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ABSTRACT

In this paper firstly, we study the operators associated with the diagonal lift and applied to vertical
and horizontal lifts. Secondly, we get the conditions of almost holomorphic vector fields with

respect to the diagonal lift.
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1. Introduction

Let M,, be n-dimensional differentiable manifold of class C>°, TP (M) its tensor bundle of type (p, ¢), and =
n be local coordinates in neighborhood U of a point = of

the natural projection TP (M,,) — M,,. Let2’,j =1
Then a tensor ¢ of type (p, ) at z € M,, which is an element of T?(M,,) is expressible in the form

(@, 437 ) = (o, a), 07 = 60 F=n+ 1, n+ 0Pt

whose t;i;‘; are components of ¢t with respect to the natural frame 9;. We may consider (z7,z7) as local
coordinates in a neighborhood 7~ (U) of T?(M,,). To a transformation of local coordinates of M,, : 27" = z7'(27),
) the coordinates transformation

there corresponds in TP (M,
2 = a:jl(a:j) (1.1)
Jo A tll 1_ All AZ:;AJI Ada 4hie A(l )A(J) x]
J1---dh p Jg? d1-Jq 3")
dx’ o Oad

where
A(”Ag?) — ADLAL PAJl qu Al = o Al = o
Let A € 37(M,,). Then there is a unique vector field A" € S§(TF(M,)) such that for a € T?(M,)
(A(a))” = a(A) o = (a(4))",
is the vertical lift of the function a(A) € F(M,). We call AV the vertical lift of A € T?(M,,) to

where (a(4))V
) (see [4, 5]). The vertical lift AV has components of the form

TP(M
AT = ij;z) B <A§10:::§Z) .
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with respect to the coordinates (acj ) q;j) in TP (My).
Let V be a symmetric affine connection on M,.We define the horizontal lift V¥ = V € S} (TP (M,)) of
V e 4 (M,) to TP(M,,) by [5]
(V)T =u(Vya),a € TP (M,,).

The horizontal lift V' of V' € S (M,,) to T?(M,,) has components
\%4
Vi = Vs d [m gitip P [iA fit-meig (1.3)
;1,2::1 ER tjl...’m...jq - )\2::1 smtjl.“jq
with respect to the coordinates (acj , xf) in Tg’(Mn)[l, 4], where I‘fj are local components of V in M,,.

Suppose that there is given a tensor field ¢ € T?(M,,). Then the correspondence = — ,, &, being the value
of ¢ at x € M,,,determines a mapping o¢ : M,, — TP(M,,), such that 7o o¢ =idy;,, and the n dimensional
submanifold o¢(M,,) of TP (M,) is called the cross-section determined by ¢. If the tensor field ¢ has the local

components 5,211'_'_'%,:(1 (2%), the cross-section o¢ (M,) is locally expressed by

ok — ok
{ 2k = gl (k) 14

with respect to the coordinates (a:k, xE) in T? (M,). Differentiating (1.4) by 27, we see that n tangent vector
fields B, to o¢ (M,,) have components

oz’ ok
=)= (%) = ( oyt ) (49

with respect to the natural frame {9, 03} in TP (M,,).
On the other hand, the fibre is locally expressed by [4]

zk = const,
. (1.6)

body _ gl
kl...k)q - kl...k)q’

Il . .
t,." 7 being considered as parameters.
ki..kq

Let A, BeSb(M,),V,W e€S§(M,) and ¢ € 3} (M,). Let R denotes the curvature tensor field of the
connection V. Then (see [1, 4])
[AY.BY] =0
[VH AY] = (Vv A)

~ ~ 1.7
[VE o —ye] =7 (Lve+ (VV) o — o (VV)) =7 (Lve + (VV) o — ¢ (VV)) (17)
[VHWH] = [V,W]" + (3 —7) R(V,W)
where ¢ — ¢ is a vector field in T? (M,,) defined by [4],
5 ( ’ ) (18)
Y —Yp = i1...0p m G1...Ma iy g .
o Z:l biremeg Py — =1 J1-da A
1.1. Diagonal lifts along a cross-section
Let ¢ € S} (M,). We define a tensor field ¢” € S} (T? (M,)) along the cross-section o¢ (M,,) by [4]
{ P (VH) = (o (V) 9V € S4(M,) (1.9)
el (AY) = = (p(4))" VA € S (My),
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where ¢ (4) = C (¢ ® A) € 3% (M,,) and call ¢ the diagonal lift of ¢ € 3} (M,,) to TP (M,) along o¢ (M,,).
Then , from (1.9) we have

(i) (75)" (‘7L>H = ((‘Z(V))Kfv’ (1.10)

0 0
~ Vv o . _
where (5 (4))" = ( ((&(A))k>v > - ( P Az )
Let ¢ € S1 (M,,). We define ¢! € S (TP (M,,)) along o¢ (M,,) by [4]
P (VI) = (o (V) 9V € S (My,) 111
Lo — (p(4)Y VA€ 3 (M) (40
where ¢ (A) = C (¢ ® A) € 3P (M,,) [7].

Theorem 1.1. [4] If o, $eST (M,,), then with respect to symmetric affine connection V in M,,, we have

PP + 6P 0P = (0o + dp) ", (1.12)
PPt + ¢P o = pHoP + o P = (p¢ + dp)” (1.13)

Putting ¢ = ¢ in (1.12), we obtain
PP = (p0)", (¥P)° = ()" (1.14)

Since (idy,, )H = idgr (), using (1.14), we have

Theorem 1.2. [4]If ¢ is almost complex structure in M,, then the diagonal lift o of o to TP (M,) along o¢(M,,) is an
almost complex structure in TP (M,,).

1.2. Sasakian Metrics on TP (M)

For each P € M, the extension of the scalar product g (denoted also by g) is defined on the tensor space
7 (p) = T (P) by N
9 (A, B) = giyt,...Giyt, g i AL Bl

Leda Py
forall A, B € T} (P). A Sasakian metric Sg(or a diagonal lift of g) is defined on T? (My,) by the three equations
[11,13]

%9 (AY,BY) = (9(A,B))" ,A,B € S (M,), (1.15)
Sg (AV, YH) = 07 (116)
Sg(XH, Y1) = (g(X,Y)",X,Y € S} (M,,). (1.17)

These equations are easily seen to determine *g on T? (M,,) with respect to which the horizontal and vertical
distributions are complementary and orthogonal.
We define the horizontal lift V# of the Levi-Civita connection in M,, to TP (My,) by the conditions

vy _ HY _
{ (v XHB‘(XAVfV ;3 19)87,((VV1VHYYE2 ) :O(7v ) (118)
forany X,Y € S§ (M) and A, B € S (M,,).
Let R denote the curvature tensor field of the Levi-Civita connection V. Then [5, 8]
[AV.BY] = o, (1.19)
(X7, AV] = (VxA)Y,
(X" Y] = XY+ (G- RXY),
where 5 — v : §1 (M,,) — S (T? (M,)) is the operator defined by
~ 0
G-e=( B > O vt ) (120

for any ¢ € 31 (M,,) with respect to the adapted frame ¢!, being local components of ¢ in M,,.
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2. Main Results

2.1. The Tachibana operators applied to vertical and horizontal lifts with respect to almost complex structure o along
O¢ (Mn)
Definition 2.1. Let ¢ € 3{(M,), and (M) =377 3%(M,) be a tensor algebra over R. A map ¢, |

7'+s>0:

*
(M) = I(M,,) is called a Tachibana operator or ¢, operator on M,, if
a) ¢, is linear with respect to constant coefficient,

b) ¢, : \r( n) = % (My,) forallrands,

)
¢) b, (KOL) = (6,K)© L+ K ® ¢,L forall K, L € S(M,),

d) poxY = —(Lyp)X forall X,Y € S{(M,,) where Ly is the Lie derivation with respect to Y,
)

Q

(Poxm)Y = (d(2yn))(pX) — (d(2y (no9))) X + n((Ly ) X) (2.1)
= ¢X(wwn) — X(teyn) +n((Lyp)X)

C *
forallp € SY(M,) and X,Y € S3(M,,), where iyn =n(Y) =n®Y, 37 (M,,) the module of all pure tensor fields
of type (r, s) on M,, according to the affinor field ¢ [2, 3, 9, 12](see [10] for applied to pure tensor field).

Theorem 2.1. For L the operator Lie derivation with respect to X, P € S1 (T? (M,,)) the diagonal lift of ¢ € 1 (M,,)
to TP (M,,) along o¢ (M,,) defined by (1.9) is an almost complex structure in T (My,), o the Tachibana operator on
M,,, we get the following formulas

i) by WH = (LyanW — oLy W) + G =) (R(p (V), W) — oR (V, W),
ii) pooav V= (Vyp(A)" = (oVvA) = (Vvep)4)",

iii) ooy AV = () A4)"

) ¢p,oavBY = 0,

where R is the curvature tensor of V, A, B € 3% (M,,),V,W € S} (M,,) and ¢ € 31 (M,,).

Proof. i)
GooyuWH = — (LyuP) V7 = —LyynoPVH + 0P LyuVH
= — [T )] + 6P [ V]
= [ w) WH] =P (v, wH)
= o). WI" +G-nR(eV).W)
—? (VW + G- R(v.W))

= (). W +F-1)R(e(V),W)
— (@, W) = F =) R (V, W)
= (L)W —pLyW)"
+(V=7) (R(e(V), W) —pR(V,W))

i)
bpopav VT = —(LynpP)AY = —LyupP AV + oPLynAY

= —Lyn — (p(A)Y + o2 (VyA)"
= (Vvp(A)Y — (pVvA)Y = (Vve)A)Y

107 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Operators Applied to Lifts with Respect to the Diagonal Lifts of Affinor Fields Along a Cross-Section on T (M)

i)
popyuA’ = —(LaveP )V = —L v PV + P L VH
- [AV (o (V))H} + P[4V, V]
_ [ } — P [VH, AY]
= ( (V) ) (VVA)
= (v W(V)A) (VVA)) )
= ( p(A—¢ VVA))
= (1/%0 V)A)
i)
Q/)SDDAVBV = - (LBVQDD) AV = 7LBVQDDAV+QDDLBVAV
= —Lpv —(p(4))"
= 0

2.2. The Vishnevskii Operators applied to vertical and horizontal lifts with respect to almost complex structure P
along o¢ (M,,).

Definition 2.2. Suppose now that V is a linear connection on M, and let ¢ € 3}(M,,). We can replace the
condition d) of defination 2.1 by

d) PoxY =VyxV — pVxY (2.2)

for any X,Y € S{(M,,). Then we can consider a new operator by a Vishnevskii operator or ,—operator on
M,,, we shall mean a map ., : %(Mn) — S(M,,), which satisfies conditions a), b), ¢), e) of definition 2.1 and the
condition (d') [2, 3, 8, 9].

Let w € $Y(M,,). Using Definition 2.2, we have

(Ypw) (X,Y) = (Ypxw)Y (2.3)
(PX)(tyw) = X (tpyw) —w (VexY — ¢ (VxY))
(Voxw —Vx (woy))Y

for any X,Y € S}(M,),where (wop)Y =w(pY). From (2.3) we see that ,xw = V,xw—Vx (woyp) is a
1—form [9].

Theorem 2.2. For the horizontal lift V¥ of the Levi-Civita connection ¥V in M,, to TP (M), o € S (TP (My,)) the
diagonal lift of ¢ € 3 (M,,) to T? (M,,) along o¢ (M,,) defined by (1.9) is an almost complex structure in TV (My), Y,,p
the Vishnevskii operator or 1, —operator on M,,, we get the following formulas

14
Z) ¢LpDVHAV = (¢£(V)) ’
.. H
ZZ) ¢¢DVH WH (¢w(v)W) 5
iii) Yo av BY = 0,
Z"U) (prDAVBV = 0

)

where R is the curvature tensor of V, A, B € S (M,,),V,W € S§ (M,,) and ¢ € 37 (M,,).
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Proof. 1)
Yooy AY = Vipyu A = PV AT,

LAY =P (Vv a)

V
v

= (Vo) +(p(Vva)",
(VoA —o VVA))

sa(V))

ooy WH = VW — P (VW)
= Vi s WH — P (v W)

i)

= (VeryW)" = (p(vvw)",
= (Vo)W — o (VyW))",
= @eany)".
iii)
YooavBY = VI, v BY — "V, BY,
- *V(Ii(AwBV’
0.

)

ViV =PV v,
== VH )VV
0.

Yoo avVH

O

Theorem 2.3. If V' is an holomorphic vector field with respect to almost complex structure ¢ , the curvature tensor R of
V satisfies R (V, o (W)) = @R (V,W) for any V,W € S§ (M,,) and Vi = 0, then its horizontal lift X" to the TP (M)

is an almost holomorﬁc vector field with respect to the almost complex structure P € S (TP (My,)) the diagonal lift of
@ € St (M,,) to TP (M,,) along o¢ (M,) .

Proof. i)
(LyupP)WH = LyupPWH" — P LynWH
= Lyn (W) =P (V)" + G =) RV,W))
= VoW +F =RV, (W) - [V,
P (A=) R(V,W))
= (Lve (W) = (eLyW) + (F = 7) R(V, 0 (W)
(Y =) eR(V,W)
= (Lve) W)+ (F =) (R(V.p (W) — oR (V,W))
i)
(LVH<pD) AV = LVH(pDAV — (pDLVHAV
—Lyu (p(A)" — P (VyA)Y
— (Vv (A)Y + (pVv4)Y
= - ((Vv%’) A)V
O
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