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Abstract

In this study, we examined a new generalization of well-known number sequence which is called harmonic numbers. We defined p,q-harmonic
numbers which is also a generalization of q-harmonic numbers and deduced some properties and identities related to this number sequence
by using some combinatorial operations.
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1. Introduction

Quantum calculus or q-calculus plays an important role in combintorics, number theory and physics. Its analysis and some applications can
be found in [1,2]. There are q-analogs of the factorial, binomial coefficient, derivative, integral, Fibonacci numbers, and so on. In [13],
q-analog of an integer n is given by

[n]q :=
1−qn

1−q
= 1+q+qn +q2 + ...qn−1, (1.1)

with 0 < q < 1. It is also denoted by [n]. From this definition, we can write q-analogue of n by finite sunmmation as follows ;

[n]q =
n−1

∑
k=0

qk. (1.2)

q-Analogs are based on the fact that

lim
q→1−

1−qn

1−q
= n.

As usual binomial coefficient, q-Binomial coefficient is defined by(
n
k

)
q
=

[n]q!
[k]q![n− k]q!

,

where

[n]q! = [n]q[n−1]q[n−2]q...[1]q

the q-factorial. Its triangular recurrence relation is given as follows:(
n
k

)
q
=

(
n−1
k−1

)
q
+qk

(
n−1

k

)
q
.

From this relation, we obtain the the recursive formula of usual binomial coefficient as q→ 1−. Also we have the following horizontal and
vertical recurrence relations for q-binomial coefficcients respectively,(

n+1
k+1

)
q
=

n

∑
j=k

q j−k
(

j
k

)
q
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and(
n
k

)
q
=

n−k

∑
j=0

(−1) jq jk+( j+1
2 )
(

n+1
k+ j+1

)
q
.

Furthermore, as q→ 1, the first relation is reduced to Chu Shih Chieh’s identity which is given by(
n
k

)
=

(
n+1
k+1

)
−
(

n+1
k+2

)
+ ...+(−1)n−k

(
n+1
n+1

)
.

q-Pochhammer symbol or q-shifted factorial which is known as the q-analogue of falling factorial is defined by

(a;q)n = ([a]q)n =
n−1

∏
k=0

(1−aqk),

with ([a]q)0 = 1.
Post-Quantum calculus or p,q-calculus is constructed by expanding q-analog into two components p and q as a generalization of q-calculus
and its applications and interesting properties can be found in [4,8,9].
p,q-analogue of a nonnegative integer n is defined by

[n]p,q :=
pn−qn

p−q
=

n−1

∑
k=0

pn−k−1qk, (1.3)

where 0 < q < p≤ 1. By this definition the symmetry property, that is,

[n]p,q = [n]q,p

can be seen. One can reduce p,q-number to q-number by taking p = 1 in (1.3). As for q-binomial coefficient, the p,q-factorial and
p,q-binomial coefficient are determined and defined by

[n]p,q! = [n]p,q[n−1]p,q[n−2]p,q...[1]p,q

and(
n
k

)
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
,

respectively. p,q-Binomial coefficients and p,q-derivatives are studied by R. Corcino in [11]. Author gave the triangular recurrence relations(
n+1

k

)
p,q

= pk
(

n
k

)
p,q

+qn−k+1
(

n
k−1

)
p,q

and(
n+1

k

)
p,q

= qk
(

n
k

)
p,q

+ pn−k+1
(

n
k−1

)
p,q

,

with
(0

0
)

p,q =
(n

n
)

p,q = 1 = 1 and
(n

k
)

p,q = 0 if k > n. Taking p = 1, it can be seen that the first relation is reduced to triangular recurrence

relation of q-binomial coefficient which is mentioned above. The first values of
(n

k
)

p,q are given in the following table.

n/k 1 2 3 ...
1
2
3
...

1
p2 + pq+q2 p2 + pq+q2

p3 + pq2 +qp2 +q3 (p2 + pq+q2)(p2 +q2) p3 + pq2 +qp2 +q3

... ... ...
. . .

For m = 1,2, ..., p,q-shifted factorial is given by

([a]p,q)n = [a]p,q[a+1]p,q...[a+n−1]p,q,

with ([a]p,q)0 = 1. Also p,q-analogue of the exponential operator exists in the form

expp,q(z) =
∞

∑
m=0

zm

[m]p,q!
,

for all z (see [6]). In literature, p,q-derivative and p,q-hypergeometric funcitons are studied and some interesting properties are deduced in
[12,14]. For example, Sahai et al. examined the generalized p,q-hypergeometric series which is given by

rψs(a1, ...,ar;b1, ...,bs; p,q;z) =
∞

∑
m=0

([a1]p,q)m...([ar]p,q)m

([b1]p,q)m...([bs]p,q)m

[
(−1)mq−

1
2
(m

2
)

(p
1
2 −q−

1
2 )m

]1+s−r
zm

[m]p,q!
,
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where ([a]p,q)m is the p,q-shifted factorial, p > 0,q > 0 and pq < 1.
Harmonic numbers have been studied for many years and are also called harmonic series which is related to the Riemann Zeta function. n-th
harmonic number and alternatig harmonic number are defined by the finite summation as

Hn =
n

∑
k=1

1
k
, In =

n

∑
k=1

(−1)k

k
,

respectively with H0 = I0 = 0. The generating function of harmonic numbers is given by

∑
k≥0

Hkzk =− log(1− z)
1− z

and a more general form of the generating function is also given by

∑
k≥m

(Hk−Hm)

(
k
m

)
zk−m =− log(1− z)

(1− z)m+1 ,

for a natural number m. Important identities involving harmonic numbers can be seen in [7,15]. For r ≥ 1, hyperharmonic number of order r
is defined by

H(r)
n =

n

∑
k=1

1
ks

and satisfy the reccurence relation

H(r)
n =

n

∑
k=1

H(r−1)
k ,

where H(r)
0 = 1

n and H(0)
n = 0 if n≤ 0 and r < 0. It can be observed that H(1)

n = Hn. Some special identities and properties for harmonic
numbers are given by Anthony Sofo in [3].
q-Harmonic numbers and alternating q-harmonic numbers are given by

Hn(q) =
n

∑
k=1

1
[k]q

, H̃n(q) =
n

∑
k=1

qk

[k]q
(1.4)

and

In(q) =
n

∑
k=1

(−1)k

[k]q
,

respectively. The first values of q-harmonic numbers are

H0(q) = 0, H1(q) = 1, H2(q) =
q+2
q+1

, H3(q) =
4q+3q2 +q3 +3
2q+2q2 +q3 +1

, ...

H̃0(q) = 0, H̃1(q) = q, H̃2(q) = q
2q+1
q+1

, H̃3(q) =
3q+4q2 +3q3 +1
2q+2q2 +q3 +1

, ...

and

I0(q) = 0, I1(q) =−1, I2(q) =−
q

q+1
, I3(q) =−

2q+q2 +q3 +1
2q+2q2 +q3 +1

, ...

Some important identities and properties are given by Kızılateş and Tuglu in [5]. For example, for n≥ 1

n−1

∑
k=1

qk[k]qH̃k(q) =
[n]2q
[2]q

(
qH̃k(q)−

q3

[2]q

)
.

In [10], Ömür et al. gave the following equations;

n

∑
k=1

q−kH̃k(q) =
q

q−1

(
Hn(q)−q−n−1H̃n(q)

)
, (1.5)

n

∑
k=1

q−2kH̃k(q) =
q2

q+1

(
q−2n−2[2n+2]qH̃n(q)−q−n[n]q−n

)
. (1.6)

Authors also investigated the congruences of q-harmonic numbers. For example, for a prime number p they give the following congruence:

p−1

∑
k=d+1

(−q)kH̃p−k−1(q)≡
1
[2]q

(
(−q)d+1Hd(q)−2Qp(2,q)− Id(q)−

1−q
2

(p− (−1)d +(p−1)(−q)d+1)

)(
mod[p]q

)
. (1.7)
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2. Some Identities Involving p,q-Harmonic Numbers

In this section, firstly we define the p,q-harmonic numbers and investigate their some properties.

Definition 2.1. For p 6= q, p,q-harmonic numbers and alternating p,q-harmonic numbers are defined by

Hn(p,q) =
n

∑
k=1

1
[k]p,q

, H̃n(p,q) =
n

∑
k=1

pk

[k]p,q
, H̃n(q, p) =

n

∑
k=1

qk

[k]p,q
(2.1)

and

In(p,q) =
n

∑
k=1

(−1)k

[k]p,q
, (2.2)

respectively.

Setting p = 1 in (2.1) and (2.2), q-Harmonic numbers can be found.
By the fact that [n]p,q = [n]q,p, we clearly observe that Hn(p,q) = Hn(q, p) and In(p,q) = In(q, p). But this is not true for H̃n(p,q). By some
elementary operations, we have

H̃n(q, p) =
n

∑
k=1

qk

[k]p,q
=

n

∑
k=1

(
pk

[k]p,q
− (p−q)

)
=

n

∑
k=1

pk

[k]p,q
− k(p−q).

That is

H̃n(q, p) = H̃n(p,q)−n(p−q). (2.3)

Therefore, the order of p and q is important for the number H̃n(p,q).

Proposition 2.1. For n≥ 1, we have
n

∑
k=1

[k]p,q =
1

1− p

(
[n]q− p[n]p,q

)
. (2.4)

Proof. By the definition of [k]p,q, we can write

n

∑
k=1

[k]p,q =
n

∑
k=1

k

∑
i=1

pk−iqi−1 = q−1
n

∑
k=1

pk
k

∑
i=1

p−iqi

. By changing the sums and some elementary operations, we have

n

∑
k=1

[k]p,q = q−1

(
n

∑
i=1

p−iqi
n

∑
k=i

pk

)
= q−1

(
n

∑
i=1

p−iqi

(
n

∑
k=1

pk−
i−1

∑
k=1

pk

))
.

Since 0 < q < p≤ 1, we can use the geometric sum formula and we get

n

∑
k=1

[k]p,q = q−1

(
n

∑
i=1

p−iqi
(

1− pn+1

1− p
− 1− pi

1− p

))
=

q−1

1− p

(
n

∑
i=1

qi−
n

∑
i=1

pn−i+1qi

)
.

Finally using (1.1) and (1.3), we get the result.

Lemma 2.2. For n≥ 1, we have
n

∑
k=1

qkHk(p,q) =
n

∑
k=1

qkHk(q, p) =
1

1−q

(
H̃n(q, p)−qn+1Hn(p,q)

)
. (2.5)

Proof. By (2.1), we obtain

n

∑
k=1

qkHk(p,q) =
n

∑
k=1

qk
k

∑
i=1

1
[i]p,q

.

By changing the sums, we get

n

∑
k=1

qkHk(p,q) =
n

∑
i=1

1
[i]p,q

(
n

∑
k=1

qk−
i−1

∑
k=1

qk

)
.

Using the definition (1.1), we write
n

∑
k=1

qkHk(p,q) = Hn(p,q)[n+1]q−
n

∑
i=1

[i]q
[i]p,q

which equals to

Hn(p,q)[n+1]q−
1

1−q

n

∑
i=1

1−qi

[i]p,q
= Hn(p,q)[n+1]q−

1
1−q

(
n

∑
i=1

1
[i]p,q

−
n

∑
i=1

qi

[i]p,q

)
.

Finally, we complete the proof by using (2.1).
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As a result of this Lemma, we can obtain the following equation by replacing q and p with eachother in (2.5).

Corollary 2.1. For n≥ 1,
n

∑
k=1

pkHk(p,q) =
n

∑
k=1

pkHk(q, p) =
1

1− p

(
H̃n(p,q)− pn+1Hn(p,q)

)
. (2.6)

Lemma 2.3. For n≥ 1, we have
n

∑
k=1

q−kH̃k(q, p) =
q

q−1

(
Hn(p,q)−q−n−1H̃n(q, p)

)
. (2.7)

Proof. By using (1.1), (1.3) and (2.1), the proof is similar to the proof of the Lemma 2.2.

One can clearly observe that by taking p = 1 in (2.7), we obtain the equation (1.5). Moreover, we can obtain the following equation from
(2.7) by interchanging q and p with eachother.

Corollary 2.2. For n≥ 1,
n

∑
k=1

p−kH̃k(p,q) =
p

p−1

(
Hn(p,q)− p−n−1H̃n(p,q)

)
. (2.8)

Lemma 2.4. For n≥ 1, we have
n

∑
k=1

p−kH̃k(q, p) =
p

p−1

(
Hn(p,q)− p−n−1H̃n(p,q)− p−q

p−1

(
1− p−n−1(p−n+np)

))
. (2.9)

Proof. Using the identity (2.3) and some elementary operations, we obtain
n

∑
k=1

p−kH̃k(q, p) =
n

∑
k=1

p−k (H̃k(p,q)− k(p−q)
)

(2.10)

which equals to
n

∑
k=1

p−kH̃k(p,q)− (p−q)
n

∑
k=1

p−kk.

The first sum is obtained in the Corollary 2.2. For the second sum we can write

n

∑
k=1

p−kk =
n

∑
k=1

p−k
k

∑
i=1

1.

Then by changing sums we get

n

∑
k=1

p−kk =
n

∑
i=1

(
n

∑
k=1

p−k−
i−1

∑
k=1

p−k

)
.

By geometric sum formula we have
n

∑
k=1

p−kk =
p(p−q)
(p−1)2

(
1− p−n−1(p−n+np)

)
. (2.11)

Substituting (2.9) and (2.11) in (2.10), we complete the proof.

We can obtain the following equation by writing q and p interchangeably in (2.9).

Corollary 2.3. For n≥ 1,
n

∑
k=1

q−kH̃k(p,q) =
q

q−1

(
Hn(p,q)−q−n−1H̃n(q, p)− q− p

q−1

(
1−q−n−1(q−n+nq)

))
. (2.12)

Now we give the main results in the following theorems.

Theorem 2.5. For n≥ 1, we have
n

∑
k=1

[k]p,qHk(p,q) =
1

p−q

(
H̃n(p,q)

1− p
− H̃n(q, p)

1−q
+

(
qn+1

1−q
− pn+1

1− p

)
Hn(q, p)

)
. (2.13)

Proof. By the definition (1.3), we can write
n

∑
k=1

[k]p,qHk(p,q)

as

1
p−q

n

∑
k=1

(
pk−qk

)
Hk(p,q) =

1
p−q

(
n

∑
k=1

pkHk(p,q)−
n

∑
k=1

qkHk(p,q)

)
.

Finally, using (2.5) and (2.6) completes the proof.
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Theorem 2.6. For n≥ 1, we have

n

∑
k=1

[k]p−1,q−1 H̃k(q, p) =
pq

p−q

(
(p−q)Hn(p,q)
(p−1)(q−1)

−
(

q−n

q−1
− p−n

p−1

)
H̃n(p,q)+nq−n p−q

q−1
+

p(p−q)
(p−1)2

(
1− p−n−1(p−n+np)

))
.

(2.14)

Proof. By (1.3), we write the sum

n

∑
k=1

[k]p−1,q−1 H̃k(q, p)

as

pq
p−q

n

∑
k=1

(
p−k−q−k

)
H̃k(q, p) =

pq
p−q

(
n

∑
k=1

p−kH̃k(q, p)−
n

∑
k=1

q−kH̃k(q, p)

)
.

Then by using the equations (2.7) and (2.9) we complete the proof.

Theorem 2.7. For n≥ 1, we have

n

∑
k=1

[k]p−1,q−1 H̃k(p,q) =
pq

q− p

(
(q− p)Hn(p,q)
(1−q)(1− p)

−
(

p−n

p−1
− q−n

q−1

)
H̃n(q, p)+np−n q− p

p−1
+

q(q− p)
(q−1)2

(
1−q−n−1(q−n+nq)

))
.

(2.15)

Proof. The proof can be done similarly by using (2.8) and (2.10). Also by writing q and p interchangeably in (2.14), the desired result is
obtained.

3. Conclusion

In this paper, we examined a new generalization of harmonic numbers and some summations of this numbers. We have achieved results that
will lead to our next works. As for usual harmonic numbers and q-harmonic numbers, new identities for p,q-harmonic numbers can be
deduced and various congruences of these numbers can be investigate.
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