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Perturbatıon Solution for a Cracked Euler-Bernoulli Beam  
 

Lütfi Emir SAKMAN*1  

 
 

Abstract 

 

The natural frequencies and mode shapes of an Euler-Bernoulli beam with a rectangular cross- 

section, which has a surface crack, is investigated. The crack is modeled as a change (sudden or 

gradual) in the cross-section of the beam, and a modified perturbation approach is used assuming 

that the crack geometry is much smaller than the beam cross section.  Computations of natural 

frequencies and mode shapes were carried out for various crack shapes and compared with a range 

of experiments and finite element analyses. It is concluded that the suggested modified perturbation 

approach gives reliable results with minimal effort for eigenfrequencies of cracked beams. 

Furthermore, as a new feature, the present perturbation method includes the shape of the crack in 

eigenfrequency computations and in principle, can work for any type of disturbance on the surface 

including a small bump for example. 
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1. INTRODUCTION 
 

Identification and characterization of cracks in 

engineering structures is an important problem 

from both theoretical and technical point of 

view. One type of problem deals with 

determination of vibration characteristics of the 

structure with a crack. Another problem might 

be the characterization of the crack from 

measured vibration characteristics of the 

structure; this is usually called an inverse 

problem. The practical solution of the inverse 

problem normally involves solving the forward 

problem for a wide range of crack types.  

Therefore, the ability to solve the vibration 
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characteristics of a cracked structure is an 

important step in diagnosing structures by 

means of eigenfrequency measurements. 

 

Most studies dealing with cracked structures 

models the crack as a change in the elastic 

characteristics of the structure, and utilize some 

type of numerical method. The present study 

aims to model the detailed geometry of the 

crack therefore shedding light on the solution of 

the inverse problem. Furthermore, the 

perturbation theory approach will be used 

making the solution analytical. However, since 

the Euler-Bernoulli beam theory depends little 

on the actual shape of the cross-section (i.e., it 
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only comes into consideration in the form of 

cross-sectional second area moment), the 

straightforward perturbation theory does not 

yield satisfactory results. In the present study, a 

scale factor depending on computed base and 

perturbation eigenvalues is introduced in front 

of the perturbed solution. The reasoning for 

such an approach will be discussed in the next 

section, nevertheless this method gave good 

agreement with a wide range of experiments. 

 

One of the earlier studies, Adams et al., 

demonstrated a vibration method for non-

destructive testing of structures [1]. Rubio 

treats the crack by means of a torsional spring 

and solves the inverse problem [2] while 

Morassi treats the crack as a point discontinuity 

and derives general results about the sensitivity 

of eigenfrequencies [3]. Shen and Pier studied 

the convergence of Galerkin approach for 

beams with symmetric cracks [4]. 

Papaeconomou and Dimarogonas describe a 

transfer matrix model for a cracked prismatic 

bar [5]. Chondros and Dimarogonas used a 

variational formulation to analyze lumped and 

continuous cracks [6].  Khiem and Toan used a 

modification of the Rayleigh quotient method 

for detection of an unknown number of multiple 

cracks on beams [7]. Saez et al. performed 

damage detection by solving the inverse 

problem [8]. Chaudhari and Maiti used a 

rotational spring to represent the crack and 

worked on solving the inverse problem based 

on the measurement of natural frequencies [9]. 

He and Lin use an acoustic system for contact-

type cracks [10]. Nejad et al. worked on 

analytical estimation of natural frequencies and 

mode shapes of a beam having two cracks [11]. 

Mazanoglu et al. modified the energy-based 

method [12] presented by Yang et al to solve 

the vibration of non-uniform Euler–Bernoulli 

beams with multiple cracks by defining the 

crack as a spring [13]. Open edge cracks were 

investigated by Aydin again modeling the crack 

as a spring [14]. Caddemi and Morassi 

proposed a justification of the rotational elastic 

spring model of an open crack in a beam [15]. 

Finite element method is very popular for 

investigation of free vibration analysis of 

cracked beams [16-19]. Cracks in reinforced 

concrete structures is another popular research 

topic using Euler-Bernoulli Beam theory [20, 

21]. Timoshenko Beam model was also used 

[22, 23].  Beams with cracks on elastic 

foundations were considered by Hasan [24]. 

Gudmundson gives general results using more 

general elasticity approaches and derives 

frequency in terms of strain energies of cracked 

and uncracked structures [25]. 

 

hen and Pier assumes a stress distribution 

around the crack and derives equations of 

motion in a detailed study [26]. Cooley et al. 

again models the crack as a torsional spring 

with an extra factor in the spring constant 

derived from linear fracture mechanics [27]. 

Chu and Shen uses a piece-wise linear spring 

model [28]. A study on cracked thin-walled 

beam under torsion is Dang et al. using stress 

concentration factor; this can be easily 

extended to eigenfrequency analysis [29]. 
 

The studies mentioned above mostly do not 

consider the shape of the crack, but model it as 

a spring or a change in the local elastic 

properties. In this study the crack is expressed 

as a change in the beam cross-section as 

explained in Section 2. This allows the 

determination of vibration characteristics 

depending on the shape of the crack. For the 

present, our interest is the validation of the 

modified perturbation computations by a wide 

range of experiments. 
 

2. BASIC DEFINITIONS AND 

THEOREMS 

 

Considering an Euler-Bernoulli beam of length 

L and cross-sectional area A(x), the governing 

equation for the vibrations is 
 

−
𝜕2

𝜕𝑥2 (𝐸 𝐼(𝑥)
𝜕2𝑦

𝜕𝑥2) = 𝑚(𝑥)
𝜕2𝑦

𝜕𝑡2                             (1) 
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𝐴(𝑥) = 𝑏(𝑥) ℎ(𝑥)                                                    (2a) 

 
𝐼(𝑥) =

1

12
 𝑏(𝑥)ℎ(𝑥)3                                               (2b) 

 
𝑚(𝑥) = 𝜌 𝑏(𝑥) ℎ(𝑥)                                                (2c) 

 
where ρ is the density of the beam material. 

Both ends of the beam are assumed to be fixed 

for demonstrating the solution procedure, 

   

𝑦 =
𝜕𝑦

𝜕𝑥
= 0  at  𝑥 = 0, 𝐿                                             (3) 

 

But solutions for other boundary conditions 

will also be given including 

Fixed – fixed 

Free – free 

Simply supported – simply supported 

Cantilever 

 

The non-damaged beam has uniform cross 

section with constant width and height b_0 and 

h_0 respectively. The crack is modeled as a 

change in the beam cross-sectional dimensions 

in the form 

 

𝑏(𝑥) = 𝑏0 + 𝜀 𝑓(𝑥)                                                  (4a)  

 
ℎ(𝑥) = ℎ0 + 𝜀 𝑔(𝑥)                                                   (4b) 

 
where ε is a small non-dimensional perturbation 

parameter and the functions f(x) and g(x) 

determine the shape of the crack; these are 

completely general at this point. Substituting 

Eq. (4) into (2) and (1), the vibration equation 

becomes, ignoring higher order terms, 

 

−
𝜕2

𝜕𝑥2 (
𝐸

12
 (𝑏0ℎ0

3 + 𝜀 (3 𝑏0ℎ0
2 𝑔(𝑥) + ℎ0

3 𝑓(𝑥)) 
𝜕2𝑦

𝜕𝑥2) =

𝜌 (𝑏0ℎ0 + 𝜀 (𝑏0 𝑔(𝑥) + ℎ0 𝑓(𝑥)) 
𝜕2𝑦

𝜕𝑡2                         (5) 

 
The governing equation is nondimensionalized 

with the following definitions, starred symbols 

showing non-dimensional variables, 

 
𝑥∗ =

𝑥

𝐿
                                                                        (6a)   

 
𝑡∗ =

𝑡

√𝜌 
12 𝐿4

𝐸 ℎ0
2

                                                               (6b) 

 
𝑦∗ =

𝑦

ℎ0
                                                                      (6c) 

 

𝐺∗(𝑥∗) =
𝑔(𝑥)

ℎ0
                                                            (6d)  

 

𝐹∗(𝑥∗) =
𝑓(𝑥)

𝑏0
                                              (6e)  

 
The non-dimensional vibration equation 

becomes, omitting stars after this point,                                                                                                                                 

𝜕4𝑦

𝜕𝑥4 +
𝜕2𝑦

𝜕𝑡2 = −𝜀 [
𝜕2

𝜕𝑥2 ((3 𝐺(𝑥) + 𝐹(𝑥))
𝜕2𝑦

𝜕𝑥2) +

(𝐺(𝑥) + 𝐹(𝑥)) 
𝜕2𝑦

𝜕𝑡2]                                                   (7) 

and the boundary conditions 

 

𝑦 =
𝜕𝑦

𝜕𝑥
= 0   at   𝑥 = 0, 1                                           (8) 

 

Assuming a separated solution of the form 

 

𝑦(𝑥, 𝑡) = 𝑢(𝑥) 𝑝(𝑡)                                                    (9) 

 

leads to 

 

�̈� + 𝜆4𝑝 = 0                                                           (10a) 

 
𝑢′′′′ − 𝜆4 𝑢 + 𝜀 𝜓(𝑢, 𝜆) = 0                                  (10b) 

 

Prime and dot denote differentiation with 

respect to x and t, respectively, and we defined 

 

𝜓(𝑢, 𝜆) = ((3 𝐺(𝑥) + 𝐹(𝑥))𝑢′′)
′′

− 𝜆4 𝑢 (𝐺(𝑥) +

𝐹(𝑥))                                                                        (11) 

 

Solution of Eq. (10b) is assumed to be in the 

form of a perturbation series for both the mode 

shape and the eigenvalue 

 

𝑢(𝑥) = 𝑢0(𝑥) + 𝜀 𝑢1(𝑥) + ⋯                                (12a) 

 

𝜆 = 𝜆0 + 𝜀 𝜆1 + ⋯                                                    (12b) 
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Substituting, the zero and first order problems 

become 
 

𝑢0
′′′′ − 𝜆0

4𝑢0 = 0                                                     (13a) 

 

𝑢0(0) = 𝑢0
′ (0) = 𝑢0(1) = 𝑢0

′ (1) = 0                  (13b) 

 

and 

 

𝑢1
′′′′ − 𝜆0

4𝑢1 = 4 𝜆0
3𝜆1𝑢0 − 𝜓(𝑢0, 𝜆0)                    (14a) 

 

𝑢1(0) = 𝑢1
′ (0) = 𝑢1(1) = 𝑢1

′ (1) = 0                   (14b) 

 

The solution of the zeroth order problem is 

 

cosh 𝜆0
(𝑛)

cos 𝜆0
(𝑛)

= 1 ,  𝑛 = 1,2,3, …                    (15a) 

 

𝑢0
(𝑛)

=
cos 𝜆0

(𝑛)
−cosh 𝜆0

(𝑛)

sin 𝜆0
(𝑛)

−sinh 𝜆0
(𝑛) (cos 𝜆0

(𝑛)
𝑥 − cosh 𝜆0

(𝑛)
𝑥) +

sin 𝜆0
(𝑛)

𝑥 − sinh 𝜆0
(𝑛)

𝑥                                            (15b) 

 

The solution of the first order problem, (14a) 

can be written by variation of constants as 
 

𝑢1 = 𝐶1(𝑥) 𝑒𝜆0𝑥 + 𝐶2(𝑥) 𝑒−𝜆0𝑥 + 𝐶3(𝑥) cos 𝜆0𝑥 +

𝐶4(𝑥) sin 𝜆0𝑥                                                           (16) 
 

Where 

𝐶1
′(𝑥) =

𝑒−𝜆0𝑥 [4 𝜆0
3𝜆1𝑢0−𝜓(𝑢0,𝜆0)]

4𝜆0
3                                 (17a)  

 

𝐶2
′(𝑥) = −

𝑒𝜆0𝑥 [4 𝜆0
3𝜆1𝑢0−𝜓(𝑢0,𝜆0)]

4𝜆0
3                             (17b) 

 

𝐶3
′(𝑥) =

sin 𝜆0𝑥 [4 𝜆0
3𝜆1𝑢0−𝜓(𝑢0,𝜆0)]

2𝜆0
3                           (17c) 

 

𝐶4
′(𝑥) = −

cos 𝜆0𝑥 [4 𝜆0
3𝜆1𝑢0−𝜓(𝑢0,𝜆0)]

2𝜆0
3                         (17d) 

 

Integrating Eqs. (17) and substituting in (16) 

gives the general solution in the form 
 

𝑢1 = 𝐾1 𝑒𝜆0𝑥 + 𝐾2 𝑒−𝜆0𝑥 + 𝐾3  cos 𝜆0𝑥 + 𝐾4  sin 𝜆0𝑥 +

∫ [sinh 𝜆0(𝑥 − 𝜉) − sin 𝜆0(𝑥 − 𝜉)]𝜑(𝜉)𝑑𝜉
𝑥

0
            (18) 

 

where we defined 
 

𝜑(𝑥) =
4 𝜆0

3𝜆1𝑢0−𝜓(𝑢0,𝜆0)

2𝜆0
3                                            (19) 

 

for brevity. K’s are arbitrary constants found by 

applying the boundary conditions Eq. (14b); the 

result is the system of equations 
 

𝐾1 + 𝐾2 + 𝐾3 = 0                                                  (20a) 

 
𝐾1 − 𝐾2 − 𝐾4 = 0                                                  (20b) 

 
𝐾1𝑒𝜆0 + 𝐾2𝑒−𝜆0 + 𝐾3 cos 𝜆0 + 𝐾4 sin 𝜆0 = 𝐴       (20c) 

 
𝐾1𝑒𝜆0 − 𝐾2𝑒−𝜆0 − 𝐾3 sin 𝜆0 + 𝐾4 cos 𝜆0 = 𝐵      (20d) 

 
where 
 

𝐴 = − ∫ [sinh 𝜆0(1 − 𝜉) − sin 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
      (21a) 

 

𝐵 = − ∫ [cosh 𝜆0(1 − 𝜉) − cos 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
    (21b)  

 
The homogeneous part of the linear system Eqs. 

(20) is the same as the eigenvalue equation for 

the zeroth order problem. Therefore, for the 

system Eqs. (20) to have a solution, the 

consistency condition. 

 
(𝑒𝜆0 + sin 𝜆0 − cos 𝜆0)𝐴 =      (𝑒𝜆0 − sin 𝜆0 −

cos 𝜆0)𝐵                                                                    (22)             

                                                                                   

should be satisfied. Eq. (22) is the eigenvalue 

equation for λ1 (which is inside, Eq. (19), 

through A and B).  Once  λ1 is solved, the 

constants are found from Eqs. (20). 

 

The eigenfrequencies of the cracked beam is 

computed from Eq. (12b), 

 

𝜆 = 𝜆0 + 𝜀 𝜆1 + ⋯                                                 (23a)    
 
When computations were carried out, the 

change in eigenfrequency between cracked and 

uncracked beams, i.e., ε λ_1, was found to be 

consistently too small compared to 

experimental values. This is to be expected 

since beam theory basically averages the 

elasticity problem over the cross-section of the 

beam and the details of the cross section does 
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not matter as long as second area moment 

remains the same. However, there was a 

structure to the difference in frequency between 

computed and experimental and/or finite 

element values which suggested that the change 

could be fixed once and for all cracked beams 

by introducing a factor in the perturbation term.   

 

To this end, it is proposed that the perturbation 

in the eigenvalue is to be enlarged by a factor 

depending on base and perturbed eigenvalues in 

the form 

 

𝐶 (
𝜆0

 𝜆1

)
𝑝

 

 

i.e. instead of Eq. (23a) we assume 

𝜆 = 𝜆0 + 𝜀  𝐶 (
𝜆0

 𝜆1
)

𝑝

 𝜆1 + ⋯                                   (23b) 

 
where C and p are constants to be determined 

by matching (23b) to two experimental 

measurements. Afterwards, if the method is 

successful, Eq.(23b) should give good results 

for other experiments. 

 

The logic of this procedure might be 

questioned; however, it should be noted that 

virtually all studies on cracked beams still use 

beam theory away from the crack, and model 

the crack by modifying the cracked element 

either as a different spring constant or some 

factor depending on well-known fracture theory 

concepts as alluded to in the introduction. This 

can be considered as an application of the Saint 

Venant principle that the local changes in 

geometry should not affect the global results 

too much. Therefore, what is done here should 

be seen in the same light, i.e., it lacks 

mathematical rigor since beam theory cannot 

really treat cracks; nevertheless, its value 

should be evaluated by its possible success.  

Another advantage of the present method is that 

it naturally involves the shape of the crack in 

the computations. 

 

As will be seen in the next section, the proposed 

method indeed gives good results compared to 

roughly about 100 experiments (counting 

higher modes, other boundary conditions and 

other material constant) once the constants in 

Eq. (23b) are fixed by comparing to only two 

experimental results. These were chosen since 

they gave the closest results to the 

straightforward perturbation expansion before 

introducing the factor in Eq. (23b). The result is 

 

𝜆 = 𝜆0 + 𝜀  √
2 𝜆0

 𝜆1
 𝜆1 + ⋯                                      (23c) 

 

The solution procedure is the same for the other 

types of boundary conditions. We present the 

results. 
 

Free – Free: 

 

𝐴 = − ∫ [sinh 𝜆0(1 − 𝜉) + sin 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
      (24a)  

 

𝐵 = − ∫ [cosh 𝜆0(1 − 𝜉) + cos 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
    (24b)  

  
(𝑒𝜆0 + sin 𝜆0 − cos 𝜆0)𝐴 = (𝑒𝜆0 − sin 𝜆0 − cos 𝜆0)𝐵    (25)  
 

Cantilever: 

  

𝐴 = − ∫ [sinh 𝜆0(1 − 𝜉) + sin 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
     (26a)  

 

𝐵 = − ∫ [cosh 𝜆0(1 − 𝜉) + cos 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
    (26b) 

 

(𝑒𝜆0 + sin 𝜆0 − cos 𝜆0)𝐴 = (𝑒𝜆0 + sin 𝜆0 + cos 𝜆0)𝐵    (27)  

 
Simply supported – Simply supported: 

 

𝐴 = − ∫ [sinh 𝜆0(1 − 𝜉) − sin 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
      (28a) 

 

𝐵 = − ∫ [cosh 𝜆0(1 − 𝜉) + cos 𝜆0(1 − 𝜉)]𝜑(𝜉) 𝑑𝜉
1

0
     (28b) 

 

(𝑒𝜆0 + sin 𝜆0 − cos 𝜆0)𝐴 = (𝑒𝜆0 − sin 𝜆0 − cos 𝜆0)𝐵    (29) 
 

3. RESULTS 

 

The eigenfrequencies for cantilever, fixed – 

fixed, free – free, and simply supported – 
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simply supported boundary conditions will be 

presented and compared with computed or 

measured values in Ref. [30-36].  

 

Cantilever beam: 

Tables 1 – 3 shows comparisons with Refs. [30-

32] 

 

The comparisons are shown in Tables 1 through 

7; analytic column denotes the results found in 

the present study. All the dimensions in the 

tables are millimeters. 

 

In this case, analytic solution gives good results 

for different crack depths and positions, 

compared to the experimental results.  
 

Table 2 Comparison with experiment (Ref. [31]) 

for cantilever boundary conditions. 
 

Crack Method Natural Frequencies (Hz) 

Location 

(mm) 

Depth 

(mm) 

 Mode 

1 

Mode 2 Mode 3 

No Crack  68.00 432.75 1195.00 

133 

1 Exp 68.00 432.50 1193.50 

 Anal 67.68 425.54 1188.33 

2 Exp 67.75 431.50 1190.00 

 Anal 67.27 424.37 1181.86 

3 Exp 67.50 430.50 1185.50 

 Anal 66.87 423.21 1175.41 

4 Exp 67.25 429.00 1169.50 

 Anal 66.47 422.05 1168.98 

5 Exp 66.00 427.25 1156.25 

 Anal 66.07 420.88 1162.57 

No Crack  67.25 427.25 1184.00 

240 

1 Exp 67.25 426.50 1183.00 

 Anal 67.98 423.91 1188.88 

2 Exp 67.25 424.50 1180.00 

 Anal 67.88 421.13 1182.96 

3 Exp 67.25 422.00 1175.25 

 Anal 67.78 418.35 1177.06 

4 Exp 67.25 418.25 1169.25 

 Anal 67.68 415.59 1171.17 

5 Exp 67.00 411.25 1161.00 

 Anal 67.58 412.83 1165.30 

 

Table 2 and Table 3 presents comparisons of 

experimental and analytic results for different 

crack depths and locations. Again, analytic 

results are close to experimental results.   

 

 

 

 

 

 

 

 

 

 

Table 1 Comparison with experiment (Ref. [30]) 

for cantilever boundary conditions. 

 

Crack (mm) Method Natural Frequency 

Pos Depth  Mode 

1 

Mode  

2 

Mode 

3 

10 

2 

Experiment 182.7 1149.4 3242.9 

F.E.M 182.7 1149.2 3234.1 

Lee and Chung 182.6 1148.0 3222.1 

Analytic 182.3 1144.8 3210.9 

6 

Experiment 163.9 1073.4 3097.3 

F.E.M 166.9 1083.9 3108.0 
Lee and Chung 161.9 1048.7 3010.3 

Analytic 176.9 1114.9 3138.1 

10 

Experiment 129.8 980.6 2954.2 

F.E.M 136.9 996.1 3970.8 
Lee and Chung 109.0 814.5 3533.9 

Analytic 171.6 1085.5 3066.2 

80 

2 

Experiment 184.0 1160.0 3245.0 

F.E.M 184.0 1159.8 3244.9 

Lee and Chung 184 1159.2 3229.7 
Analytic 183.2 1156.7 3225.3 

6 

Experiment 174.7 1155.3 3134.8 

F.E.M 181.8 1102.9 3250.7 

Lee and Chung 175.2 1153.9 3082.5 
Analytic 179.6 1150.6 3180.9 

10 

Experiment 153.5 1145.1 2934.3 

F.E.M 158.4 1147.6 2974.5 

Lee and Chung 156.0 1143.3 2764.7 

Analytic 176.1 1144.4 3136.8 

140 

2 

Experiment 184.7 1153.1 3258.1 

F.E.M 184.7 1153.2 3257.2 

Lee and Chung 184.7 1151.9 3246.4 

Analytic 184.1 1150.0 3242.3 

6 

Experiment 181.2 1092.9 3250.1 

F.E.M 181.8 1102.9 3250.7 

Lee and Chung 181.6 1086.3 3236.6 

Analytic 182.1 1130.3 3231.4 

10 

Experiment 171.5 971.5 3233.6 
F.E.M 174.0 997.7 3238.0 

Lee and Chung 175.3 941.3 3216.8 

Analytic 180.2 1110.9 3220.5 

200 

2 

Experiment 185.0 1155.0 3238.6 
F.E.M 185.0 1155.0 3238.4 

Lee and Chung 185.0 1154.1 3223.2 

Analytic 184.3 1150.2 3216.6 

6 

Experiment 184.3 1106.3 3082.9 

F.E.M 184.4 1114.8 3107.3 
Lee and Chung 184.4 1106.5 3020.5 

Analytic 182.7 1131.1 3154.9 

10 

Experiment 182.2 1025.0 2819.6 

F.E.M 182.7 1016.5 2871.0 
Lee and Chung 183.2 1004.8 2567.6 

Analytic 181.2 1112.1 3093.8 
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Table 3 Comparison with experiment (Ref. [32]) 

for cantilever boundary conditions. 
 

Normalized 
crack 

location 

Crack 
Depth 

Ratio 

Method 

Natural 

Frequency 

Mode 1 
(Hz) 

Natural 

Frequency 

Mode 2 
(Hz) 

No Crack No Crack Exp 13.45 84.30 

0.1 0.5 Exp 12.80 82.89 

  Analytic 12.82 82.57 

0.2 0.5 Exp 13.02 84.30 

  Analytic 12.96 84.95 

0.3 0.5 Exp 13.15 83.30 

  Analytic 13.10 85.40 

0.4 0.5 Exp 13.28 82.87 

  Analytic 13.26 83.11 

.5 0.5 Exp 13.37 81.82 

  Analytic 13.43 82.17 

0.6 0.5 Exp 13.40 81.93 

  Analytic 13.58 82.10 

0.7 0.5 Exp 13.43 82.50 

  Analytic 13.39 82.75 

 

Both ends fixed: 

 

Tables 4 and 5 presents comparisons with Refs. 

[33, 34]. In this tables, results shows that, 

analytic solutions are suitable for different 

boundary conditions. Here, analytic solution 

have effective results against FEM results.  

 
Table 4 Comparison with experiment (Ref. 

[33]) for both ends fixed boundary conditions. 
 

Crack (mm) Method Natural Frequency 

Position Depth  Mode 1 Mode 2 Mode3 

255 3 

Exp 83.984 235.792 462.712 

F.E.M 74.710 223.760 426.146 

Analytic 84.897 234.894 456.869 

 

 

Both ends free: 
 

 

Table 6 presents comparisons with Ref [35]. 

Analytic solution compares with different 

solution procedures and experimental results.  

 

Table 7 presents comparisons with Ref [36]. 

Also to fix the constants in Eq. (23b), two cases 

from Ref. [36], crack position 200 mm, and 

Table 5 Comparison with experiment (Ref. [34]) 

for both ends fixed boundary conditions. 

Crack 

Loc. 
(mm) 

Crack 
Depth 

Ratio 

(%) 

Method Mode 1 Mode 2 Mode 3 

45 10 

No Crack 431.7 1190.0 2333.0 

Exp 431.4 1189.9 2331.6 

Analytic 429.2 1184.7 2316.6 

 Mode 4 Mode 5 Mode 6 

Exp 3856.0 5761.0 8046.0 

Analytic 3855.2 5759.1 8041.7 

Table 6 Comparison with experiment (Ref. [35]) 

for both ends free boundary conditions. 
 

Crack (mm) Method Natural Frequency 

Pos Depth  Mode1 Mode 2 Mode3 Mode4 

430 4 

Exp 74.688 205.625 405.62 666.250 

Reduced 

EI 
74.670 205.190 405.64 669.335 

Lee and 

Chung 
74.938 206.262 405.97 670.550 

Sinha et 
al. 

74.406 204.183 405.36 668.429 

Analytic 74.136 204.043 403.88 665.973 

430 8 

Exp 74.063 202.500 404.68 662.813 

Reduced 
EI 

74.004 202.630 404.90 666.527 

Lee and 

Chung 
74.224 203.458 405.23 667.615 

Sinha et 

al. 
73.628 201.283 404.55 665.356 

Analytic 73.108 200.899 401.56 660.479 

430 12 

Exp 72.813 197.188 403.12 655.938 

Reduced 

EI 
72.284 198.278 403.67 661.720 

Lee and 
Chung 

72.634 197.764 403.77 661.635 

Sinha et 

al. 
72.958 198.928 403.91 662.874 

Analytic 72.088 197.780 399.25 650.123 
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depths of cracks 1 and 3 mm in Table 7, were 

chosen to be matched to the computed 

eigenfrequencies. 

 

In all cases the perturbation solution (the 

present study) obtains good results compared 

with experiment, in some cases even surpassing 

the FEM computations (Ref. [30], [33]). It is 

also interesting to note that the perturbation 

solution seems to remain valid for quite deep 

cracks. 

 

Both ends simply supported: 

 
Table 7 Comparison with experiment (Ref. [36]) 

for both ends simply supported boundary 

conditions. 
                                        

Crack (mm) Method Natural Frequency 

Position Depth  Mode 1 Mode 2 

80 

1 

Experiment 151.20 599.80 

Yoon et al. 150.48 601.18 

Analytic 149.80 597.26 

3 

Experiment 151.00 588.20 

Yoon et al. 149.61 590.21 

Analytic 148.22 587.10 

5 

Experiment 147.80 568.50 

Yoon et al. 145.95 556.08 

Analytic 146.66 577.02 

120 

1 

Experiment 150.50 604.20 

Yoon et al. 150.38 601.16 

Analytic 149.50 597.26 

3 

Experiment 149.80 594.20 

Yoon et al. 148.75 588.50 

Analytic 147.34 587.10 

5 

Experiment 143.80 564.50 

Yoon et al. 142.16 543.42 

Analytic 145.19 577.02 

200 

1 

Experiment 149.20 599.80 

Yoon et al. 150.27 602.37 

Analytic 149.25 602.36 

3 

Experiment 146.80 597.80 

Yoon et al. 147.81 602.37 

Analytic 146.58 602.34 

5 

Experiment 139.20 593.00 

Yoon et al. 138.32 602.37 

Analytic 143.93 602.32 

 

Normally, the perturbation solution is expected 

to be more accurate for very small crack depths 

compared to beam cross-section; but as 

mentioned, after “fixing” the theoretical results 

by the factor introduced in Eq. (23c), good 

agreement with the experimental values is 

obtained for crack depths from very small 

cracks up to cracks with a depth of half of the 

beam height. Another point to note is, the 

cracks in experiments were produced by cutting 

the beam to a certain depth, thus resulting in a 

crack of rectangular shape. The depth and width 

of these rectangles were input in to the function 

g(x), Eq.(4b). The present method should be 

able to handle other crack shapes, e.g., 

triangular, circular, etc., bymodifying the 

function g(x). But no such experiments were 

available for us to compare. 
 

4. CONCLUSION 

 

A modified perturbation solution was presented 

to compute the mode shapes and eigenvalues of 

cracked Euler-Bernoulli beams. The method is 

general enough and allows computation of 

mode shapes and eigenvalues for specific crack 

geometries.  In conclusion, the idea that the 

results of perturbation computations in the 

nondimensionalised (thus, universal), cracked 

beam vibration equation can be modified to 

agree with a wide set of experimental results 

has been verified [10] 

Nomenclature 

 

 A (x) area of cross section 

 b (x), h (x) width and height of beam cross 

section 

 b0, h0 width and height of non-cracked 

beam cross section 

 I (x) second area moment 

 m (x) mass per unit lenght 

 E modulus of elasticity 

 ρ density 

 L length of the beam 

 ε perturbation parameter 

 f (x), g (x) crack shape functions 

 y (x, t) vertical displacement 

 u (x) mode shape 

 p (t) separated time function 

 λ eigenvalue 
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 [  ]* 

 C, p 

non-dimensional [  ] 

Parameters in modification factor 
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