9

)+ (0.5−0.2
)∣∣∣

= 0.041



Deli and Çelik / JNRS / 11(2) (2022) 162-181 171

ii. the Euclidean quasi-distance measure dNoE (ξ1
N ,ξ2

N ) between ξ1
N and ξ2

N is calculated as;

dNoE (ξ1
N ,ξ2

N ) =
(∣∣∣ 1

4.625.6 (202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.7−0.9

)∣∣∣2
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.7−0.2

)∣∣∣2
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.8−0.9

)∣∣∣2
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.8−0.2

)∣∣∣2
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.5−0.9

)∣∣∣2
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.5−0.2

)∣∣∣2) 1
2

=
∣∣∣ 1

4.625.6

(
202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)2
∣∣∣

∣∣∣((0.7−0.9)2 + (0.7−0.2)2 + (0.8−0.9)2 + (0.8−0.2)2 + (0.5−0.9)2 + (0.5−0.2)2
)∣∣∣ 1

2

= 0.056

iii. the λ-generalised quasi-distance measure dλ
NoG (ξ1

N ,ξ2
N ) between ξ1

N and ξ2
N is calculated as; λ= 0.8,

d 0.8
NoG (ξ1

N ,ξ2
N ) =

(∣∣∣ 1
4.625.6 (202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.7−0.9

)∣∣∣0.8
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.7−0.2

)∣∣∣0.8
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.8−0.9

)∣∣∣0.8
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.8−0.2

)∣∣∣0.8
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.5−0.9

)∣∣∣0.8
+

∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)
.
(
0.5−0.2

)∣∣∣0.8) 1
0.8

=
∣∣∣ 1

4.625.6 (202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2
)2((0.7−0.9)0.8

+(0.7−0.2)0.8 + (0.8−0.9)0.8 + (0.8−0.2)0.8 + (0.5−0.9)0.8 + (0.5−0.2)0.8
)∣∣∣ 1

0.8

= 0.19
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and λ= 5,

d 5
NoG (ξ1

N ,ξ2
N ) =

(∣∣∣ 1
4.625.6 (202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.7−0.9

)∣∣∣5
+∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.7−0.2

)∣∣∣5
+∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.8−0.9

)∣∣∣5
+∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.8−0.2

)∣∣∣5
+∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.5−0.9

)∣∣∣5
+∣∣∣(202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)
.
(
0.5−0.2

)∣∣∣5) 1
5

=
∣∣∣ 1

4.625.6

(
202 +252 −102 −152 − (−7)2 − (−5)2 + (−13)2 + (−10)2

)2

(
(0.7−0.9)5 + (0.7−0.2)5 + (0.8−0.9)5 + (0.8−0.2)5 + (0.5−0.9)5 + (0.5−0.2)5

)∣∣∣ 1
5

= 0.037

Definition 3.5. Let ξ1
N , ξ2

N be two GTHF-numbers. Then, for λ,γ > 0, the hybrid quasi-distances are given

as:

i. Combining the Equations 3.1 and 3.4 a γ- not ordered hybrid Hamming quasi-distance, denoted by

γDNOH H
GT HF (ξ1

N ,ξ2
N ), is defined as;

d
γDNOH H (ξ1

N ,ξ2
N ) = 1

4.k2.lp

∣∣∣(c2
1 +d 2

1 −a2
1 −b2

1 − c2
2 −d 2

2 +a2
2 +b2

2

)∣∣∣.( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

γ.
∣∣∣ξ1

1 −ξ2
1

)∣∣∣+ (1−γ).lp .( max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ξ1
1 −ξ1

2
∣∣∣))

where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and lp is product of number of element ξ1

N and ξ2
N .

ii. Combining the Equations 3.2 and 3.4 a not-ordered hybrid Euclidean quasi-distance, denoted by

d
γDNOH E (ξ1

N ,ξ2
N ), is defined as;

d
γDNOH E (ξ1

N ,ξ2
N ) =

( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

(
1

4.k2.lp
(c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)2
.
(
γ
∣∣∣ξ1

1 −ξ1
2
∣∣∣2
+

(1−γ). max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

.lp .
(
ξ1

1 −ξ1
2
)2)) 1

2

where k = max{
∣∣∣a1

∣∣∣, ∣∣∣a2

∣∣∣, ∣∣∣b1

∣∣∣, ∣∣∣b2

∣∣∣, ∣∣∣c1

∣∣∣, ∣∣∣c2

∣∣∣∣∣∣d1

∣∣∣, ∣∣∣d2

∣∣∣} and l is product of number of element ξ1
N and ξ2

N .

iii. Combining the Equations 3.3 and 3.4 a λ-generalised not-ordered hybrid quasi-distance, denoted by

d
γDNOHλ(ξ1

N ,ξ2
N ), is defined as;

d
γDNOHλ(ξ1

N ,ξ2
N ) =

( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

(
1

4.k2.lp
(c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)λ
.
(
γ
∣∣∣ξ1

1 −ξ1
2
∣∣∣λ+

(1−γ). max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

.lp .
(
ξ1

1 −ξ1
2
)λ)) 1

λ
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where k = max
{|a1|, |a2|, |b1|, |b2|, |c1|, |c2|, |d1|, |d2|

}
and lp is product of number of element ξ1

N and ξ2
N .

Theorem 3.6. Suppose that ξ1
N = 〈(a1,b1,c1,d1);ξ1

1(x
)〉, ξ2

N = 〈(a2,b2,c2,d2);ξ2
1(x

)〉 and ξ3
N = 〈(a3,b3,c3,d3);

ξ3
1 = ξ3(x

)〉 three GTHF-numbers andγ ̸= 0 be any real number. Then, for d ∈ {
d
γDNOH H , d

γDNOH E , d
γDNOHλ

}
,

d satisfies the following properties:

i. 0 ≤ d(ξ1
N ,ξ2

N

)≤ 1

ii. d(ξ1
N ,ξ2

N ) = d(ξ2
N ,ξ1

N )

iii. ξ1
N = ξ2

N ⇒ d(ξ1
N ,ξ2

N ) = 0

iv. d(ξ1
N ,ξ3

N )+d(ξ3
N ,ξ2

N

)≥ d(ξ1
N ,ξ2

N )

Proof: Proof of the theorem is clear.

Example 3.7. Assume that ξ1
N = 〈(0.1,0.2,0.3,0.4); {0.9,0.7,0.6,0.5,0.1}〉 and ξ2

N = 〈(0.3,0.5,0.7,0.9); {0.8,0.1,0.5}〉
be two GTHF-numbers. Then, for lp = 5.3 = 15,

d
γDNOH (ξ1

N ,ξ2
N ) = max

{∣∣∣ 1
4·0.92·15 (c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2).

(
ξ1

1 −ξ2
1

)∣∣∣}
=

∣∣∣ 1
48.6 (c2

1 +d 2
1 −a2

1 −b2
1 − c2

2 −d 2
2 +a2

2 +b2
2

)∣∣∣.max
{∣∣∣ξ1

1 −ξ2
1

∣∣∣}
=

∣∣∣ 1
48.6 (0.32 +0.42 −0.12 −0.22 −0.72 −0.92 +0.32 +0.52

)∣∣∣
max

{
0.1,0.8,0.4,0.1,0.6,0.2,0,2,0.5,0.1,0.3,0.4,0.0,0.7,0.0,0.4

}
= 0.012

Now, we give the hybrid quasi-distance as:

i. Combining the Equations 2.1 and 2.4 0.5-hybrid Hamming quasi-distance, denoted by

0.5DNOH H
GT HF (ξ1

N ,ξ2
N ), is defined as;

d
0.5DNOH H (ξ1

N ,ξ2
N ) =

∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
4.k2.l

)∣∣∣.( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

(0.5).
∣∣∣(ξ1

1 −ξ2
1

)∣∣∣+ (1− (0.5)
)
.
(

max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ξ1
1 −ξ2

1

∣∣∣))
= 0.042

(3.5)

ii. Combining the Equations 2.2 and 2.4 a 0.5not-ordered hybrid Euclidean quasi-distance, denoted by

d
0.5DNOH E (ξ1

N ,ξ2
N ), is defined as;

d
0.5DNOH E (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
4.k2.l

)∣∣∣.( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

(0.5).
∣∣∣ξ1

1 −ξ2
1

)∣∣∣2∣∣∣+ (1−0.5).
(

max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ξ1
1 −ξ2

1

∣∣∣)2
) 1

2

= 0.022

(3.6)
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iii. Combining the Equations 2.3 and 2.4 a 0.5-generalised not ordered hybrid quasi-distance, denoted by

0.5DNOH 0.5
GT HF (ξ1

N ,ξ2
N ), is defined as;

d
0.5DNOH 0.5 (ξ1

N ,ξ2
N ) =

(∣∣∣( c2
1+d 2

1−a2
1−b2

1−c2
2−d 2

2+a2
2+b2

2
4.k2.l

)∣∣∣.( ∑
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

(0.5).
∣∣∣ξ1

1 −ξ2
1

∣∣∣0.5∣∣∣+ (1−0.5).( max
ξ1

1∈ξ1
N ,ξ2

1∈ξ2
N

∣∣∣ξ1
1 −ξ2

1

∣∣∣)0.5
) 1

0.5

= 0.062

(3.7)

4. An Approach to MCDM Problems with GTHF-Numbers

In this section, we present an algorithm based on not-ordered quasi-distance measures of GTHF-numbers.

The algorithm is given in Deli [26] for ordered quasi-distance measures.

Definition 4.1. [25] Let A = {a1, a2, ..., am} be a set of alternatives, C = {c1,c2, ...,cn} be the set of criteria. If

Ai j = 〈(ai j ,bi j ,ci j ,di j );ξi j (x)〉 ∈Φ (i = 1,2, ...,m; j = 1,2, ...,n). Then

[Ai j ]m×n =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

...

Am1 Am2 · · · Amn


is called an GTHF-MCDM matrix of the decision maker or expert. Here xi j denotes evaluation of the alter-

native ai with respect to the criteria c j made by expert or decision maker.

Based on the Deli [26], we now gave an orderly algorithm for TOPSIS method of GTHF-numbers as follow:

Algorithm:

Step 1. Give the GTHF-MCDM matrix xi j (i = 1,2, ...,m; j = 1,2, ...,n) as;

[Ai j ]m×n =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

...

Am1 Am2 · · · Amn


Step 2. Calculate the normalized GTHF-MCDM matrix ni j (i = 1,2, ...,m; j = 1,2, ...,n) as ni j = 〈( ai j

η ,
bi j

η ,
ci j

η ,
di j

η );ξi j (x)〉 ∈ Φ (i = 1,2, ...,m; j = 1,2, ...,n) where η = maxi , j

{∣∣∣ai j

∣∣∣, ∣∣∣bi j

∣∣∣, ∣∣∣ci j

∣∣∣, ∣∣∣di j

∣∣∣} (i = 1,2, ...,m; j =
1,2, ...,n)

Step 3. Give the weighted vector W = (w1, w2, ..., wn), where w j ( j = 1,2, ...,n) is the weight of criterion c j

( j = 1,2, ...,n) and
n∑

j=1
w j = 1.

Step 4. Compute the weighted normalized GTHF-MCDM matrix nw
i j = w j ·ni j = 〈(ãi j , b̃i j , c̃i j , d̃i j ); ξ̃i j (x)〉 ∈

Φ (i = 1,2, ...,m; j = 1,2, ...,n)

Step 5. Describe the GTHF-positive ideal solution A+ and GTHF-negative ideal solution A− for GTHF-
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MCDM matrix nw
i j = w j ·ni j = 〈(ãi j , b̃i j , c̃i j , d̃i j ); ξ̃i j (x)〉 ∈Φ (i = 1,2, ...,m; j = 1,2, ...,n) as follows;

A+ = 〈(maxi , j {ai j },〈(maxi , j {bi j }〈(maxi , j {ci j },〈(maxi , j {di j }; {maxi , j {ξ : ξ ∈ ξ̃i j (x)}}〉

and

A− = 〈(mini , j {ai j },〈(mini , j {bi j }〈(mini , j {ci j },〈(mini , j {di j }; {mini , j {ξ : ξ ∈ ξ̃i j (x)}}〉

respectively.

Step 6. Compute the quasi-distance measures r+
i j = d(nw

i j , A+), (i = 1,2, ...,m; j = 1,2, ...,n) and r−
i j =

d(nw
i j , A−) (i = 1,2, ...,m; j = 1,2, ...,n) between nw

i j and GTHF-positive ideal solution solution A+ and GTHF-

negative ideal solution A−, respectively. ( d ∈ {
dNoH ,dNoE ,dλ

NoG ,dλ
NoH a ,d

γDNOH H ,d
γDNOH E ,d

γDNOHλ

}
) or

Compute the correlation measures r+
i j = 1−−→c k (nw

i j , A+), (i = 1,2, ...,m; j = 1,2, ...,n) (k ∈ {1,2, ...,14}) and

r−
i j = 1−−→c k (nw

i j , A−) (i = 1,2, ...,m; j = 1,2, ...,n) between nw
i j and GTHF-positive ideal solution solution A+

and GTHF-negative ideal solution A−, respectively.

Step 7. Calculate the total quasi-distance measures d+
i and d−

i (i = 1,2, ...,m) of each alternative Ri (i =
1,2, ...,m) as;

d+
i =

n∑
j=1

r+
i j (i = 1,2, ...,m; j = 1,2, ...,n)

and

d−
i =

n∑
j=1

r−
i j (i = 1,2, ...,m; j = 1,2, ...,n)

Step 8. Find the score values si ( si ) of each alternative ai as:

si =
d+

i

d+
i +d−

i

(i = 1,2, ...,m)

(or si =
d−

i

d+
i +d−

i

(i = 1,2, ...,m))

Step 9. Rank all alternatives ai (i = 1,2, ...,m) by using the score values si (i = 1,2, ...,m) of ai (i = 1,2, ...,m)

and determine the best alternative.

In here, for two alternatives ak and al , ak ≺ al (k, l ∈ {1,2, ...,m}) if sk > sl , where ≺ is a preference relation

on A. The best alternative will be the closest to the GTHF-positive ideal solution solution and farthest from

GTHF-negative ideal solution (or for two alternatives ak and al ak ≺ al (k, l ∈ {1,2, ...,m}) if sk < sl , where ≺
is a preference relation on A).

Example 4.2. Assume that among the 5 partners (R1 to R5) of a limited company, it is desired to choose a

chairman based on 6 criteria. Six subjective criteria are considered by decision maker as:

i. Age (c1)

ii. Foreign language (c2)

iii. Sociability(c3)

iv. Technological knowledge (c4)

v. Persuasion skill (c5)
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vi. Business environment (c6)

The calculative procedure is summarized as follows:

Step 1. The decision makers constructed the GTHF-MCDM matrix xi j (i = 1,2, ...,5; j = 1,2, ...,6) as follows:

[x̃i j ]5×6 =



〈(0,1,1,2); {0.9,0.8,0.7}〉 〈(0,1,2,3); {0.6,0.3,0,9}〉
〈(2,4,5,6); {0.8,0.7,0.6}〉 〈(1,2,3,4); {0.9,0.6,0.8}〉
〈(0,1,2,3); {0.6,0.3,0,9}〉 〈(3,5,6,10); {1.0,0.8}〉
〈(2,4,5,6); {0.8,0.7,0.6}〉 〈(2,2,3,4); {0.8,0.7}〉
〈(2,3,4,5); {0.8,0.6,0.9}〉 〈(1,2,3,4); {0.9,0.6,0.8}〉

〈(0,1,1,2); {0.9,0.8,0.7}〉 〈(3,4,5,7); {0.9,0.7}〉
〈(2,2,3,4); {0.8,0.7}〉 〈(3,4,5,7); {0.9,0.7}〉
〈(2,3,4,5); {0.8,0.6,0.9}〉 〈(2,2,3,4); {0.8,0.7}〉
〈(2,3,4,5); {0.8,0.6,0.9}〉 〈(0,1,1,2); {0.9,0.8,0.7}〉
〈(2,2,3,4); {0.8,0.7}〉 〈(1,2,3,4); {0.9,0.6,0.8}〉

〈(0,1,2,3); {0.6,0.3,0,9}〉 〈(2,2,3,4); {0.8,0.7}〉
〈(2,2,3,4); {0.8,0.7}〉 〈(0,1,1,2); {0.9,0.8,0.7}〉
〈(2,4,5,6); {0.8,0.7,0.6}〉 〈(2,2,3,4); {0.8,0.7}〉
〈(2,4,5,6); {0.8,0.7,0.6}〉 〈(0,1,2,3); {0.6,0.3,0,9}〉
〈(2,4,5,6); {0.8,0.7,0.6}〉 〈(2,2,3,4); {0.8,0.7}〉


Step 2. We calculated the normalized GTHF-MCDM matrix ni j (i = 1,2, ...,5; j = 1,2, ...,6) as;

(ni j = 〈( ai j

10 ,
bi j

10 ,
ci j

10 ,
di j

10 );ξi j (x)〉 ∈Φ, where η= maxi , j {
∣∣∣ai j

∣∣∣, ∣∣∣bi j

∣∣∣, ∣∣∣ci j

∣∣∣, ∣∣∣di j

∣∣∣} (i = 1,2, ...,5; j = 1,2, ...,6))

[ni j ]5×6 =



〈(0.0,0.1,0.1,0.2); {0.9,0.8,0.7}〉 〈(0.0,0.1,0.2,0.3); {0.6,0.3,0,9}〉
〈(0.2,0.4,0.5,0.6); {0.8,0.7,0.6}〉 〈(0.1,0.2,0.3,0.4); {0.9,0.6,0.8}〉
〈(0.0,0.1,0.2,0.3); {0.6,0.3,0,9}〉 〈(0.3,0.5,0.6,1.0); {1.0,0.8}〉
〈(0.2,0.4,0.5,0.6); {0.8,0.7,0.6}〉 〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉
〈(0.2,0.3,0.4,0.5); {0.8,0.6,0.9}〉 〈(0.1,0.2,0.3,0.4); {0.9,0.6,0.8}〉

〈(0.0,0.1,0.1,0.2); {0.9,0.8,0.7}〉 〈(0.3,0.4,0.5,0.7); {0.9,0.7}〉
〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉 〈(0.3,0.4,0.5,0.7); {0.9,0.7}〉
〈(0.2,0.3,0.4,0.5); {0.8,0.6,0.9}〉 〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉
〈(0.2,0.3,0.4,0.5); {0.8,0.6,0.9}〉 〈(0.0,0.1,0.1,0.2); {0.9,0.8,0.7}〉
〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉 〈(0.1,0.2,0.3,0.4); {0.9,0.6,0.8}〉

〈(0.0,0.1,0.2,0.3); {0.6,0.3,0,9}〉 〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉
〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉 〈(0.0,0.1,0.1,0.2); {0.9,0.8,0.7}〉
〈(0.2,0.4,0.5,0.6); {0.8,0.7,0.6}〉 〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉
〈(0.2,0.4,0.5,0.6); {0.8,0.7,0.6}〉 〈(0.0,0.1,0.2,0.3); {0.6,0.3,0,9}〉
〈(0.2,0.4,0.5,0.6); {0.8,0.7,0.6}〉 〈(0.2,0.2,0.3,0.4); {0.8,0.7}〉


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Step 3. We gave the weighted vector as; w = (w1 = 0.20, w2 = 0.15, w3 = 0.25, w4 = 0.15, w5 = 0.20, w6 = 0.05)

where w j ( j = 1,2, ...,6) is the weight of criterion c j ( j = 1,2, ...,6) and
n∑

j=1
w j = 1.

Step 4. We computed the weighted normalized GTHF-MCDM matrix nw
i j = w j ·ni j = 〈(ãi j , b̃i j , c̃i j , d̃i j ); ξ̃i j (x)〉

(i = 1,2, ...,5; j = 1,2, ...,6) as;

[nw
i j ]5×6 =



〈(0.0000,0.0200,0.0200,0.0400); {0.3690,0.2752,0.2140}〉
〈(0.0400,0.0800,0.1000,0.1200); {0.2752,0.2140,0.1674}〉
〈(0.0000,0.0200,0.0400,0.0600); {0.1674,0.0689,0.3690}〉
〈(0.0400,0.0800,0.1000,0.1200); {0.2752,0.2140,0.1674}〉
〈(0.0400,0.0600,0.0800,0.1000); {0.2752,0.1674,0.3690}〉

〈(00.0000,0.0150,0.0300,0.0450); {0.1284,0.0521,0.2921}〉
〈(0.0150,0.0300,0.0450,0.0600); {0.2921,0.1284,0.2145}〉
〈(0.0450,0.0750,0.0900,0.1500); {0.21451.0000}〉
〈(0.0300,0.0300,0.0450,0.0600); {0.2145,0.1652}〉
〈(0.0150,0.0300,0.0450,0.0600); {0.2921,0.1284,0.2145}〉

〈(0.0000,0.0250,0.0250,0.0500); {0.4377,0.3313,0.2599}〉
〈(0.0500,0.0500,0.0750,0.1000); {0.3313,0.2599}〉
〈(0.0500,0.0750,0.1000,0.1250); {0.3313,0.2047,0.4377}〉
〈(0.0500,0.0750,0.1000,0.1250); {0.3313,0.2047,0.4377}〉
〈(0.0500,0.0500,0.0750,0.1000); {0.3313,0.2599}〉

〈(0.0450,0.0600,0.0750,0.1050); {0.2921,0.1652}〉
〈(0.0450,0.0600,0.0750,0.1050); {0.2921,0.1652}〉
〈(0.0300,0.0300,0.0450,0.0600); {0.2145,0.1652}〉
〈(0.0000,0.0150,0.0150,0.0300); {0.2921,0.2145,0.1652}〉
〈(0.0150,0.0300,0.0450,0.0600); {0.2921,0.1284,0.2145}〉

〈(0.0000,0.0200,0.0400,0.0600); {0.1674,0.0689,0.3690}〉
〈(0.0400,0.0400,0.0600,0.0800); {0.2752,0.2140};〉
〈(0.0400,0.0800,0.1000,0.1200); {0.2752,0.2140,0.1674}〉
〈(0.0400,0.0800,0.1000,0.1200); {0.2752,0.2140,0.1674}〉
〈(0.0400,0.0800,0.1000,0.1200); {0.2752,0.2140,0.1674}〉

〈(0.1000,0.1000,0.1500,0.2000); {0.5528,0.4523}〉
〈(0.0000,0.0500,0.0500,0.1000); {0.6838,0.5528,0.4523}〉
〈(0.1000,0.1000,0.1500,0.2000); {0.5528,0.4523}〉
〈(0.0000,0.0500,0.1000,0.1500); {0.3675,0.1633,0.6838}〉
〈(0.1000,0.1000,0.1500,0.2000); {0.5528,0.4523}〉


Step 5. We described the GTHF-positive ideal solution A+ and GTHF-negative ideal solution A− for GTHF-

MCDM matrix as follows:

A+ = 〈(0.1000,0.1000,0.1500,0.2000); {1}〉 and A− = 〈(0.0000,0.0150,0.0150,0.0300); {0.0521}〉, respectively.
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Step 6. We computed the quasi-distance measures dNoH (nw
i j , A+), (i = 1,2, ...,5; j = 1,2, ...,6) and dNoH (nw

i j , A−)

(i = 1,2, ...,5; j = 1,2, ...,6) in Table 1 and Table 2, respectively.

Table 1. The quasi-distance measures dNoH (nw
i j , A+), (i = 1,2, ...,5; j = 1,2, ...,6)

dNoH (nw
i j , A+) c1 c2 c3 c4 c5 c6

R1 0.1825 0.2096 0.1643 0.1517 0.1881 0.0000

R2 0.1274 0.1872 0.1403 0.1517 0.1685 0.0888

R3 0.1881 0.0480 0.1055 0.1958 0.1274 0.0000

R4 0.1274 0.1958 0.1055 0.2018 0.1274 0.0465

R5 0.1427 0.1872 0.1403 0.1872 0.1274 0.0000

Table 2. The quasi-distance measures dNoH (nw
i j , A−) (i = 1,2, ...,5; j = 1,2, ...,6)

dNoH (nw
i j , A−) c1 c2 c3 c4 c5 c6

R1 0.0010 0.0012 0.0029 0.0112 0.0036 0.1171

R2 0.0162 0.0036 0.0148 0.0112 0.0071 0.0291

R3 0.0036 0.0765 0.0283 0.0035 0.0162 0.1171

R4 0.0162 0.0025 0.0283 0.0000 0.0162 0.0642

R5 0.0141 0.0036 0.0148 0.0036 0.0162 0.1171

Step 7. We calculated the total quasi-distance measures d+
i and d−

i (i = 1,2, ...,5) of each alternative Ri

(i = 1,2, ...,5) in Table 3 based on Table 1 and Table 2, respectively;

Table 3. The total quasi-distance measures d+
i and d−

i (i = 1,2, ...,5)

i 1 2 3 4 5

d+
i 0.8961 0.8640 0.6649 0.8045 0.7849

d−
i 0.1371 0.0819 0.2442 0.1273 0.1693

Step 8. We found the score values si (i = 1,2, ...,5) of each alternative ai (i = 1,2, ...,5) in Table 4.

Table 4. The score values si (i = 1,2, ...,5) of each alternative ai (i = 1,2, ...,5)

i 1 2 3 4 5

si 0.8674 0.9134 0.7314 0.8634 0.8226

Step 9. We ranked all alternatives according to the score values si , in decreasing order by the rule s2 >
s1 > s4 > s5 > s3 and we obtained R2 ≺ R1 ≺ R4 ≺ R5 ≺ R3. Therefore, the best chairman is R3. Moreover,

we ranked all alternatives according to other quasi-distance measures in Table 5 and we obtained the same

results for the best chairman.
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Table 5. A ranking for all alternatives (alt) according to other introduced quasi-distance measures (DM)

DM i 1 2 3 4 5 The worst alt. The best alt.

dNoE si 0.8334 0.8461 0.6980 0.8258 0.7909 R2 R3

d0.5
NoG si 0.8726 0.9722 0.7499 0.9074 0.8302 R2 R3

d4
NoG si 0.7815 0.7928 0.6656 0.7953 0.7562 R4 R3

d20
NoG si 0.7061 0.7305 0.6342 0.7560 0.7126 R4 R3

5. Conclusion

In this paper, we proposed some novel not-ordered quasi-distance measuresunder GTHF-numbers. Then,

we applied the quasi-distance measures to TOPSIS method of GTHF-numbers in Deli [26]. Also, we gave a

numerical example, to show the efficiency and the applicability of the proposed method. In future, we may

study some different quasi-distance and similarity measures and aggregation operators on GTHF-numbers.

Researchers can also define similarity measures based on cendroid point of the GTHF-numbers.
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