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Article Info

Received: 26 Oct 2022

Accepted: 18 Jan 2023

Published: 31 Mar 2023

doi:10.53570/jnt.1194990

Research Article

Abstract − This paper presents a quaternionic approach to generating and characterizing
the ruled surface drawn by the unit Darboux vector. The study derives the Darboux frame
of the surface and relates it to the Frenet frame of the base curve. Moreover, it obtains
the quaternionic shape operator and its matrix representation using the normal and geodesic
curvatures to provide a more detailed analysis. To illustrate the concepts discussed, the paper
offers a clear example that will help readers better understand the concepts and showcases the
quaternionic shape operator, Gauss curvature, mean curvature, and rotation matrix. Finally,
it emphasizes the need for further research on this topic.
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1. Introduction (Compulsory)

Quaternions include diverse fields such as game programming, robotics, animation, and navigation
systems [1–3]. In addition to these areas, quaternions are important for the theory of curves and
surfaces. Bharathi and Nagaraj have introduced the Serret-Frenet formulae for quaternionic curves
in R3 and R4 [4]. By utilizing this study, numerous studies have examined quaternionic curves.
One of them, the authors have proved that if the bitorsion of a quaternionic curve does not vanish,
then there is no quaternionic curve in E4. Therefore, they have expressed (1, 3) type Bertrand
curves for quaternionic curves [5]. Babaarslan and Yaylı have examined constant slope surfaces with
quaternions [6]. In [7], the authors have expressed the ruled surface as quaternionic and computed
some properties of the ruled surface. Moreover, they have investigated the dual ruled surface using
dual quaternion [8]. In light of these studies, Çalışkan have examined the quaternionic and dual
quaternionic Darboux ruled surfaces [9]. In [10], the authors have examined the advantage of the
dual number of Clifford algebra to make the singular ruled surfaces transform into dual singular
curves. Aslan and Yaylı have defined the quaternionic shape operator by the quaternion. Their article
has aimed to find a way to the invariants of the surface using Darboux frames and quaternions [11].
In [12,13], the connection between split quaternions and surfaces with the constant slope in Minkowski
3-space has been explored. It is demonstrated that these surfaces can be transformed using rotation
matrices associated with quaternions and homothetic motions. A surface is said to be ruled if it is
generated by moving a straight line continuously in R3. Thus, a ruled surface has a parameterization
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in the form Λ⃗(s, v) = α⃗(s) + vx⃗(s) where we call α the base curve and x⃗ the generator vector of
the ruled surface [14]. Ruled surfaces are important for robot kinematics. Ryuh has suggested that
ruled surfaces play an important role in robot end-effectors [15]. In another study, the ruled surfaces’
differential properties drawn by the developed trihedron’s generator vector have been examined [16].
In [17], the authors have introduced a new type of ruled surface defined using an orthonormal Sannia
frame on a base curve. They have studied the properties of these surfaces using the first and second
fundamental forms, as well as the mean and Gaussian curvatures. They have provided conditions for
when these surfaces are developable and minimal and present some examples of these ruled surfaces.
Eren et al. have introduced new types of ruled surfaces in Euclidean 3-space. These surfaces have been
obtained using the evolution of an involute-evolute curve pair and studied with the modified orthogonal
frame. They have provided some results on these surfaces’ Gaussian and mean curvatures [18, 19].
Bilici has examined ruled surfaces produced by a Frenet trihedron of closed dual involute for a specific
dual curve. He has specifically focused on the relations between the pitch, the angle of the pitch, and
the drall of these surfaces [20]. Some ruled surfaces produced using the Frenet trihedron, Blaschke
frame, and the surface family are studied in [21–24].

In Section 2, we provide some necessary background information about the problem of the paper that
was mentioned in the introduction. In Section 3, we give characterizations of ruled surfaces drawn
by the unit Darboux vector using quaternions. We obtain the quaternionic shape operators and their
matrix representations using normal and geodesic curvatures. In the last section, we exemplify the
findings.

2. Preliminaries

Let α : I → R3 be a unit-speed curve. Then, the three vector fields t⃗(s), n⃗(s), and b⃗(s) on the curve
α are unit vector fields that are mutually orthogonal at each point. We call t⃗(s), n⃗(s), and b⃗(s) the
Frenet vectors on the curve α. The Frenet formulas can be given

t⃗′(s) = κ(s)n⃗(s), n⃗′(s) = −κ(s)⃗t(s) + τ(s)⃗b(s), and b⃗′(s) = −τ(s)n⃗(s)

where κ(s) and τ(s) are the first and second curvature of the unit-speed curve, respectively [25]. For
any unit-speed curve α : I → R3, the vector W⃗ (s) is called Darboux vector defined by

W⃗ (s) = τ(s)⃗t(s) + κ(s)⃗b(s)

If consider the normalization of the Darboux C⃗(s) = 1
∥W⃗ (s)∥

W⃗ (s), we have

C⃗(s) = sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

where cos ξ(s) = κ(s)
∥W⃗ (s)∥

, sin ξ(s) = τ(s)
∥W⃗ (s)∥

, and ∠(W⃗ (s), b⃗(s)) = ξ(s). A quaternion is a unit length of
four-vectors q = d + ae⃗1 + be⃗2 + ce⃗3 characterized by the following properties:{

e⃗1
2 = e⃗2

2 = e⃗3
2 = e⃗1 × e⃗2 × e⃗3 = −1,

e⃗1, e⃗2, e⃗3 ∈ R3
e⃗1 × e⃗2 = e⃗3, e⃗2 × e⃗3 = e⃗1, e⃗3 × e⃗1 = e⃗2

The quaternion product of two quaternions q1 and q2, which we write as q1 × q2, takes the form

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e⃗1

+(d1b2 + b1d2 + b1a2 − a1b2)e⃗2 + +(d1c2 + c1d2 + a1b2 − b1a2)e⃗3

The complex conjugate of a quaternion q is denoted as q̄ = d − ae⃗1 − be⃗2 − ce⃗3. The norm of q is

N(q) =
√

d2 + a2 + b2 + c2
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Pure quaternion is denoted as q̄ + q = 0 = ae⃗1 + be⃗2 + ce⃗3. The quaternion multiplication of two
pure quaternions is q1 × q2 = −⟨q1, q2⟩ + q1 ∧ q2. The unit quaternion can be written in the form as
q = cos φ + sin φv⃗ where v⃗ ∈ R3 and ∥v⃗∥ = 1. Let q be a unit quaternion and w⃗ be a pure quaternion.
Then,

w⃗′ = q × w⃗ × q−1

is rotated 2φ about the axis v⃗. We say finally that the desired rotation matrix fixing the direction v is

R =



1 + sin2 φ(u2
1 − u2

2 − u2
3 − 1) − sin 2φu3 + 2 sin2 φu1u2 sin 2φu2 + 2 sin2 φu1u3

sin 2φu3 + 2 sin2 φu1u2 1 + sin2 φ(u2
2 − u2

1 − u2
3 − 1) 2 sin2 φu2u3 − sin 2φu1

2 sin2 φu1u3 − sin 2φu2 sin 2φu1 + 2 sin2 φu2u3 1 + sin2 φ(u2
3 − u2

2 − u2
1 − 1)


where R is an orthogonal matrix. For detailed information on the theory of quaternion, see the
references [1, 3, 26].

If p is a point of M , for each tangent vector X⃗ to M at p, Sp(X⃗) = −∇X⃗ Z⃗. Sp is defined as the shape
operator of M at p. The shape operator is the symmetric linear map. Here, Z is the unit normal
vector field. A surface M in R3 is flat provided its Gauss curvature is zero, and minimal provided its
mean curvature is zero. Moreover, the Gauss and minimal curvatures are independent of the choice
of basis. These curvatures are found in the equations

K = ∥S(T⃗ (u)) ∧ S(T⃗ (t))∥
∥T⃗ (u) ∧ T⃗ (t)∥

, H = ∥S(T⃗ (u)) ∧ T⃗ (t) + T⃗ (u) ∧ S(T⃗ (t))∥
2∥T⃗ (u) ∧ T⃗ (t)∥

where T⃗ (u) and T⃗ (t) are the tangent vectors of β(u) and ζ(t), respectively [25]. Let β be a curve that
is traced on a surface and Darboux frame {T⃗ (u), Y⃗ (u), Z⃗(u)} is an orthogonal frame. The equations
of motion of the Darboux frame can be written as

T⃗ ′(u)
Y⃗ ′(u)
Z⃗ ′(u)

 = ∥Λu∥


0 kg(u) kn(u)

−kg(u) 0 tg(u)
−kn(u) −tg(u) 0




T⃗ (u)
Y⃗ (u)
Z⃗(u)

 (1)

Here, kn, kg, and tg are the normal curvature, the geodesic curvature, and the geodesic torsion,
respectively [14,25].

Theorem 2.1. [11] Let M be a surface with parameter u and β(u) be a unit speed curve in M .
Using the quaternion operator Q(u) = kn(u) + tg(u)Z⃗(u), the shape operator can be given as

S(T⃗ (u)) = Q(u) × T⃗ (u) (2)

The quaternion Q will be called a quaternionic shape operator.

Quaternionic shape operator can be given by the unit quaternion p(u) = cos 2φ(u) + sin 2φ(u)Z⃗(u) as

Q(u) =
√

kn
2(u) + tg

2(u)
(

cos 2φ(u) + sin 2φ(u)Z⃗(u)
)

Then, we can say that the vector Q(u) × T⃗ (u) is obtained by revolving T⃗ (u) around the normal vector
Z⃗(u) of the surface through twice the angle of φ [11].

Theorem 2.2. [11] Let M be a surface, X be a local parameterization of M , N be the unit normal
vector field of M , and Q(t) and Q(u) be the quaternionic shape operators. Then, the Gauss curvature
K and mean curvature H of M are as follows:

K = ∥(Q(u) × T⃗ (u)) ∧ (Q(t) × T⃗ (t))∥
∥T⃗ (u) ∧ T⃗ (t)∥

(3)
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and

H = ∥(Q(u) × T⃗ (u)) ∧ T⃗ (t) + T⃗ (u) ∧ (Q(t) × T⃗ (t))∥
2∥T⃗ (u) ∧ T⃗ (t)∥

(4)

3. Main Results

In this section, the quaternionic expression of the ruled surfaces drawn by the unit Darboux vector
and the striction curve on the surface are given. We obtain some interesting results, such as rotation
matrices, Gauss, and mean curvatures of the surface.

Theorem 3.1. Let ᾱ be a striction curve belonging to a ruled surface Λ⃗(s, v) = α⃗(s) + vC⃗(s). The
quaternionic equations of the ruled surface and striction curve are given by

Λ⃗(s, v) = α⃗(s) + vp(s) × t⃗(s)

and
ᾱ = α⃗(s) − v

⟨C ′(s), t⃗(s)⟩
∥C ′(s)∥2 p(s) × t⃗(s)

Proof.
By taking into account the unit quaternion p(s) = τ(s)√

κ2(s)+τ(s)2(s)
− κ(s)√

κ2(s)+τ(s)2(s)
n⃗(s) and the pure

quaternion t⃗(s), we obtain the ruled surface as follows:

Λ⃗(s, v) = α⃗(s) + vp(s) × t⃗(s)

= α⃗(s) + v

(
τ(s)√

κ2(s)+τ(s)2(s)
− κ(s)√

κ2(s)+τ(s)2(s)
n⃗(s)

)
× t⃗(s)

= α⃗(s) + vC⃗(s).

Similarly, we can obtain a striction curve using quaternion.

Theorem 3.2. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. There exists a frame of the curve α(s)
which is called Frenet frame and denoted by {t⃗(s), n⃗(s), b⃗(s)}. The relations among frames can be
given by 

T⃗ (s)
Y⃗ (s)
Z⃗(s)

 =


m√

m2+l2
0 l√

m2+l2
−l√

m2+l2
0 m√

m2+l2

0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)

 (5)

and 
T⃗ (v)
Y⃗ (v)
Z⃗(v)

 =


τ(s)

∥W⃗ (s)∥
0 κ(s)

∥W⃗ (s)∥
− κ(s)

∥W⃗ (s)∥
0 τ(s)

∥W⃗ (s)∥
0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)

 (6)

where m = 1 + v
(

τ(s)
∥W⃗ (s)∥

)′
and l = v

(
κ(s)

∥W⃗ (s)∥

)′
.

Proof.
The partial derivative is taken according to s and v for the ruled surface Λ, we obtain

Λ⃗s = t⃗(s) + v

(( τ(s)
∥W⃗ (s)∥

)′
t⃗(s) +

( κ(s)
∥W⃗ (s)∥

)′
b⃗(s)

)
and

Λ⃗v = C⃗(s)
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Arriving at this equation, we reach the tangent vectors of the parameters curve as follows:

T⃗ (s) = Λ⃗s

∥Λ⃗s∥
=

(
1 + v

( τ(s)
∥W⃗ (s)∥

)′)
t⃗(s) + v

( κ(s)
∥W⃗ (s)∥

)′⃗
b(s)√(

1 + v
(

τ(s)
∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and

T⃗ (v) = Λ⃗v

∥Λ⃗v∥
= C⃗(s)

For v <
κ(s)

√
κ2(s)+τ(s)2(s)

τ(s)κ′(s)−κ(s)τ ′(s) , the unit normal vector of the ruled surface Λ is given as

Z⃗ = Λ⃗s ∧ Λ⃗v

∥Λ⃗s ∧ Λ⃗v∥
= −n⃗(s)

Y⃗ (s) and Y⃗ (v) depending on Frenet frame at point α(s) can be obtained as

Y⃗ (s) = Z⃗(s) ∧ T⃗ (s) =
−v
( κ(s)

∥W⃗ (s)∥

)′
t⃗(s) +

(
1 + v

( τ(s)
∥W⃗ (s)∥

)′)
b⃗(s)√(

1 + v
(

τ(s)
∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
Y⃗ (v) = Z⃗(v) ∧ T⃗ (v) = − κ(s)

∥W⃗ (s)∥
t⃗(s) + τ(s)

∥W⃗ (s)∥
b⃗(s)

If the Darboux frame denoted by {T⃗ (s), Y⃗ (s), Z⃗(s)} is written in matrix form, this completes the proof
of the theorem.

Theorem 3.3. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. The singular point of the ruled surface
is given by P (s0, v0) =

(
s0, − ∥W (s0)∥κ(s0)

κ(s0)τ ′(s0)+τ(s0)κ′(s0)

)
.

Proof.
The unit normal vector field of the ruled surface Λ is defined by Z = Λs×Λv

∥Λs×Λv∥ at those points (s0, v0) ∈
Z at which Λs × Λv does not vanish. Then, Λ is a regular surface if and only if the unit normal vector
field Z is everywhere well defined. The points for which Λs ×Λv vanishes can be called singular points.
The equation

∥Λs × Λv∥(s0, v0) = 1
∥W (s0)∥2

√
(∥W (s0)∥κ(s0) + v0(κ(s0)τ ′(s0) − τ(s0)κ′(s0))2 = 0

can be written to have singular points. Hence, we can write

v0 = − ∥W (s0)∥κ(s0)
κ(s0)τ ′(s0) + τ(s0)κ′(s0)

Then, the singular point of the ruled surface is P (s0, v0) =
(
s0, − ∥W (s0)∥κ(s0)

κ(s0)τ ′(s0)+τ(s0)κ′(s0)

)
.

Taking into account Equation 1, we can write proposition as follows:

Proposition 3.4. The normal and the geodesic curvatures of the ruled surface Λ can be given by

kn(s) =
−κ(s)

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)
+ τ(s)v

(
κ(s)

∥W⃗ (s)∥

)′

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2 , kn(v) = 0
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and

tg(s) =
τ(s)

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)
+ κ(s)v

(
κ(s)

∥W⃗ (s)∥

)′

(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2 , tg(v) = 0

Theorem 3.5. Let Λ be a ruled surface and Q(s) and Q(v) be quaternionic shape operators. The
shape operators S(T⃗ (s)) and S(T⃗ (v)) are obtained by

S(T⃗ (s)) = −κ(s)⃗t(s) + τ(s)⃗b(s)√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
S(T⃗ (v)) = 0⃗

Proof.
By using Proposition 3.4, quaternionic shape operators are given by

Q(s) = kn(s) + tg(s)Z⃗(s)

=
−κ(s)

(
1+v

(
τ(s)

∥W⃗ (s)∥

)′)
+τ(s)v

(
κ(s)

∥W⃗ (s)∥

)′
−
[

τ(s)
(

1+v

(
τ(s)

∥W⃗ (s)∥

)′)
+κ(s)v

(
κ(s)

∥W⃗ (s)∥

)′]
n⃗(

1+v

(
τ(s)

∥W⃗ (s)∥

)′)2

+
(

v

(
κ(s)

∥W⃗ (s)∥

)′)2

and
Q(v) = kn(v) + tg(v)Z⃗(v) = 0⃗

By considering Equation 2, the shape operators

S
(
T⃗ (s)

)
= Q(s) × T⃗ (s) = kn(s)T⃗ (s) + tg(s)Y⃗ (s)

= −κ(s)⃗t(s)+τ(s)⃗b(s)√(
1+v

(
τ(s)

∥W⃗ (s)∥

)′)2

+
(

v

(
κ(s)

∥W⃗ (s)∥

)′)2

and
S
(
T⃗ (v)

)
= Q(v) × T⃗ (v) = kn(v)T⃗ (v) + tg(v)Y⃗ (v) = 0⃗

are expressed.

Corollary 3.6. The operator Q(s) rotates the tangent vector T⃗ (s) in the tangent plane of the ruled
surface and around the normal vector Z⃗(s) of the surface. The rotation matrix which provides that
rotation is

R =



1 + sin2 φ(n2
1 − n2

2 − n2
3 − 1) sin 2φn3 + 2 sin2 φn1n2 − sin 2φn2 + 2 sin2 φn1n3

− sin 2φn3 + 2 sin2 φn1n2 1 + sin2 φ(n2
2 − n2

1 − n2
3 − 1) 2 sin2 φn2n3 + sin 2φn1

2 sin2 φn1n3 + sin 2φn2 − sin 2φn1 + 2 sin2 φn2n3 1 + sin2 φ(n2
3 − n2

2 − n2
1 − 1)


where Z(s) = −n(s) = (−n1, −n2, −n3) and the cosine and sine of the angle of between T⃗ (s) and
Q(s) × T⃗ (s) are

cos 2φ(s) = −mκ(s) + lτ(s)√
(m2 + l2)(κ2(s) + τ(s)2(s))

and sin 2φ(s) = lκ(s) + mτ(s)√
(m2 + l2)(κ2(s) + τ(s)2(s))
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Theorem 3.7. The ruled surface Λ is flat. The mean curvature H of this surface is obtained by

H = κ2(s) + τ(s)2(s)
2
∣∣− mκ(s) + lτ(s)

∣∣
Proof.
The Gauss curvature is a measure of the intrinsic curvature of a surface, and it is defined as quaternionic
as follows:

K =
∥
(
Q(s) × t⃗(s)

)
∧
(
Q(v) × T⃗ (v)

)
∥

∥t⃗(s) ∧ T⃗ (v)∥
If we substitute the quaternionic shape operators and tangent vector of parameter curves, we obtain

K = 1√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

∥(−κ(s)⃗t(s) + τ(s)⃗b(s)) ∧ 0⃗
)
∥

∥t⃗(s) ∧ T⃗ (v)∥

= 0

This means the surface is flat. The mean curvature is a measure of the extrinsic curvature of the ruled
surface, and the curvature is calculated as quaternionic as follows:

H =
∥
(
Q(s) × t⃗(s)

)
∧ T⃗ (v) + t⃗(s) ∧

(
Q(v) × T⃗ (v)

)
∥

2∥t⃗(s) ∧ T⃗ (v)∥
If we substitute the quaternionic shape operators Q(v), we get

H =
∥
(
Q(s) × t⃗(s)

)
∧ T⃗ (v)∥

2∥t⃗(s) ∧ T⃗ (v)∥
By taking into consideration Equations 5 and 6 and Theorem 3.5,

H =
√

κ2(s) + τ(s)2(s)
2
∣∣− mκ(s) + lτ(s)

∣∣
is arrived.

Considering the above theorem, we reach the following corollary.

Corollary 3.8. If the base curve of the ruled surface Λ drawn by the unit Darboux vector is a line
and planar, then the surface is minimal.

In differential geometry, the Darboux vector is a vector-valued function that measures the rate of
change of the tangent vector of a curve as it moves along the curve. The ruled surface generated by
the unit Darboux vector can be expressed as a function of the ξ(s), which is the angle between Darboux
and binormal vectors. This means some surface characterizations can be studied and analyzed as a
function of ξ(s).

Theorem 3.9. Let Λ⃗(s, v) = α⃗(s) + vC⃗(s) be a ruled surface. There exists a frame of the curve α(s)
called Frenet frame and denoted by {t⃗(s), n⃗(s), b⃗(s)}. The relations among frames in terms of ξ(s) are
given by 

T⃗ (s)
Y⃗ (s)
Z⃗(s)

 =


1+vξ′(s) cos ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
0 −vξ′(s) sin ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
vξ′(s) sin ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))
0 1+vξ′(s) cos ξ(s)√

1+vξ′(s)(2 cos ξ(s)+vξ′(s))

0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)


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and 
T⃗ (v)
Y⃗ (v)
Z⃗(v)

 =


sin ξ(s) 0 cos ξ(s)

− cos ξ(s) 0 sin ξ(s)
0 −1 0




t⃗(s)
n⃗(s)
b⃗(s)


Proof.
If the partial derivative is taken according to s and v using the angle ξ(s), we have

Λ⃗s = t⃗(s) + v
(
ξ′(s) cos ξ(s)⃗t(s) − ξ′(s) sin ξ(s)⃗b(s)

)
and

Λ⃗v = C⃗(s)

Arriving at this equation, we reach to

T⃗ (s) = Λ⃗s

∥Λ⃗s∥
=

(1 + vξ′(s) cos ξ(s)) t⃗(s) − v
(
ξ′(s) sin ξ(s)⃗b(s)

)√
(1 + vξ′(s) cos ξ(s))2 +

(
v
(

κ(s)
∥W⃗ (s)∥

)′)2

and

T⃗ (v) = Λ⃗v

∥Λ⃗v∥
= sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

For v < cos ξ(s)
ξ′(s) , the unit normal vector of the ruled surface Λ is given as

Z⃗ = Λ⃗s ∧ Λ⃗v

∥Λ⃗s ∧ Λ⃗v∥
= −n⃗(s)

Y⃗ (s) and Y⃗ (v) depending on Frenet frame at point α(s) can be obtained

Y⃗ (s) = Z⃗(s) ∧ T⃗ (s) = vξ′(s) sin ξ(s)⃗t(s) + (1 + vξ′(s) cos ξ(s)) b⃗(s)√(
1 + v

(
τ(s)

∥W⃗ (s)∥

)′)2
+
(

v
(

κ(s)
∥W⃗ (s)∥

)′)2

and
Y⃗ (v) = Z⃗(v) ∧ T⃗ (v) = − sin ξ(s)⃗t(s) + cos ξ(s)⃗b(s)

This completes the proof of the theorem.

Theorem 3.10. Let Λ be a ruled surface and ξ(s) be the angle between the Darboux vector and the
binormal vector. The singular point belonging to the ruled surface is given by P (s0, v0) =

(
s0, cos ξ(s0)

ξ′(s0)

)
.

Proof.
To determine the normal vector for a singular point, the denominator of the normal vector must be
zero. As a result, when performing the necessary operations, the singular point becomes P (s0, v0) =(
s0, cos ξ(s0)

ξ′(s0)

)
.

Taking into account Equation 1, we have the following result.

Corollary 3.11. The normal and the geodesic curvatures of the ruled surface in terms of angle ξ(s)
can be expressed as follows:

kn(s) = −(cos ξ(s) + vξ′(s))∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) , kn(v) = 0

and

tg(s) = sin ξ(s)∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) , tg(v) = 0
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Using the angle ξ(s), quaternionic shape operators are given by

Q(s) = −(cos ξ(s) + vξ′(s))∥W⃗ (s)∥
1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) + sin ξ(s)∥W⃗ (s)∥

1 + vξ′(s)(2 cos ξ(s) + vξ′(s)) n⃗(s)

and
Q(v) = kn(v) + tg(v)Z⃗(v) = 0

Theorem 3.12. Let Λ be a ruled surface and ξ(s) be the angle between the Darboux vector and
the binormal vector. Using the quaternionic operators, the shape operators S(T⃗ (s)) and S(T⃗ (v)) are
obtained by

S(T⃗ (s)) = Q(s) × T⃗ (s) = −(cos ξ(s)∥W⃗ (s)∥+vξ′(s)∥W⃗ (s)∥(cos 2ξ(s)+vξ′(s) cos ξ(s)+1))⃗t(s)
(1+vξ′(s)(2 cos ξ(s)+vξ′(s)))3/2

+ (sin ξ(s)∥W⃗ (s)∥+vξ′(s)∥W⃗ (s)∥(sin 2ξ(s)+vξ′(s) sin ξ(s)))⃗b(s)
(1+vξ′(s)(2 cos ξ(s)+vξ′(s)))3/2

and
S(T⃗ (v)) = Q(v) × T⃗ (v) = 0⃗

Proof.
The proof of the theorem is similar to the proof of Theorem 3.3.

Corollary 3.13. According to ξ(s), the angle between Darboux and binormal vectors, the cosine and
sine of the angle of between T⃗ (s) and Q(s) × T⃗ (s) are as follows:

cos 2φ(s) = − cos ξ(s) − vξ′(s)√
1 + vξ′(s)(2 cos ξ(s) + vξ′(s))

and
sin 2φ(s) = sin ξ(s)√

1 + vξ′(s)(2 cos ξ(s) + vξ′(s))

Theorem 3.14. The ruled surface Λ is flat. The mean curvature H of this surface is obtained by

H = ∥W⃗ (s)∥
2
∣∣1 + vξ′(s)

∣∣
Proof.
The proof of the theorem is similar to the proof of Theorem 3.7.

Example 3.15. The various position of the generating unit Darboux vector is obtained from the
ruled surface. Such a surface has a parameterization,

Λ⃗(s, v) =
(√

1 + s2, ln(s +
√

1 + s2), s + v
)

If we choose the quaternion as p(s) = −
√

2
2 −

√
2

2
√

1+s2 (1, s, 0), then we can write the surface with
quaternions as follows:

Λ⃗(s, v) =
(√

1 + s2, ln(s +
√

1 + s2), s
)

+ 1√
2 + 2s2

vp(s) × (s, 1,
√

1 + s2)

This ruled surface is provided in Figure 1.
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Figure 1. The ruled surface drawn by unit Darboux vector and the base curve of the surface

The quaternionic shape operator, denoted as Q(s), is a mathematical construct that can be used to
analyze the shape of the surface. It is calculated as

Q(s) = kn(s) + tg(s)Z⃗ = 1
2
√

2(1 + s2)
− 1

2
√

2(1 + s2)3/2 (1, −s, 0)

The shape operator, denoted as S(T⃗ (s)), is obtained by taking the quaternionic product of the quater-
nionic shape operator and the tangent vector T⃗ (s). The tangent vector is a vector that is tangent to
the surface at a particular point and points in the direction of the surface at that point. The shape
operator is then calculated as

S(T⃗ (s)) = Q(s) × T⃗ (s) = 1
2
√

2(1 + s2)3/2 (s, 1, 0)

The shape operator for the parameter v, denoted as S(T⃗ (v)), is equal to 0⃗. Hence, by Equations 3
and 4, it is easy to express Gauss and mean curvatures as

K = 0 and H =
√

2
4(1 + s2)5/2

This means that the surface is developable and is not a minimal surface. The operator Q(s) rotates
the tangent vector T⃗ (s) in the tangent plane of the ruled surface and around the normal vector Z⃗(s)
of the ruled surface. In this case, the rotation matrix for the unit quaternion q = cos φ + sin φZ⃗(s) is
given as

R1 = 1√
2(1 + s2)


√

2 − s2(
√

2 − 1) −s(
√

2 − 1) s
√

1 + s2

−s(
√

2 − 1) 1 1
−s

√
1 + s2 −1 1

1+s2


where Z⃗(s) =

(
1√

1+s2 , − s√
1+s2 , 0

)
.

4. Conclusion

Quaternions are an essential topic in animation, robot kinematics, and rotational motion in 3-dimensional
space. Ruled surfaces have a vital role in technology (especially robot end-effectors). Moreover, it is
known that Gauss and mean curvatures and the shape operator are the invariants in the surface of
theory. These invariants are quaternionically calculated for the unit Darboux ruled surface.



Journal of New Theory 42 (2023) 43-54 / Characterizations of Unit Darboux Ruled Surface with Quaternions 53

In this study, we combine some points on two critical subjects. Besides, we provide some theorems
related to the invariants and then show how to find a rotation matrix. Based on the quaternionic
shape operator and the rotation matrix, we derive different situations of the invariants and rotations:
one from the curvatures of the base curve and the other one by the angle ξ(s) between W⃗ (s) and b⃗(s).
Thus, we observe what happens when we express the relation form of the frame equations using ξ

instead of the curvatures. Furthermore, we obtain the shape operators by revolving tangent vectors
of parameter curves around the surface’s normal vector through twice the angle of φ and then get
rotation matrices.

In further research, it would be valuable to replicate similar approaches in different spaces, such as
Galileo or Lorentz spaces. These alternative spaces could potentially yield different results and provide
a deeper understanding of the results herein being studied.
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