

Konuralp Journal of Mathematics

Research Paper Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

On *p*,*q*-Harmonic Numbers

 ${\bf S}$ erpil Halıcı 1 and Zehra Betül Gür 1*

¹Department of Mathematics, Faculty of Science, Pamkkale University, Dënizli, Turkey **Corresponding author*

Abstract

In this study, we examined a new generalization of well-known number sequence which is called harmonic numbers. We defined p,q-harmonic numbers which is also a generalization of q-harmonic numbers and deduced some properties and identities related to this number sequence by using some combinatorial operations.

Keywords: q-calculus;p,q-analogue;harmonic numbers;q-harmonic numbers 2010 Mathematics Subject Classification: 05A30;05A19;11B75

1. Introduction

Quantum calculus or *q*-calculus plays an important role in combintorics, number theory and physics. Its analysis and some applications can be found in [1,2]. There are q-analogs of the factorial, binomial coefficient, derivative, integral, Fibonacci numbers, and so on. In [13], *q*-analog of an integer n is given by

$$
[n]_q := \frac{1 - q^n}{1 - q} = 1 + q + q^n + q^2 + \dots q^{n-1},\tag{1.1}
$$

with $0 < q < 1$. It is also denoted by [n]. From this definition, we can write q-analogue of n by finite sunmmation as follows ;

$$
[n]_q = \sum_{k=0}^{n-1} q^k.
$$
\n(1.2)

q-Analogs are based on the fact that

lim *q*→1 − $1-q^n$ $\frac{q}{1-q} = n.$

As usual binomial coefficient, q-Binomial coefficient is defined by

$$
\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!},
$$

where

$$
[n]_q! = [n]_q [n-1]_q [n-2]_q ... [1]_q
$$

the q-factorial. Its triangular recurrence relation is given as follows:

$$
\binom{n}{k}_q=\binom{n-1}{k-1}_q+q^k\binom{n-1}{k}_q.
$$

From this relation, we obtain the the recursive formula of usual binomial coefficient as $q \to 1^-$. Also we have the following horizontal and vertical recurrence relations for *q*-binomial coefficcients respectively,

$$
\binom{n+1}{k+1}_q = \sum_{j=k}^n q^{j-k} \binom{j}{k}_q
$$

Email addresses: shalici@pau.edu.tr (Serpil Halıcı), gurbetul35@gmail.com (Zehra Betül Gür)

and

$$
\binom{n}{k}_q = \sum_{j=0}^{n-k} (-1)^j q^{jk + \binom{j+1}{2}} \binom{n+1}{k+j+1}_q.
$$

Furthermore, as $q \rightarrow 1$, the first relation is reduced to Chu Shih Chieh's identity which is given by

$$
\binom{n}{k} = \binom{n+1}{k+1} - \binom{n+1}{k+2} + \ldots + (-1)^{n-k} \binom{n+1}{n+1}.
$$

q-Pochhammer symbol or q-shifted factorial which is known as the q-analogue of falling factorial is defined by

$$
(a;q)_n = ([a]_q)_n = \prod_{k=0}^{n-1} (1 - aq^k),
$$

with $([a]_q)_0 = 1$.

Post-Quantum calculus or *p*,*q*-calculus is constructed by expanding q-analog into two components *p* and *q* as a generalization of *q*-calculus and its applications and interesting properties can be found in [4,8,9]. *p*,*q*-analogue of a nonnegative integer n is defined by

$$
[n]_{p,q} := \frac{p^n - q^n}{p - q} = \sum_{k=0}^{n-1} p^{n-k-1} q^k,
$$
\n(1.3)

where $0 < q < p \leq 1$. By this definition the symmetry property, that is,

 $[n]_{p,q} = [n]_{q,p}$

can be seen. One can reduce p , q -number to q -number by taking $p = 1$ in (1.3). As for q -binomial coefficient, the p , q -factorial and *p*,*q*-binomial coefficient are determined and defined by

$$
[n]_{p,q}! = [n]_{p,q}[n-1]_{p,q}[n-2]_{p,q}...[1]_{p,q}
$$

and

$$
\binom{n}{k}_{p,q} = \frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!},
$$

respectively. p, q -Binomial coefficients and p,q-derivatives are studied by R. Corcino in [11]. Author gave the triangular recurrence relations

$$
{\binom{n+1}{k}}_{p,q} = p^k {\binom{n}{k}}_{p,q} + q^{n-k+1} {\binom{n}{k-1}}_{p,q}
$$

and

$$
{\binom{n+1}{k}}_{p,q} = q^k {\binom{n}{k}}_{p,q} + p^{n-k+1} {\binom{n}{k-1}}_{p,q},
$$

with $\binom{0}{0}_{p,q} = \binom{n}{n}_{p,q} = 1 = 1$ and $\binom{n}{k}_{p,q} = 0$ if $k > n$. Taking $p = 1$, it can be seen that the first relation is reduced to triangular recurrence relation of *q*-binomial coefficient which is mentioned above. The first values of $\binom{n}{k}_{p,q}$ are given in the following table.

For $m = 1, 2, ..., p, q$ -shifted factorial is given by

$$
([a]_{p,q})_n = [a]_{p,q}[a+1]_{p,q}...(a+n-1]_{p,q},
$$

with $([a]_{p,q})_0 = 1$. Also p, q-analogue of the exponential operator exists in the form

$$
exp_{p,q}(z) = \sum_{m=0}^{\infty} \frac{z^m}{[m]_{p,q}!},
$$

for all *z* (see [6]). In literature, *p*,*q*-derivative and *p*,*q*-hypergeometric funcitons are studied and some interesting properties are deduced in [12,14]. For example, Sahai et al. examined the generalized p , q -hypergeometric series which is given by

$$
r\psi_s(a_1,...,a_r;b_1,...,b_s;p,q;z) = \sum_{m=0}^{\infty} \frac{([a_1]_{p,q})_{m}...([a_r]_{p,q})_m}{([b_1]_{p,q})_{m}...([b_s]_{p,q})_m} \left[\frac{(-1)^mq^{-\frac{1}{2}}\binom{m}{2}}{(p^{\frac{1}{2}}-q^{-\frac{1}{2}})^m} \right]^{1+s-r} \frac{z^m}{[m]_{p,q}!},
$$

where $([a]_{p,q})_m$ is the *p*,*q*-shifted factorial, $p > 0, q > 0$ and $pq < 1$.

Harmonic numbers have been studied for many years and are also called harmonic series which is related to the Riemann Zeta function. n-th harmonic number and alternatig harmonic number are defined by the finite summation as

$$
H_n = \sum_{k=1}^n \frac{1}{k}, \qquad I_n = \sum_{k=1}^n \frac{(-1)^k}{k},
$$

respectively with $H_0 = I_0 = 0$. The generating function of harmonic numbers is given by

$$
\sum_{k\geq 0} H_k z^k = -\frac{\log(1-z)}{1-z}
$$

and a more general form of the generating function is also given by

$$
\sum_{k \ge m} (H_k - H_m) {k \choose m} z^{k-m} = -\frac{\log(1-z)}{(1-z)^{m+1}},
$$

for a natural number *m*. Important identities involving harmonic numbers can be seen in [7,15]. For $r \ge 1$, hyperharmonic number of order *r* is defined by

$$
H_n^{(r)} = \sum_{k=1}^n \frac{1}{k^s}
$$

and satisfy the reccurence relation

$$
H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)},
$$

where $H_0^{(r)} = \frac{1}{n}$ and $H_n^{(0)} = 0$ if $n \le 0$ and $r < 0$. It can be observed that $H_n^{(1)} = H_n$. Some special identities and properties for harmonic numbers are given by Anthony Sofo in [3].

q-Harmonic numbers and alternating q-harmonic numbers are given by

$$
H_n(q) = \sum_{k=1}^n \frac{1}{[k]_q}, \quad \tilde{H}_n(q) = \sum_{k=1}^n \frac{q^k}{[k]_q}
$$
\n(1.4)

and

$$
I_n(q) = \sum_{k=1}^n \frac{(-1)^k}{[k]_q},
$$

respectively. The first values of *q*-harmonic numbers are

$$
H_0(q) = 0, \t H_1(q) = 1, \t H_2(q) = \frac{q+2}{q+1}, \t H_3(q) = \frac{4q+3q^2+q^3+3}{2q+2q^2+q^3+1}, \dots
$$

$$
\tilde{H}_0(q) = 0, \t \tilde{H}_1(q) = q, \t \tilde{H}_2(q) = q\frac{2q+1}{q+1}, \t \tilde{H}_3(q) = \frac{3q+4q^2+3q^3+1}{2q+2q^2+q^3+1}, \dots
$$

and

$$
I_0(q) = 0,
$$
 $I_1(q) = -1,$ $I_2(q) = -\frac{q}{q+1},$ $I_3(q) = -\frac{2q+q^2+q^3+1}{2q+2q^2+q^3+1},...$

Some important identities and properties are given by Kızılateş and Tuglu in [5]. For example, for $n \geq 1$

$$
\sum_{k=1}^{n-1} q^k [k]_q \tilde{H}_k(q) = \frac{[n]_q^2}{[2]_q} \left(q \tilde{H}_k(q) - \frac{q^3}{[2]_q} \right).
$$

In [10], Ömür et al. gave the following equations;

$$
\sum_{k=1}^{n} q^{-k} \tilde{H}_k(q) = \frac{q}{q-1} \left(H_n(q) - q^{-n-1} \tilde{H}_n(q) \right),\tag{1.5}
$$

$$
\sum_{k=1}^{n} q^{-2k} \tilde{H}_k(q) = \frac{q^2}{q+1} \left(q^{-2n-2} [2n+2]_q \tilde{H}_n(q) - q^{-n} [n]_q - n \right).
$$
\n(1.6)

Authors also investigated the congruences of *q*-harmonic numbers. For example, for a prime number p they give the following congruence:

$$
\sum_{k=d+1}^{p-1} (-q)^k \tilde{H}_{p-k-1}(q) \equiv \frac{1}{[2]_q} \left((-q)^{d+1} H_d(q) - 2Q_p(2,q) - I_d(q) - \frac{1-q}{2} (p - (-1)^d + (p-1)(-q)^{d+1}) \right) \left(\text{mod}[p]_q \right). \tag{1.7}
$$

2. Some Identities Involving *p*,*q*-Harmonic Numbers

In this section, firstly we define the *p*,*q*-harmonic numbers and investigate their some properties.

Definition 2.1. *For* $p \neq q$ *, p, q-harmonic numbers and alternating p, q-harmonic numbers are defined by*

$$
H_n(p,q) = \sum_{k=1}^n \frac{1}{[k]_{p,q}}, \quad \tilde{H}_n(p,q) = \sum_{k=1}^n \frac{p^k}{[k]_{p,q}}, \quad \tilde{H}_n(q,p) = \sum_{k=1}^n \frac{q^k}{[k]_{p,q}}
$$
(2.1)

and

$$
I_n(p,q) = \sum_{k=1}^n \frac{(-1)^k}{[k]_{p,q}},\tag{2.2}
$$

respectively.

Setting $p = 1$ in (2.1) and (2.2), q -Harmonic numbers can be found. By the fact that $[n]_{p,q} = [n]_{q,p}$, we clearly observe that $H_n(p,q) = H_n(q,p)$ and $I_n(p,q) = I_n(q,p)$. But this is not true for $\tilde{H}_n(p,q)$. By some elementary operations, we have

$$
\tilde{H}_n(q,p) = \sum_{k=1}^n \frac{q^k}{[k]_{p,q}} = \sum_{k=1}^n \left(\frac{p^k}{[k]_{p,q}} - (p-q) \right) = \sum_{k=1}^n \frac{p^k}{[k]_{p,q}} - k(p-q).
$$

That is

$$
\tilde{H}_n(q,p) = \tilde{H}_n(p,q) - n(p-q). \tag{2.3}
$$

Therefore, the order of *p* and *q* is important for the number $\tilde{H}_n(p,q)$.

Proposition 2.1. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} [k]_{p,q} = \frac{1}{1-p} ([n]_q - p[n]_{p,q}).
$$
\n(2.4)

Proof. By the definition of $[k]_{p,q}$, we can write

$$
\sum_{k=1}^{n} [k]_{p,q} = \sum_{k=1}^{n} \sum_{i=1}^{k} p^{k-i} q^{i-1} = q^{-1} \sum_{k=1}^{n} p^{k} \sum_{i=1}^{k} p^{-i} q^{i}
$$

. By changing the sums and some elementary operations, we have

$$
\sum_{k=1}^{n} [k]_{p,q} = q^{-1} \left(\sum_{i=1}^{n} p^{-i} q^{i} \sum_{k=i}^{n} p^{k} \right) = q^{-1} \left(\sum_{i=1}^{n} p^{-i} q^{i} \left(\sum_{k=1}^{n} p^{k} - \sum_{k=1}^{i-1} p^{k} \right) \right).
$$

Since $0 < q < p \le 1$, we can use the geometric sum formula and we get

$$
\sum_{k=1}^{n} [k]_{p,q} = q^{-1} \left(\sum_{i=1}^{n} p^{-i} q^{i} \left(\frac{1 - p^{n+1}}{1 - p} - \frac{1 - p^{i}}{1 - p} \right) \right) = \frac{q^{-1}}{1 - p} \left(\sum_{i=1}^{n} q^{i} - \sum_{i=1}^{n} p^{n-i+1} q^{i} \right).
$$

Finally, using (1, 1) and (1, 2), we get the result.

Finally using (1.1) and (1.3), we get the result.

Lemma 2.2. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} q^{k} H_{k}(p,q) = \sum_{k=1}^{n} q^{k} H_{k}(q,p) = \frac{1}{1-q} \left(\tilde{H}_{n}(q,p) - q^{n+1} H_{n}(p,q) \right).
$$
\n(2.5)

Proof. By (2.1), we obtain

$$
\sum_{k=1}^{n} q^{k} H_{k}(p,q) = \sum_{k=1}^{n} q^{k} \sum_{i=1}^{k} \frac{1}{[i]_{p,q}}.
$$

By changing the sums, we get

$$
\sum_{k=1}^n q^k H_k(p,q) = \sum_{i=1}^n \frac{1}{[i]_{p,q}} \left(\sum_{k=1}^n q^k - \sum_{k=1}^{i-1} q^k \right).
$$

Using the definition (1.1), we write

$$
\sum_{k=1}^{n} q^{k} H_{k}(p,q) = H_{n}(p,q)[n+1]_{q} - \sum_{i=1}^{n} \frac{[i]_{q}}{[i]_{p,q}}
$$

which equals to

$$
H_n(p,q)[n+1]_q - \frac{1}{1-q} \sum_{i=1}^n \frac{1-q^i}{[i]_{p,q}} = H_n(p,q)[n+1]_q - \frac{1}{1-q} \left(\sum_{i=1}^n \frac{1}{[i]_{p,q}} - \sum_{i=1}^n \frac{q^i}{[i]_{p,q}} \right).
$$

Finally, we complete the proof by using (2.1).

 \Box

 \Box

As a result of this Lemma, we can obtain the following equation by replacing *q* and *p* with eachother in (2.5).

Corollary 2.1. *For* $n \geq 1$ *,*

$$
\sum_{k=1}^{n} p^{k} H_{k}(p,q) = \sum_{k=1}^{n} p^{k} H_{k}(q,p) = \frac{1}{1-p} \left(\tilde{H}_{n}(p,q) - p^{n+1} H_{n}(p,q) \right).
$$
\n(2.6)

Lemma 2.3. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} q^{-k} \tilde{H}_k(q, p) = \frac{q}{q-1} \left(H_n(p, q) - q^{-n-1} \tilde{H}_n(q, p) \right).
$$
\n(2.7)
\n*Proof.* By using (1.1), (1.3) and (2.1), the proof is similar to the proof of the Lemma 2.2.

Proof. By using (1.1), (1.3) and (2.1), the proof is similar to the proof of the Lemma 2.2.

One can clearly observe that by taking $p = 1$ in (2.7), we obtain the equation (1.5). Moreover, we can obtain the following equation from (2.7) by interchanging *q* and *p* with eachother.

Corollary 2.2. *For* $n \geq 1$ *,*

$$
\sum_{k=1}^{n} p^{-k} \tilde{H}_k(p,q) = \frac{p}{p-1} \left(H_n(p,q) - p^{-n-1} \tilde{H}_n(p,q) \right).
$$
\n(2.8)

Lemma 2.4. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} p^{-k} \tilde{H}_k(q, p) = \frac{p}{p-1} \left(H_n(p, q) - p^{-n-1} \tilde{H}_n(p, q) - \frac{p-q}{p-1} \left(1 - p^{-n-1} (p - n + np) \right) \right).
$$
\n(2.9)

Proof. Using the identity (2.3) and some elementary operations, we obtain

$$
\sum_{k=1}^{n} p^{-k} \tilde{H}_k(q, p) = \sum_{k=1}^{n} p^{-k} \left(\tilde{H}_k(p, q) - k(p - q) \right)
$$
\n(2.10)

which equals to

$$
\sum_{k=1}^{n} p^{-k} \tilde{H}_{k}(p, q) - (p - q) \sum_{k=1}^{n} p^{-k} k.
$$

The first sum is obtained in the Corollary 2.2. For the second sum we can write

$$
\sum_{k=1}^{n} p^{-k} k = \sum_{k=1}^{n} p^{-k} \sum_{i=1}^{k} 1.
$$

Then by changing sums we get

$$
\sum_{k=1}^{n} p^{-k} k = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} p^{-k} - \sum_{k=1}^{i-1} p^{-k} \right).
$$

By geometric sum formula we have

$$
\sum_{k=1}^{n} p^{-k} k = \frac{p(p-q)}{(p-1)^2} \left(1 - p^{-n-1} (p - n + np) \right).
$$
\n(2.11)

Substituting (2.9) and (2.11) in (2.10), we complete the proof.

We can obtain the following equation by writing *q* and *p* interchangeably in (2.9).

Corollary 2.3. *For* $n \geq 1$ *,*

$$
\sum_{k=1}^{n} q^{-k} \tilde{H}_k(p,q) = \frac{q}{q-1} \left(H_n(p,q) - q^{-n-1} \tilde{H}_n(q,p) - \frac{q-p}{q-1} \left(1 - q^{-n-1} (q-n+nq) \right) \right).
$$
\n(2.12)

Now we give the main results in the following theorems.

Theorem 2.5. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} [k]_{p,q} H_k(p,q) = \frac{1}{p-q} \left(\frac{\tilde{H}_n(p,q)}{1-p} - \frac{\tilde{H}_n(q,p)}{1-q} + \left(\frac{q^{n+1}}{1-q} - \frac{p^{n+1}}{1-p} \right) H_n(q,p) \right). \tag{2.13}
$$

Proof. By the definition (1.3), we can write

$$
\sum_{k=1}^n [k]_{p,q} H_k(p,q)
$$

as

$$
\frac{1}{p-q}\sum_{k=1}^n (p^k - q^k) H_k(p,q) = \frac{1}{p-q} \left(\sum_{k=1}^n p^k H_k(p,q) - \sum_{k=1}^n q^k H_k(p,q) \right).
$$

Finally, using (2.5) and (2.6) completes the proof.

 \Box

Theorem 2.6. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} [k]_{p^{-1},q^{-1}} \tilde{H}_k(q,p) = \frac{pq}{p-q} \left(\frac{(p-q)H_n(p,q)}{(p-1)(q-1)} - \left(\frac{q^{-n}}{q-1} - \frac{p^{-n}}{p-1} \right) \tilde{H}_n(p,q) + nq^{-n} \frac{p-q}{q-1} + \frac{p(p-q)}{(p-1)^2} \left(1 - p^{-n-1}(p-n+np) \right) \right).
$$
\n(2.14)

Proof. By (1.3), we write the sum

$$
\sum_{k=1}^n [k]_{p^{-1},q^{-1}} \tilde{H}_k(q,p)
$$
 as

pq p−*q n* ∑ *k*=1 $(p^{-k} - q^{-k}) \tilde{H}_k(q, p) = \frac{pq}{p - q}$ *n* ∑ *k*=1 $p^{-k}\tilde{H}_k(q,p) - \sum_{k=1}^n p^{-k}$ ∑ *k*=1 $q^{-k}\tilde{H}_k(q,p)$ \setminus .

Then by using the equations (2.7) and (2.9) we complete the proof.

Theorem 2.7. *For* $n \geq 1$ *, we have*

$$
\sum_{k=1}^{n} [k]_{p^{-1},q^{-1}} \tilde{H}_k(p,q) = \frac{pq}{q-p} \left(\frac{(q-p)H_n(p,q)}{(1-q)(1-p)} - \left(\frac{p^{-n}}{p-1} - \frac{q^{-n}}{q-1} \right) \tilde{H}_n(q,p) + np^{-n} \frac{q-p}{p-1} + \frac{q(q-p)}{(q-1)^2} \left(1 - q^{-n-1}(q-n+nq) \right) \right).
$$
\n(2.15)

Proof. The proof can be done similarly by using (2.8) and (2.10). Also by writing *q* and *p* interchangeably in (2.14), the desired result is obtained. \Box

3. Conclusion

In this paper, we examined a new generalization of harmonic numbers and some summations of this numbers. We have achieved results that will lead to our next works. As for usual harmonic numbers and *q*-harmonic numbers, new identities for *p*,*q*-harmonic numbers can be deduced and various congruences of these numbers can be investigate.

Acknowledgements

The author would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

There are no competing interests.

Author's contributions

The author contributed to the writing of this paper. The author read and approved the final manuscript.

References

- [1] A. Ciavarella, What is q-Calculus?, Course Hero, 2016, 1-6.
- [2] A. M. Alanazi, A. Ebaid, W.M. Alhawiti and G. Muhiuddin, The falling body problem in quantum calculus, Front. Phys. Vol:8, No.43 (2020).
- [3] A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory, Vol:154 (2015), 144-159.
- [4] C. Kızılateş, N. Tuglu and B. Çekim, On the (p,q)–Chebyshev Polynomials and Related Polynomials, Mathematics. Vol:7, No.2 (2019), 136.
- [5] C. Kızılates¸ and N. Tuglu, Some Combinatorial Identities of q-Harmonic and q-Hyperharmonic Numbers, Commun. Math. Appl. Vol:6, No.2 (2015),
- 33-40. [6] I.M. Burban and A.U. Klimyk,*p*,*q*-Differentiation, *p*,*q*-integration and *p*,*q*-hypergeometric functions related to quantum groups, Integral Transforms Spec. Funct. Vol:2 (1994), 15–36.
- [7] J. Spiess, Some identities involving harmonic numbers, Math. Comput. Vol:55, No.192 (1990), 839-863.
- [8] M.N. Hounkonnou and J.D. Bukweli Kyemba, R(p,q) calculus: differentiation and integration, SUTJ. Math. Vol:49, No.2 (2013), 145-167.
- [9] M.N. Hounkonnou and S. Arjika, (p,q)–deformed Fibonacci and Lucas polynomials: characterization and Fourier integral transforms, arXiv, 2013, arXiv:1307.2623v1.
- [10] N. Ömür, Z.B. Gür and S. Koparal, Congruences with q-generalized Catalan numbers and q-harmonic numbers, Hacet. J. Math. Stat. Vol:51, No.3 (2022), 712-724.
- [11] R. Corcino, On p,q-Binomial Coefficients, Integers, Vol:8 (2008), A29.

 \Box

- [12] S, Aracı, U, Duran, M. Açıkgöz and H. M. Srivastava, A certain p, q-derivative operator and associated divided differences, J. Inequal Appl. Vol:301 (2016), 1240-1248. [13] V. Kac, P. Cheung, *Quantum Calculus*, Springer, New York, 2002.
-
- [14] V. Sahai and S. Yadav, On models of certain *p*,*q*-algebra representations: The Quantum Euclidean algebra ε*p*,*q*(2), J. Math. Anal. Appl. Vol:338 (2008), 1043-1053. [15] Z.W. Sun, Arithmetic Theory of Harmonic Numbers, Proc. Am. Math. Soc. Vol:140, No.2 (2012), 415-428.
-