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Abstract. In this study, 3D magnetohydrodynamic (MHD) equations are

considered in array of cubic domains having insulated external boundaries

separated by conducting thin walls. In order to obtain stable solutions, sta-
bilized version of the Galerkin finite element method is used as a numerical

scheme. Different problem parameters and configurations are tested in order

to visualize the accuracy and efficiency of the proposed algorithm. Obtained
solutions are visualized as contour lines of 2D slices taken from the obtained

3D domain solutions.

1. Introduction

Magnetohydrodynamic (MHD) flow is the popular working area both for the
engineers and scientists because of its popular and up-to-date modern applications
among different areas such as in astronomy, geophysics, industry, biology and in
engineering. The general theory of the MHD is based on the Navier-Stokes equa-
tions, Maxwell equations through Ohm’s law with the Lorentz force which brings a
system of coupled partial differential equations as a mathematical model. One can
find the general theory and corresponding equations in references [1–3]. The ana-
lytical solutions of the MHD flow problem have been already given by Dragos [3],
Shercliff [2] and Davidson [4] for the single duct case having for the circular or
square cross sectional channels. Behind this exact solutions, there are considerable
amount of numerical studies in the literature using different numerical schemes for
several problem domain configurations (see [5–17] and references there in). Due
to the original form of the equations, there are also many important studies about
the 3D cases of the MHD equations. As far as our knowledge, Salah et al. [18]
provided the first basic study using FEM for the solution of 3D incompressible

2020 Mathematics Subject Classification. 65N30, 76E25, 76W05.

Keywords. 3D MHD flow, stabilized FEM, array of cubic domains.

shaydin@ktu.edu.tr 0000-0002-1419-9458.

©2023 Ankara University
Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics

839



840 S. H. AYDIN

MHD flows. Additionally, solutions of the non-linear MHD systems using two-level
iterative finite element algorithms with Newton iteration for the 2D and 3D cases
in [19–21]. One can find some theoretical results about the convergence and optimal
convergence analysis of iterative solution procedures in references [22, 23]. Li and
Zheng [24] studied about 3D MHD equations with mixed finite element method
using Newton-Krylov and Picard-Krylov solvers and compared the methods over
some test problems. Finally, even there are dozens of MHD papers in recent years,
let’s consider just a few of them. Incompressible MHD equations are analyzed
in the sense of second-order temporal accuracy and unconditional energy stabil-
ity aspects in [25]. The numerical simulation of the 3D MHD equations has been
given for the large Reynolds number by Skala et al. [26]. Also 3D MHD duct flow
was studied for the case of insulating flow channel on poloidal ducts in [27]. As
a finite volume application of 3D MHD equations are solved in conservative form
by Huba and Lyon [28] and on unstructured Lagrangian meshes by Barnes and
Rousculp [29]. As an other 3D study of the MHD equations, Wu [30] worked on
about the priori bounds, real analyticity and global regularity conditions. Due to
the it’s importance, many other authors also analyzed the regularity criteria of the
3D MHD equations [31–35]. Finally, there are many other applications of the 3D
MHD equations in different areas such as heat transfer [36], massive-star wind [37],
intermittent initial data [38] and large initial data [39].

In this study we consider the stabilized FEM solution of the magnetohydrody-
namic flow equations in an array of cubic domains connected with the electrically
conducting thin walls. No-slip boundary conditions are imposed over all the walls
for the velocity component. The continuity of the magnetic field between the cu-
bic domains and walls are satisfied with the coupling of the MHD equations and
Laplace, respectively. The influence of the walls for the both co-flow and counter-
flow cases are considered for different problem configurations. As an application,
these types of problem configuration may be encountered in the heat and mass
transfer process of fusion blanket. Analytical solution of this problem has been
already given by Bluck [40] for one, two and three ducts cases in 2D using Fourier
series approach. Previously, we have also obtained the stabilized FEM solution
of MHD flow in an array of electromagnetically coupled rectangular ducts for the
arbitrary wall thickness and different problem configurations again defined on 2D
case [42]. Therefore, this work can be assumed as the 3D extension of that study
with different directions of the externally applied magnetic field of the previous pa-
per and some part of this study has been already presented in the conference [43].
We tried to obtain stable solutions also for the high values of the Hartmann number
which appears as a constant parameter in the equations some how similar to the
convection coefficient. In such a case problem takes convection dominated behavior
in which cases some boundary and/or interior layers may exists depending on the
value of the problem parameter. Noticed that, the finite element method (FEM) is
the most popular, powerful and convenient numerical method for the solutions of
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the such a system of partial differential equations. In recent years, many researchers
performed different extended versions of the FEM in order to obtain the approxi-
mate solutions of the wide variety of engineering problems. But, the Galerkin finite
element version is still the basic one among them. However, using the standard
Galerkin finite element method brings some numerical instabilities in the solutions
of such a convection-dominated problems. In order to eliminate these difficulties,
as a first possibility, one can choose the small mesh size depending on the value
of the problem parameter. Unfortunately, this approach increases the size of the
resulting linear system so the computational cost. Alternatively, it is possible to
use some stabilization technique in the numerical formulation. The most popu-
lar stabilization technique is referred as the Streamline Upwind Petrov-Galerkin
(SUPG) method [44] which achieves stability by adding mesh-dependent terms to
the standard Galerkin FEM formulation. After considering the stabilization in the
FEM, many authors are used this idea in their research. Salah et al. [45] and
Shadid et al. [46] are considered the stabilized finite element formulation for the
solution of the 3D MHD equations and for the 2D case in [47–51] (see also refer-
ences therein). Also, stabilized FEM formulation is applied to the many other flow
problems [52–55]. In this study, we have also used SUPG in the numerical scheme.

The rest of the paper is organized as follows: In the next section, we describe the
mathematical modeling and the FEM formulation with SUPG type stabilization.
Numerical results and discussions are given in Section 3 to show the efficiency of
the proposed approach. Finally, some concluding remarks are proposed in Section
4.

2. Mathematical Modelling

The non-dimensional MHD equations which are obtained from Navier-Stokes
equations of continuum mechanics and Maxwell’s equations of electromagnetic field
through Ohm’s law in an array of cubic ducts Ωi with length a separated by con-
ducting walls Wi with thickness b at the outher and 2b at the interior ( [3, 40])
as

∇2Vi +Mix

∂Bi

∂x
+Miy

∂Bi

∂y
+Miz

∂Bi

∂z
= −Pi

∇2Bi +Mix

∂Vi

∂x
+Miy

∂Vi

∂y
+Miz

∂Vi

∂z
= 0

in Ωi (1)

∇2Bw
i = 0 in Wi (2)

where Vi is the velocity of the fluid and Bi is induced magnetic field on the duct
Ωi with no-slip conditions Vi = 0 on all the duct boundaries ∂Ωi and on all the
walls Wi (See Figure 1). Conditions for the induced magnetic are Bw

i = Bi on the
interior sides of the ducts, and Bw

i = 0 and Bi = 0 on the external boundaries. Pi is

the pressure gradient in Ωi, The Hartmann number Ha is defined as Ha = B0a
√

σ
η

with characteristic length a, electric conductivity σ and viscosity coefficient η. B0
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is the intensity of the applied magnetic field. αi and βi are the angles between
z-axis and x-axis on Ducti. Then the vector Mi is defined as

Mi = (Mix ,Miy ,Miz ) (3)

with the components Mix = cosβi sinαiHa, Miy = sinβi sini αHa, Miz =
cosαiHa .

Figure 1. Problem configuration for two cubes

Standard Galerkin FEM type weak formulation by employing the linear function
space L = (H1

0 (Ω))
2 which is the Sobolev subspace of the space of square integrable

functions over the domain Ω as [56]: Find {Vi, Bi, B
w
i } ∈ {L× L× L} such that

a(∇Vi,∇wi1)− b(M · ∇Bi, wi1) + a(∇Bi,∇wi2) + b(M · ∇Vi, wi2) + a(∇Bw
i ,∇wi3)

= b(Pi, wi1)
(4)

∀{wi1 , wi2 , wi3} ∈ {L× L× L} where

a(∇u,∇v) =

∫∫∫
Ω

(
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+

∂u

∂z

∂v

∂z

)
dΩ and b(u, v) =

∫∫
Ω

(uv)dΩ.

It is seen that the equations are in a coupled form. It is well known that using the
standard Galerkin finite element for these coupled equations, bring some numerical
instabilities for the high values of the Hartmann number. Therefore we should
consider the SUPG typed stabilization technique.
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Let’s decouple the Eqns. (1) to the convection-diffusion type form in order to
apply SUPG type stabilization by using the new variables U1(x, y, z) and U2(x, y, z)
which are defined as

Ui1 = Vi +Bi

Ui2 = Vi −Bi
(5)

then equations become

∇2Ui1 +M · ∇Ui1 = −Pi

∇2Ui2 −M · ∇Ui2 = −Pi.
(6)

Galerkin FEM type weak formulation of the equations (2) and (5) is obtained
by employing the linear function space L = (H1

0 (Ω))
2 as: Find {Ui1 , Ui2 , B

w
i } ∈

{L× L× L} such that

B(Ui1 ;Ui2 ;B
w
i , vi1 ; vi2 ;wi3) = b(Pi, vi1) + b(Pi, vi2) (7)

∀{vi1 , vi2 , vi3} ∈ {L× L× L} where

B(Ui1 ;Ui2 ;B
w
i , vi1 ; vi2 ;wi3) = a(∇Ui1 ,∇vi1)− b(M · ∇Ui1 , vi1)

+ a(∇Ui2 ,∇vi2) + b(M · ∇Ui2 , vi2) + a(∇Bw
i ,∇wi3) .

(8)
The variational formulation is written by the choice of finite dimensional subspaces
Lh ⊂ L, defined by regular tetrahedralization of the domain. Find {Uh

i1
, Uh

i2
, Bwh

i }
∈ {Lh × Lh × Lh} such that

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ;w

h
i3) = b(Ph

i , v
h
i1) + b(Ph

i , v
h
i2) (9)

∀{vhi1 , v
h
i2
, wh

i3
} ∈ {Lh × Lh × Lh} where

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ;w

h
i3) = a(∇Uh

i1 ,∇vhi1)− b(M · ∇Uh
i1 , v

h
i1)

+ a(∇Uh
i2 ,∇vhi2) + b(M · ∇Uh

i2 , v
h
21) + a(∇Bwh

i , wh
i3)

(10)
Now, we can write the SUPG typed variational formulation of these equations

using linear tetrahedron elements as [44]:
Using linear tetrahedron elements; Find {Uh

i1
, Uh

i2
, Bwh

i } ∈ {Lh × Lh × Lh} such
that

B(Uh
i1 ;U

h
i2 ;B

wh
i , vhi1 ; v

h
i2 ; v

h
i3)

+ τK
{
b(Mi · ∇Uh

i1
− Ph

i ,Mi · ∇vhi1)

+b(Mi · ∇Uh
i2 − Ph

i ,Mi · ∇vhi2)
}
= b(∆Ph

i , v
h
i1) + b(∆Ph

i , v
h
i2)

(11)
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∀{vhi1 , v
h
i2
, wh

i3
} ∈ {Lh × Lh × Lh} with the stabilization parameter

τK =


hK

2Ha
if Pek ≥ 1

h2
K

12
if Pek < 1

(12)

where hK is the diameter of the element K which is calculated as the longest side

of the corresponding tetrahedron element and PeK =
hKHa

6
is the Peclet number.

Back transformations V h
i = (Uh

i1
+ Uh

i2
)/2 and Bh

i = (Uh
i1
− Uh

i2
)/2;

Find {V h
i , Bh

i , B
wh
i } ∈ {Lh × Lh × Lh} such that

a(∇V h
i ,∇wh

i1)− b(Mi · ∇Bh
i1 , w

h
i1) + τKb(Mi · ∇V h

i ,Mi · ∇wh
i1)

+a(∇Bih ,∇wh
i2)− b(Mi · ∇V h

i1 , w
h
i2) + τKb(Mi · ∇Bh

i ,Mi · ∇wh
i2)

+a(∇Bwh
i ,∇wh

3i) = (∆Ph
i , w

h
i1)− τK(∆Pih ,Mi · ∇wh

i2)

(13)

{wh
i1
, wh

i2
, wh

i3
} ∈ {Lh × Lh × Lh}.

The solution of this system of linear equations give the velocity of the fluid
on the cubic domains, and the induced magnetic field everywhere of the problem
domain. Noticed that, It it is clear that, the FEM formulation brings a sparse form
linear system of equations. Therefore the resulting system should be solved using
an efficient sparse solver.

3. Numerical Results and Discussion

In this section, we will perform some tests for the considered numerical scheme
using different cases and different problem parameters. Obtained solutions will be
presented in terms of contour plots.

MHD flow equations (1) and (2) are solved using stabilized FEM formulation
(13) in single, double and triple cubic domains separately by taking the Hartmann
number values Ha = 1, 10, 100 and 500. Additional to the velocity and induced
magnetic field, we also calculated the current density J which is defined as

J =

√(
∂B

∂x

)2

+

(
∂B

∂y

)2

+

(
∂B

∂z

)2

in order to compare the obtained results with the literature ones [40, 42]. In all
test cases, the wall and duct lengths are taken as a = 1.0 and b = 0.1 except
in Figures 8 and 9. It is easily seen that, the size of the linear system obtained
from the discretized equations is very huge especially for the two and three ducts
cases. Therefore, the resulting linear system of equations are stored as a sparse
matrix form and they are solved using open source UMFPACK sparse solver with
the author modified version in order to gain a good accuracy and efficiency.
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The volume integrals over linear tetrahedron elements are calculated numerically
using 5 point Gauss quadrature method over the unit tetrahedron via transforma-
tion which gives the analytical result for the linear shape functions as∫∫∫

Ω

f(x, y, z)dΩ =

5∑
i=1

wiF (ξi, ηi, νi)

where the corresponding values are given in Table 1.

Table 1. Gauss Quadrature Values

i wi ξi ηi νi
1 -4/30 1/4 1/4 1/4
2 9/120 1/2 1/6 1/6
3 9/120 1/6 1/2 1/6
4 9/120 1/6 1/6 1/2
5 9/120 1/6 1/6 1/6

Finally, the mesh information and corresponding data sizes are displayed in Table
2.

Table 2. Mesh and data information.

# of ducts
1 Duct 2 Ducts 3 Ducts

# of nodes 471836 770047 1015748
# of elements 2733606 4495468 5939642
# of unknowns 943672 1540095 2031496
# of boundary nodes 192360 294712 373544
Size of the system 890516843584 2371892609025 4126975998016
# of non-zero entries 20755732 34313073 45814784
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Figure 2. 2D slices of the velocity without stabilization (left) and
with SUPG (right) for Ha = 100 at z = 0 for α = π/2, β = 0.
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Before start to present the obtained results, let’s visualize the effect of the stabi-
lization on the numerical solution. Noticed that, the stabilization is more effective
especially velocity component. Therefore, in Figure 2, we have displayed the solu-
tion contours for both non-stabilized and stabilized formulations over rough mesh
for Ha = 100. It is clearly seen that, there are numerical instabilities and oscil-
lations on the solution obtained from the without stabilized formulation (τK = 0)
which are almost eliminated using stabilization.
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Figure 3. 2D slices of the velocity (above), induced magnetic
field(middle) and current density(below) for Ha = 1 (1st column),Ha =
10 (2nd column), Ha = 100 (3rd column) and Ha = 500 (4th column)
for the one duct case at z = 0 for α = π/2, β = 0.

3.1. Single Cube. In the first case, we considered the MHD flow equation on a
single cubic duct having conducting walls placed horizontally on the y − z planes.
We presented the velocity, induced magnetic field and current density solutions in
terms of 2D slices at z = 0 in Figure 3 and at y = −0.75 and y = 0.25 in Figure 4
for Ha = 1, 10, 100 and 500 for the applied magnetic field angle α = π/2 and β = 0
which means that externally applied magnetic field is parallel to x-axis. Existence
of the boundary layer formation on the side walls (the walls perpendicular to the
applied magnetic field) which is the well known behavior of the MHD flow as the
Hartmann number is getting large can be observed explicitly from the solution
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Figure 4. 2D slices of the velocity (above), induced magnetic
field(middle) and current density(below) for Ha = 1 (1st column),Ha =
10 (2nd column), Ha = 100 (3rd column) and Ha = 500 (4th column)
for the one duct case at y = −0.75 and y = 0.25 for α = π/2, β = 0.

contours. Also the velocity takes its maximum value at the center of the cube and
the flow is flattened as Ha getting large. Induced magnetic field contours create
two loops (peaks) which are symmetric with respect to x = 0 plane and becomes
stagnant through the domain. We also provided the current density solutions in
order to compare the previously obtained 2D case solutions [40]. In Figure 4 we
displayed different y-slices on the same figure in order to display the changes in
the solutions contours as the flow approaches the sides of the duct. Finally, if one
compare these solutions with the literature results for the 2D case of the similar
problems, the good agreement is seen with the ones in ( [3, 40–42,57]).

3.2. Double Cubes. As a second configuration, we consider the pressure driven
MHD flow in two cubic ducts in two different cases named as co-flow (P1 = P2 = 1)
and counter flow (P1 = 1, P2 = −1). Noticed that due to the no-slip boundary
conditions, at all the exterior sides of the ducts and walls both velocity and induced
magnetic field components are vanish. Therefore, the velocity values are all 0 which
is indicated as blue color on the color-legend. Also due to the continuity condition
for the induced magnetic field on the interior walls, the continuation of the contour
lines at the interface of the ducts can be observed from the figures.
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Figure 5. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10 (above) and Ha =
100 (below) for the co-flow case (P1 = P2 = 1) for the two ducts at
y = 0 for αi = π/2, βi = 0.
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Figure 6. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10 (above) and Ha =
100 (below) for the counter-flow case (P1 = 1, P2 = −1) for the two
ducts at y = 0 for αi = π/2, βi = 0.

We compared the flow behaviors the co-flow and counter-flow cases in in Figure
5 and in Figure 6, respectively for both Ha = 10 and Ha = 100. Noticed that the
flow behavior is exactly same in all components in both domains for the co-flow
case. However, there are strong interactions and symmetric behavior with respect
to interior wall in the counter-flow case. If the maximum/minimum values are
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Figure 7. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for αi = π/2, βi = π/4 (above)
and α1 = π/2, α2 = π/4, βi = π/4 (middle) for the co-flow cases
and αi = π/2, β1 = 0, β2 = π/4 (below) for the counter-flow case for
Ha = 10 the two ducts at z = −0.25 and z = 0.85

compared for the two different flow regime, it is seen that the magnitude in all
components (velocity, induced magnetic field and current density) are absolutely
a bit larger in co-flow case compared to contour-flow case. Also, as Hartmann
number is getting large again the flow becomes almost stagnant away from the
walls. These solutions are also agree with the previous studies [40, 42]. The effect
of the direction of the externally applied magnetic field on the flow behavior is
demonstrated in Figure 7 by taking (αi, βi) combinations for the different flow
regime. The solutions contours are displayed at different z-values. It is seen that
the positions of the boundary layers and the locations of the maximum/minimum
values are changing depending on both the selected slice and angles. One can easily
see that both mirroring and symmetries are broken in different domains. Finally,
we have tested the affect of the wall length b on the flow behavior for the co-flow
case in Figure 8 and for the counter-flow case in Figure 9 for Ha = 10. It is seen
that as the wall length (b) is getting large, the separation between the domains is
more pronounced in both cases.
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Figure 8. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for the wall length b = 0.05 (top),
b = 0.1 (center) and b = 0.2 (bottom) for the co-flow case (P1 = P2 = 1)
for the two ducts at y = 0 for Ha = 10, αi = π/2, βi = 0.

3.3. Triple Cubes. As a final test, we considered the three cubes case. It is
clear that, the size of the obtained resulting system 13 is very huge. Therefore,
one of the originality of this work is to obtain accurate and stable solutions from
such a big system. For this purpose, we have modified the open source sparse solver
UMFPACK for the Fortran version on PC. Similar to two cubes cases, we considered
both co-flow (P1 = P2 = P3 = 1) and counter-flow (P1 = P3 = 1, P2 = −1) cases in
Figure 10 for Ha = 10 by considering the 2D contours of the solutions by taking
the slice at y = 0. One can see that the core flow is reversed in the central cube
and there is a strong connection between the cubes for the counter-flow case and
the flow behaviors are all same on each cube for the co-flow case having same α
and β values.

Noticed that the effect of the direction of the externally applied magnetic field on
the flow behavior can be displayed more clearly by selecting different values αi and
βi on each cube which is possible to visualize for the several cubes case. We consider
different (αi, βi) combinations both for the co-flow and counter-flow cases in Figure
11 and Figure 12. Not only the angle values but also depending on the selected
slice, the flow displays different behaviors on each cube still obeying the continuity
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Figure 9. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for the wall length b = 0.05
(top), b = 0.1 (center) and b = 0.2 (bottom) for the counter-flow
case (P1 = 1, P2 = −1) for the two ducts at y = 0 for Ha = 10,
αi = π/2, βi = 0.

conditions between the cubes. Noticed that, in general, all the components of flow
(velocity, magnetic field, current density) are still consistent with the double cubes
case.

4. Conclusion

We considered the stabilized FEM solution to MHD flow in an array of cubic
domains having electrically insulated internal walls and conducting external walls
with the no-slip boundary conditions for the velocity. The problem is tested for
the different Hartmann number values. The comparison of flow behaviors for the
different number of ducts, co-flow and counter-flow cases and different values of the
externally applied magnetic field angle are provided. Obtained stable solutions are
displayed in terms of the 2D-slices taken from different axis. One can observe that
the provided formulation is accurate and efficient even for the several cubes cases.
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Figure 10. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10, αi = π/2, βi = 0
for the three ducts in co-flow (P1 = P2 = P3 = 1)(above) and counter-
flow (P1 = P3 = 1, P2 = −1)(below) cases at y = 0.
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Figure 11. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 10, α1 = π/2, β1 =
0, α2 = π/4, β2 = π/4, α3 = π/4, β3 = π/2 for the three ducts in co-flow
(above) and counter-flow (below) cases at z = −0.75 and z = 0.25.

influence the work reported in this paper.
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Figure 12. 2D slices of the velocity (left), induced magnetic
field(center) and current density(right) for Ha = 100, α1 = π/2, β1 =
0, α2 = π/4, β2 = π/4, α3 = π/4 for the three ducts in co-flow for
β3 = π/2(above) and counter-flow for β3 = π/4)(below) cases at
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