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Research Article

Abstract − In this paper, we present a new definition, referred to as the Francois sequence,
related to the Lucas-like form of the Leonardo sequence. We also introduce the hyperbolic
Leonardo and hyperbolic Francois quaternions. Afterward, we derive the Binet-like formulas
and their generating functions. Moreover, we provide some binomial sums, Honsberger-like,
d’Ocagne-like, Catalan-like, and Cassini-like identities of the hyperbolic Leonardo quaternions
and hyperbolic Francois quaternions that allow an understanding of the quaternions’ proper-
ties and their relation to the Francois sequence and Leonardo sequence. Finally, considering
the results presented in this study, we discuss the need for further research in this field.

Keywords Fibonacci numbers, Leonardo numbers, Lucas numbers, Francois numbers, hyperbolic quaternions

Mathematics Subject Classification (2020) 11B39, 05A15

1. Introduction

The algebra of hyperbolic quaternions in abstract algebra is a non-associative algebra over real numbers
with elements of the form

q = q0e0 + q1e1 + q2e2 + q3e3

where q0, q1, q2, and q3 are real numbers and e0, e1, e2, and e3 are the standard basis in R4. The
hyperbolic quaternion multiplication is defined using the rules

e2
0 = e2

1 = e2
2 = e2

3 = 1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1, and e3e1 = −e1e3 = e2

This algebra is also non-commutative. Let q = q0e0+q1e1+q2e2+q3e3 and p = p0e0+p1e1+p2e2+p3e3

be any two hyperbolic quaternions. Then, the addition and subtraction of the hyperbolic quaternions
are

q ∓ p = (q0 ∓ p0)e0 + (q1 ∓ p1)e1 + (q2 ∓ p2)e2 + (q3 ∓ p3)e3

and multiplication of the hyperbolic quaternions is

qp = (q0e0 + q1e1 + q2e2 + q3e3)(p0e0 + p1e1 + p2e2 + p3e3)
= (q0p0 + q1p1 + q2p2 + q3p3)e0 + (q0p1 + q1p0 + q2p3 − q3p2)e1

+ (q0p2 − q2p0 + q1p3 + q3p1)e2 + (q0p3 + q3p0 − q1p2 + q2p1)e3
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Moreover, for k ∈ R, the multiplication by scalar is

kq = kq0e0 + kq1e1 + kq2e2 + kq3e3

and conjugate and norm of the hyperbolic quaternion q are

q = q0e0 − q1e1 − q2e2 − q3e3

and
||q|| =

√
|qq| =

√
q2

0 − q2
1 − q2

2 − q2
3

respectively. One of the non-associative hyperbolic number systems, ideal for studying space-time
theories in relativities, is the hyperbolic quaternions. Many studies have been published on hyperbolic
quaternions. Macfarlane yields the hyperbolic counterpart of the spherical quaternions in [1]. Kösal
introduces hyperbolic quaternions and their algebraic properties in [2]. The four-dimensional real
algebra of bihyperbolic numbers is studied by Bilgin and Ersoy in [3]. An alternative representational
method is proposed for the formulation of classical and generalized electromagnetism in the case of
the existence of magnetic monopoles and massive photons after presenting the hyperbolic quaternion
formalism by Demir et al. in [4]. Kuruz introduces hyperbolic matrices with hyperbolic number entries
in [5]. Assis presents some properties of mathematical and physical interest in generalized algebras of
two, three, and four dimensions in [6]. The Fibonacci and Lucas sequences {Fn}n≥0 and {Ln}n≥0 are
defined by two order recurrences, respectively,

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn (1)

and

L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln (2)

Here, Fn and Ln are the nth Fibonacci and Lucas numbers. First few terms of these sequences are,
respectively,

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

and
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199

The Recurrences 1 or 2 involve the characteristic equation

x2 − x − 1 = 0 (3)

The roots of Equation 3 are

α = 1 +
√

5
2 and β = 1 −

√
5

2 (4)

Then, the following relations can be derived

α + β = 1 α − β =
√

5 αβ = −1

Therefore, the Binet formulas for the Fibonacci and Lucas sequences are, respectively,

Fn = αn − βn

α − β
and Ln = αn + βn

More information for the Fibonacci and Lucas numbers are given in [7, 8]. The Leonardo sequence
{Ln}n≥0 is defined by recurrence

L0 = 1, L1 = 1, and Ln+2 = Ln+1 + Ln + 1
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where Ln is the nth Leonardo number. An expression of the relationship between Leonardo and
Fibonacci numbers is

Ln = 2Fn+1 − 1, n ≥ 0

The Binet-like formula for the Leonardo sequence is

Ln = 2
(

αn+1 − βn+1

α − β

)
− 1 (5)

where α and β are given Equation 4. Other studies about Leonardo numbers can be listed in [9–15].

2. The Francois Numbers

This section presents a new definition, called the Francois sequence, related to the Lucas-like form of
the Leonardo sequence as follows:

Definition 2.1. The Francois sequence {Fn} is defined by

Fn = Fn−1 + Fn−2 + 1, n ≥ 2 (6)

with initial conditions F0 = 2 and F1 = 1. Here, Fn is the nth Francois number.

First few terms of this sequence are 2, 1, 4, 6, 11, 18, 30, 49, 80, 130, 211. The Recurrence 6 can also
be written as follows

Fn+3 = 2Fn+2 − Fn (7)

In fact, by the equalities Fn+3 = Fn+2 + Fn+1 + 1 and Fn+2 = Fn+1 + Fn + 1, we reach Equation 7.

Equation 7 satisfies the characteristic equation

t3 − 2t2 + 1 = 0 (8)

The roots of Equation 8 are 1, α, and β. Here, the other roots except 1 are the same as those of
Equation 3. Taking F0 = 2, F1 = 1, and F2 = 4, we can easily reach the following result.

Theorem 2.2. The Binet-like formula for the Francois sequence is

Fn = αn + βn + αn+1 − βn+1

α − β
− 1, n ≥ 0 (9)

where α and β are given in Equation 4.

Proof.
Assume that Fn = aαn + bβn + c. Thus, we have

F0 = a + b + c = 2

F1 = aα + bβ + c = 1

and
F2 = aα2 + bβ2 + c = 4

By performing the solution with the Gaussian elimination method, we can find that

a = 1 + α

α − β
, b = 1 − β

α − β
, and c = −1

This proof is complete.
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Theorem 2.3. For n ≥ 0, the following identity is valid:

Fn = Ln + Fn+1 − 1, n ≥ 0

Proof.
The proof is clear by Theorem 2.2.

Studies similar to the Leonardo and Francois numbers can be seen in [9, 16–18]. The hyperbolic
Fibonacci and hyperbolic Lucas quaternions are defined as follows, respectively,

HFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

and

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3

The Binet-like formulas for the hyperbolic Fibonacci and hyperbolic Lucas quaternions are as the
form, respectively,

HFn = α̂αn − β̂βn

α − β
(10)

and

HLn = α̂αn + β̂βn (11)

where
α̂ = e0 + αe1 + α2e2 + α3e3

and
β̂ = e0 + βe1 + β2e2 + β3e3

The hyperbolic Fibonacci and hyperbolic Lucas quaternions and some of their generalizations are
given in [19–23].

3. Hyperbolic Leonardo and Hyperbolic Francois Quaternions

In this section, we define the hyperbolic Leonardo and hyperbolic Francois quaternions, and we pro-
vide their Binet-like formulas and generating functions. Then, we obtain certain binomial sums,
Honsberger-like, d’Ocagne-like, Catalan-like, and Cassini-like identities of the hyperbolic Leonardo
quaternions.

Definition 3.1. The hyperbolic Leonardo quaternion sequence {HLn}n≥0 is defined by

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3 (12)

where Len is the nth Leonardo number and e0, e1, e2, and e3 are units of the hyperbolic quaternions.

Definition 3.2. The hyperbolic Francois quaternion sequence {HFn}n≥0 is defined by

HFn = Fne0 + Fn+1e1 + Fn+2e2 + Fn+3e3

where Fn is the nth Francois number and e0, e1, e2, and e3 are units of the hyperbolic quaternions.

Theorem 3.3. (Binet-like Formula) The Binet-like formula for the hyperbolic Leonardo quater-
nions is

HLn = 2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂, n ≥ 0 (13)
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where
α̂ = e0 + αe1 + α2e2 + α3e3

β̂ = e0 + βe1 + β2e2 + β3e3

and
1̂ = e0 + e1 + e2 + e3

Proof.
From Identities 5 and 12,

HLn = Lne0 + Ln+1e1 + Ln+2e2 + Ln+3e3

=
[
2
(

αn+1 − βn+1

α − β

)
− 1

]
e0 +

[
2
(

αn+2 − βn+2

α − β

)
− 1

]
e1 +

[
2
(

αn+3 − βn+3

α − β

)
− 1

]
e2

+
[
2
(

αn+4 − βn+4

α − β

)
− 1

]
e3

= 2
(

αn+1

α − β
(e0 + αe1 + α2e2 + α3e3) − βn+1

α − β
(e0 + βe1 + β2e2 + β3e3)

)
− (e0 + e1 + e2 + e3)

= 2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

is obtained.

Note that the hyperbolic Leonardo quaternion sequence can be expressed in terms of the hyperbolic
Fibonacci quaternion as:

HLn = 2HFn+1 − 1̂, n ≥ 0

where HFn is nth the hyperbolic Fibonacci quaternion.

Theorem 3.4. (Binet-like Formula) The Binet-like formula for the hyperbolic Francois quaternions
is

HFn = α̂αn + β̂βn + α̂αn+1 − β̂βn+1

α − β
− 1̂, n ≥ 0 (14)

where
α̂ = e0 + αe1 + α2e2 + α3e3

β̂ = e0 + βe1 + β2e2 + β3e3

and
1̂ = e0 + e1 + e2 + e3

Proof.
It is proved similarly to the proof of Theorem 3.3.

Note that the hyperbolic Francois quaternion sequence can be expressed in terms of the hyperbolic
Fibonacci and hyperbolic Lucas quaternion as:

HFn = HLn + HFn+1 − 1̂, n ≥ 0

where HLn and HFn is nth the hyperbolic Lucas and hyperbolic Fibonacci quaternions, respectively.
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Theorem 3.5. (Generating Function) The generating function for the hyperbolic Leonardo quater-
nions is

GHL(x) = A − Bx + Cx2

1 − 2x + x3

where
A = e0 + e1 + 3e2 + 5e3

B = e0 − e1 + e2 + e3

and
C = e0 − e1 − e2 − 3e3

Proof.
Let

GHL(x) =
∞∑

n=0
HLnxn = HL0 + HL1x + HH2x2 + HL3x3 + . . . + HLnxn + . . .

be generating function of the hyperbolic Leonardo quaternions. Assume that multiply every side of
the expansions above by −2x and x3 as follows:

−2xGHL(x) = −2HL0x − 2HL1x2 − 2HL2x3 − 2HL3x4 − . . . − 2HLnxn+1 − . . .

and

x3GHL(x) = HL0x3 + HL1x4 + HH2x5 + HL3x6 + . . . + HLnxn+3 + . . .

Then, we write

(1 − 2x + x3)GHL(x) = HL0 + (HL1 − 2HL0)x + (HL2 − 2HL1)x2 + (HL3 − 2HL2 + HL0)x3 + . . .

+(HLn − 2HLn−1 + HLn−3)xn + . . .

By using the values,
HL0 = e0 + e1 + 3e2 + 5e3

HL1 = e0 + 3e1 + 5e2 + 9e3

HL2 = 3e0 + 5e1 + 9e2 + 15e3

HL3 = 5e0 + 9e1 + 15e2 + 25e3

and
HLn − 2HLn−1 + HLn−3 = 0

are obtained.

Theorem 3.6. (Generating Function) The generating function for the hyperbolic Francois quater-
nions is

GHF (x) = E − Fx + Gx2

1 − 2x + x3

where
E = 2e0 + e1 + 4e2 + 6e3

F = 3e0 − 2e1 + 2e2 + e3

and
G = 2e0 − 2e1 − e2 − 4e3
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Proof.
The proof is similar to one of Theorem 3.5.

Theorem 3.7. (Exponential Generating Function) The exponential generating function for the
hyperbolic Leonardo quaternions is

EHL(x) = 2
(

α̂αeαx − β̂βeβx

α − β

)
− 1̂ex

Proof.
Using Equation 13,

EHL(x) =
∞∑

n=0
HLn

xn

n!

=
∞∑

n=0

(
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

)
xn

n!

= 2α̂α

α − β

∞∑
n=0

(αx)n

n! − 2β̂β

α − β

∞∑
n=0

(βx)n

n! − 1̂
∞∑

n=0

xn

n!

= 2
(

α̂αeαx − β̂βeβx

α − β

)
− 1̂ex

is obtained.

Theorem 3.8. (Exponential Generating Function) The exponential generating function for the
hyperbolic Francois quaternions is

EHF (x) = α̂αeαx + β̂βeβx + α̂αeαx − β̂βeβx

α − β
− 1̂ex

Proof.
The proof is similar to one of Theorem 3.7.

Theorem 3.9. (Binomial Sum) Let m be a positive integer. Then,
m∑

n=0

(
m

n

)
HLn = HL2m + 1̂(1 − 2m)

Proof.
Considering Equations 3 and 13 and the binomial formula,

m∑
n=0

(
m

n

)
HLn =

m∑
n=0

(
m

n

)[
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

]

= 2α̂α

α − β

m∑
n=0

(
m

n

)
αn − 2β̂β

α − β

m∑
n=0

(
m

n

)
βn − 1̂

m∑
n=0

(
m

n

)

= 2α̂α

α − β
(α + 1)m − 2β̂β

α − β
(β + 1)m − 1̂2m

= 2
(

α̂α2m+1 − β̂β2m+1

α − β

)
− 1̂ + 1̂ − 1̂2m

= HL2m + 1̂(1 − 2m)

is obtained.
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Corollary 3.10. Let m be a positive integer. Then,
m∑

k=0

(
m

k

)
HLn−k = HLn+m + 1̂(1 − 2m), n ≥ 0

Proof.
Considering Equations 3 and 13 and the binomial formula,

m∑
k=0

(
m

k

)
HLn−k =

m∑
k=0

(
m

k

)[
2
(

α̂αn−k+1 − β̂βn−k+1

α − β

)
− 1̂

]

=
m∑

k=0

(
m

k

)[
2
(

α̂αm−kαn−m+1 − β̂βm−kβn−m+1

α − β

)
− 1̂

]

= 2α̂αn−m+1

α − β

m∑
k=0

(
m

k

)
αm−k1k − 2β̂βn−m+1

α − β

m∑
k=0

(
m

k

)
βm−k1k − 1̂

m∑
k=0

(
m

k

)

= 2α̂αn−m+1

α − β
(α + 1)m − 2β̂βn−m+1

α − β
(β + 1)m − 1̂2m

= 2
(

α̂αn+m+1 − β̂βn+m+1

α − β

)
− 1̂ + 1̂ − 1̂2m

= HLn+m + 1̂(1 − 2m)

is obtained.

Some identities, such as Honsberger, dOcagne, Catalan, and Cassini identities for Fibonacci and its
generating, have been studied by many authors (see [19,24,25]). Here, we obtain similar identities for
the hyperbolic Leonardo quaternion.

Theorem 3.11. (Honsberger-like Identity) Let HLn be nth hyperbolic Leonardo quaternion.
The following relation is satisfied:

HLn+1HLm + HLnHLm−1 = 4
(

α̂2αn+m − β̂2βn+m

α − β

)
− 1̂ (HLn+1 + HLm) , n, m ≥ 0

Proof.
Using Equation 13,

HLn+1HLm + HLnHLm−1 =
[
2
(

α̂αn+1−β̂βn+1

α−β

)
− 1̂

] [
2
(

α̂αm−β̂βm

α−β

)
− 1̂

]
+
[
2
(

α̂αn−β̂βn

α−β

)
− 1̂

] [
2
(

α̂αm−1−β̂βm−1

α−β

)
− 1̂

]
= 4

(
(α̂)2αn+m+1−α̂β̂αn+1βm−β̂α̂βn+1αm+(β̂)2βn+m+1

(α−β)2

)
−21̂

(
α̂αn+1−β̂βn+1

α−β

)
− 21̂

(
α̂αm−β̂βm

α−β

)
+ 1̂2

+4
(

(α̂)2αn+m−1−α̂β̂αnβm−1−β̂α̂βnαm−1+(β̂)2βn+m−1

(α−β)2

)
−21̂

(
α̂αn−β̂βn

α−β

)
− 21̂

(
α̂αm−1−β̂βm−1

α−β

)
+ 1̂2

= 4
(

α̂2αn+m − β̂2βn+m

α − β

)
− 1̂ (HLn+1 + HLm)

is obtained.
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Theorem 3.12. (d’Ocagne-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. For
n, m ≥ 0,

HLmHLn+1 − HLm+1HLn = 1̂ (HLm+1 + HLn − HLm − HLn+1) + 4
(

α̂β̂αmβn − β̂α̂βmαn

α − β

)
+ 21̂2

Proof.
Using Equation 13,

HLmHLn+1 − HLm+1HLn =
[
2
(

α̂αm+1 − β̂βm+1

α − β

)
− 1̂

] [
2
(

α̂αn+2 − β̂βn+2

α − β

)
− 1̂

]

−
[
2
(

α̂αm+2 − β̂βm+2

α − β

)
− 1̂

] [
2
(

α̂αn+1 − β̂βn+1

α − β

)
− 1̂

]

= 4
(

(α̂)2αn+m+3 − α̂β̂αm+1βn+2 − β̂α̂βm+1αn+2 + (β̂)2βn+m+3

(α − β)2

)

− 21̂
(

α̂αm+1 − β̂βm+1

α − β

)
− 21̂

(
α̂αn+2 − β̂βn+2

α − β

)
+ 1̂2

− 4
(

(α̂)2αn+m+3 − α̂β̂αm+2βn+1 − β̂α̂βm+2αn+1 + (β̂)2βn+m+3

(α − β)2

)

+ 21̂
(

α̂αm+2 − β̂βm+2

α − β

)
+ 21̂

(
α̂αn+1 − β̂βn+1

α − β

)
− 1̂2

= 1̂ (HLm+1 + HLn − HLm − HLn+1) + 4
(

α̂β̂αmβn − β̂α̂βmαn

α − β

)
+ 21̂2

is obtained.

Theorem 3.13. (Catalan-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. For
n ≥ r ≥ 0, the following relation is satisfied:

HLn−rHLn+r − HL2
n = (−1)n−r

(
α̂β̂βr + β̂α̂αr

α − β

)
Fr + 1̂ (2HLn − HLn−r − HLn+r) + 21̂2

Proof.
Using Equality 13,

HLn−rHLn+r − HL2
n =

[
2
(

α̂αn−r−β̂βn−r

α−β

)
− 1̂

] [
2
(

α̂αn+r−β̂βn+r

α−β

)
− 1̂

]
−
[
2
(

α̂αn−β̂βn

α−β

)
− 1̂

] [
2
(

α̂αn−β̂βn

α−β

)
− 1̂

]
= 4

(
(α̂)2α2n−α̂β̂αn−rβn+r−β̂α̂βn−rαn+r+(β̂)2β2n

(α−β)2

)
−21̂

(
α̂αn−r−β̂βn−r

α−β

)
− 21̂

(
α̂αn+r−β̂βn+r

α−β

)
+ 1̂2

−4
(

(α̂)2α2n−α̂β̂αnβn−β̂α̂βnαn+(β̂)2β2n

(α−β)2

)
+21̂

(
α̂αn−β̂βn

α−β

)
+ 21̂

(
α̂αn−β̂βn

α−β

)
− 1̂2

= (−1)n−r

(
α̂β̂βr + β̂α̂αr

α − β

)
Fr + 1̂ (2HLn − HLn−r − HLn+r) + 21̂2

is obtained.



Journal of New Theory 42 (2023) 74-85 / On the Hyperbolic Leonardo and Hyperbolic Francois Quaternions 83

Corollary 3.14. (Cassini-like Identity) Let HLn be nth hyperbolic Leonardo quaternion. The
following relation is satisfied:

HLn−1HLn+1 − HL2
n = (−1)n−1

(
α̂β̂β + β̂α̂α

α − β

)
+ 1̂ (2HLn − HLn−1 − HLn+1) + 21̂2, n ≥ 0

Proof.
We take 1 instead of r in Theorem 3.13 to prove this theorem.

Proofs of the following propositions can be easily proved using Equations 5, 9–11, 13, and 14.

Proposition 3.15. For n ≥ 0, the following identities are valid:

i. HLn+1e0 − HLn+2e1 − HLn+3e2 − HLn+4e3 = −2Ln+5 − 3

ii. HLn+1e0 + HLn+2e1 + HLn+3e2 + HLn+4e3 = 2HLn + 2Ln+5 + 3

Proposition 3.16. The following identities are valid:

i. HLn+rFn+r = 2
5
(
HL2n+2r+1 − (−1)n+rHL1

)
− 1̂Fn+r, n, r ≥ 0

ii. HLn−rFn−r = 2
5 (HL2n−2r+1 − (−1)n−rHL1) − 1̂Fn−r, n ≥ r ≥ 0

iii. HLn−rFn+r = 2
5
(
HL2n+1 − (−1)n+rHL1−2r

)
− 1̂Fn−r, n ≥ r ≥ 0

iv. HLn+rFn−r = 2
5 (HL2n+1 − (−1)n−rHL2r+1) − 1̂Fn+r, n ≥ r ≥ 0

v. HLn+rLn+r = 2
(
HF2n+2r+1 + (−1)n+rHF1

)
− 1̂Ln+r, n, r ≥ 0

vi. HLn−rLn−r = 2 (HF2n−2r+1 + (−1)n−rHF1) − 1̂Ln−r, n ≥ r ≥ 0

vii. HLn−rLn+r = 2 (HF2n+1 + (−1)n−rHF2r+1) − 1̂Ln+r, n ≥ r ≥ 0

viii. HLn+rLn−r = 2
(
HF2n+1 + (−1)n+rHF1−2r

)
− 1̂Ln−r, n ≥ r ≥ 0

ix. HFn+rFn+r = HF2n+2r − (−1)n+rHF0 + 1
5
(
HL2n+2r+1 − (−1)n+rHL1

)
− 1̂Fn+r, n, r ≥ 0

x. HFn−rFn−r = HF2n−2r − (−1)n−rHF0 + 1
5 (HL2n−2r+1 − (−1)n−rHL1) − 1̂Fn+r, n ≥ r ≥ 0

xi. HFn−rFn+r = HF2n − (−1)n+rHF−2r + 1
5
(
HL2n+1 − (−1)n+rHL1−2r

)
− 1̂Fn+r, n ≥ r ≥ 0

xii. HFn+rFn−r = HF2n − (−1)n−rHF2r + 1
5 (HL2n+1 − (−1)n−rHL2r+1) − 1̂Fn−r, n ≥ r ≥ 0

xiii. HFn+rLn+r = HL2n+2r + (−1)n+rHL0 + HF2n+2r+1 − (−1)n+rHF1 − 1̂Ln+r, n, r ≥ 0

xiv. HFn−rLn−r = HL2n−2r + (−1)n−rHL0 + HF2n−2r+1 − (−1)n−rHF1 − 1̂Ln+r, n ≥ r ≥ 0

xv. HFn−rLn+r = HL2n + (−1)n+rHL−2r + HF2n+1 − (−1)n+rHF1−2r − 1̂Ln+r, n ≥ r ≥ 0

xvi. HFn+rLn−r = HL2n + (−1)n−rHL2r + HF2n+1 − (−1)n−rHF2r+1 − 1̂Ln−r, n ≥ r ≥ 0

Proposition 3.17. For n ≥ 0, the following identities are valid:

i. HLn + HFn = 3HFn+1 + HLn − 21̂

ii. HFn − HLn = HFn+1 + HLn

iii. HLnLn+HFnFn = 2 (HF2n+1 + (−1)nHF1)+HF2n−(−1)nHF0+ 1
5 (HL2n+1 − (−1)nHL1)−1̂ (Ln + Fn)

iv. HLnLn −HFnFn = 2 (HF2n+1 + (−1)nHF1)−HF2n +(−1)nHF0 − 1
5 (HL2n+1 − (−1)nHL1)−1̂ (Ln − Fn)
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4. Conclusion

In the present study, we consider the Leonardo and Francois numbers related to the Fibonacci and
Lucas numbers, respectively. We define and investigate the hyperbolic Leonardo and hyperbolic Fran-
cois quaternions. We derive the Binet-like formulas, generating and exponential generating functions
for these new quaternions. We provide certain binomial sums. Finally, we establish well-known iden-
tities for these quaternions, such as the Honsberger-like, d’Ocagne-like, Catalan-like, and Cassini-like
identities. In the future, researchers may examine many more identities of the hyperbolic Leonardo
and Francois quaternions. In addition, these quaternions can be used in interdisciplinary studies.
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[13] F. Kürüz, A. Dağdeviren, P. Catarino, On Leonardo Pisano Hybrinomials, Mathematics 9 (22)
(2021) 2923 9 pages.
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