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Abstract. In this paper, we bring out some properties of intuitionistic fuzzy
soft topology by using the concept of neighborhood. Firstly, we introduce the

concept of intuitionistic fuzzy soft point differently from the previous published
papers which is related to intuitonistic fuzzy soft point and study some of its

basic properties. We also generate an intuitonistic fuzzy soft topology by using

the systems of neighborhood and discuss certain properties of intuitonistic
fuzzy soft topology including continuous mapping.

1. Intoduction

The concept of fuzzy sets which is the most suitable theory for dealing with
uncertainties defined by Zadeh [24] in 1965. After the concept of fuzzy sets several
researches studied on the generalizations of fuzzy sets. For instance, intuitonistic
fuzzy set [2], interval-valued fuzzy set [25], interval-valued intuitonistic fuzzy set
[3],rough set [10], bipolar fuzzy set [26], pythagorean fuzzy set [22] and etc. All
these theories are successful to some grade in dealing with problem arising from the
uncertainty. In these sets there are difficulties how to set the membership function
in each particular case, possibly due to the inadequacy of the parameterization part
in them. As a new approach for modeling uncertainty, the concept of soft set theory
is introduced by Molodtsov [9]. He presented the basic results of the new theory
and pointed out several directions for the applications of soft sets. Extensions of
soft set have been proposed recently such as fuzzy soft set [7], intuitionistic fuzzy
soft set [8], vague soft set [21], bipolar fuzzy soft set [1]. Topological structures of
soft set ([4], [5], [11], [18], [20], [27]) fuzzy soft set ([12],[13], [14],[19]), intuitonistic
fuzzy soft set([6], [16], [17]) were defined by many researches.

Neighborhood structure is very important to study in a topological space. There-
fore, we aim to study in the present paper, first of all, we define the intuitonistic
fuzzy soft point in order to establish neighborhood structure in intuitonistic fuzzy
soft topological space and study some basic properties of them. We investigate
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the necessary conditions for a family of intuitonistic fuzzy soft sets to generate an
intuitionistic fuzzy soft topology.

2. Intuitionistic fuzzy soft set theory

With this section, we give some definitions and several results on intuitionistic
fuzzy soft set theory. From now on, let X 6= ∅ be a universe, T be a set of all
parameters for X and A ⊆ T .

Definition 2.1 [2] A = {〈x, µA(x), νA(x)〉x ∈ X} is called an intuitionistic fuzzy
set (namely, if- set) where µA :→ [0, 1] and νA : X → [0, 1] denote membership and
nonmembership functions respectively. Here, µA(x) and νA(x) are membership
and nonmembership degree of each x ∈ X to the intuitionistic fuzzy set A and
µA(x) + νA(x) ≤ 1 for each x ∈ X.
IF (X) refers to the set of all intuitonistic fuzzy sets on X.
If A, B ∈ IF (X) and (Ai)i∈J ⊆ IF (X). Then:

(1) A ⊆ B ⇔ µA(x) 6 µB(x) and νA > νB(x), for all x ∈ X.
(2) A = B ⇔ A ⊆ B, B ⊆ A
(3)

⋃
i∈J Ai = {〈x,

∨
i∈J µAi(x),

∧
i∈J νAi(x)〉 : x ∈ X}

(4)
⋂
i∈J Ai = {〈x,

∧
i∈J µAi(x),

∨
i∈J νAi(x)〉 : x ∈ X}

(5) Ac = {〈x, νA(x), µA(x)〉 : x ∈ X}
(6) 1̃ = {〈x, 1, 0〉 : x ∈ X} and 0̃ = {〈x, 0, 1〉 : x ∈ X}

Definition 2.2 [15] An intuitionistic fuzzy point x(α,β) of X is an if- set on X,
where α, β ∈ [0, 1] and α+ β ≤ 1, defined by

x(α,β)(y) =

{
(α, β), if x = y;

(0, 1), otherwise.
for each y ∈ X.

Let A ∈ IF (X). We say that intuitionistic fuzzy point x(α,β) is contained in A
if µA(x) > α and νA ≤ β and denoted by x(α,β) ∈ A.

An intuitionistic fuzzy point can be written x(α,β) = (xα, 1 − x1−β) as ordered
pair of fuzzy points. [15]

Theorem 2.1. [15] Let A ∈ IF (X). Then x(α,β) ∈ A ⇔ xα ∈ µA and x1−β ∈
1− νA.

Theorem 2.2. [15] Let A,B ∈ IF (X). A ⊆ B ⇔ x(α,β) ∈ A implies x(α,β) ∈ B
for any x(α,β) in X.

Definition 2.3 [9] FA is called a soft set on X if and only if FA is a mapping of
A into P(X), i.e., FA : A→ P(X)

Definition 2.4 [8] FA is called an intuitionistic fuzzy soft set on X if and only
if FA is a mapping of A into IF (X), i.e., FA : A→ IF (X)

For every a ∈ A, FA(a) is an if- set of X and it is said to be intuitionistic fuzzy
value set of parameter a.

Serkan et. al.[17], redefined the intuitionistic fuzzy soft set as follow:
Definition 2.5 [17] F is called an intuitionistic fuzzy soft set (namely, ifs-set)

on X if and only if F is a mapping of T into IF (X), i.e., F : T → IF (X).
It may be written as follows:

F = {(t, {〈x, µF (t)(x), νF (t)(x)〉 : x ∈ X}) : t ∈ T}

The element (t, F (t)) is not appeared in F if F (t) = 0̃.
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F (t) = (µF (t), νF (t)) is an ifs-set over X. For simplicity, we denote µF (t), νF (t)

by ft and f
′

t , respectively.
IFS(X,T ) refers to the set of all intuitonistic fuzzy soft sets over X.
Example 2.1 Let F represent the age of the people with respect to the given

parameters. Let the set of people under consideration be X = {x1, x2, x3}. Let
E = {young(t1),middle age(t2)} and define
F (t1) = { x1

[0.3,0.7] ,
x2

[0.5,0.1] ,
x3

[0.3,0.2]}, F (t2) = { x1

[0.4,0.3] ,
x2

[0.9,0.1] ,
x3

[0.2,0.5]}.
The family {F (t1), F (t2)} of if- sets is an ifs set.
In other word, an ifs set is a parametrized family of if-set of X.
Definition 2.6 [17] Let F,G ∈ IFS(X,T ). Then:

(1) F is subset of G if F (t) ⊆ G(t), ∀t ∈ T , i.e., ft(x) ≤ gt(x) and f
′

t (x) ≥
g
′

t(x), x ∈ X. It is symbolized by F ⊆̃G.
(2) F and G are equal if F ⊆ G, G ⊆ F . It is symbolized by F = G.
(3) The intersection of F and G is an ifs-set H defined by H(t) = F (t) ∩

G(t), ∀t ∈ T , i.e., ht(x) = (ft(x) ∧ gt(x), f
′

t (x) ∨ g′t(x)), x ∈ X. H is
symbolized by F ∩̃G.

(4) The union of F and G is an ifs-set H defined by H(t) = F (t)∪G(t), ∀t ∈ T ,

i.e., ht(x) = (ft(x)∨gt(x), f
′

t (x)∧g′t(x)), x ∈ X. H is symbolized by F ∪̃G.
(5) The complement of F is an ifs-set H defined by H(t) = (F (t))c, ∀t ∈ T ,

i.e., ht(x) = (f
′

t (x), ft(x)), x ∈ X. H is symbolized by F c.

(6) F is called a null ifs-set, denoted by Φ, if F (t) = 0̃ for all t ∈ T .

(7) F is called universal ifs-set, denoted by X̃, if F (t) = 1̃, for all t ∈ T .

(X̃)c = Φ and Φc = X̃.

Proposition 2.3. [17] Let F,G ∈ IFS(X,T ) and (Gi)i∈J ⊆ IFS(X,T ). Then:

(1) F ∩̃
(⋃̃

i∈J(Gi)
)

=
⋃̃
i∈J
(
F ∩̃(Gi)

)
, F ∪̃

(⋂̃
i∈J(Gi)

)
=
⋂̃
i∈J
(
F ∪̃(Gi)

)
(2) Φ⊆̃F ⊆̃X̃
(3)

(⋂̃
i∈J(Gi)

)c
=
⋃̃
i∈J(Gi)

c,
(⋂̃

i∈J(Gi)
)c

=
⋃̃
i∈J(Gi)

c

(4) F ∪̃F c = X̃ and (Gc)c = G

(5) If F ⊆̃G, then (G)c⊆̃(F )c.

Definition 2.7 ([16], [23]) Let IFS(X,T ) and IFS(Y,K) be two families of all
ifs- sets over X and Y , respectively. Let ϕ : X → Y and ψ : T → K be two maps.
Then, the pair (ϕ,ψ) : IFS(X,T ) → IFS(Y,K) is called an intuitionistic fuzzy
soft map for which:

(1) If F ∈ IFS(X,T ), then the image of F under (ϕ,ψ), denoted by (ϕ,ψ)(F ),
is the ifs-set over Y given by

ϕ(f)k(y) =

{∨
ϕ(x)=y

∨
ψ(t)=k ft(x), if x ∈ ϕ−1(y);

0, otherwise.
∀k ∈ ψ(T ), ∀y ∈ Y

and

ϕ(f
′
)k(y) =

{∧
ϕ(x)=y

∧
ψ(t)=k f

′

t (x), if x ∈ ϕ−1(y);

1, otherwise.
∀k ∈ ψ(T ), ∀y ∈ Y

(2) IfG ∈ IFS(Y,K), then the preimage ofG under (ϕ,ψ), denoted by (ϕ,ψ)−1(G),
is the ifs-set over X, given by
ϕ−1(gt)(x) = gψ(t)(ϕ(x)) ∀t ∈ ψ−1(K), ∀x ∈ X and

ϕ−1(g
′

t)(x) = g
′

ψ(t)(ϕ(x)) ∀t ∈ ψ−1(K), ∀x ∈ X.
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The ifs-map (ϕ,ψ) is called injective (onto), if ϕ and ψ are injective (onto).

Proposition 2.4. [23] Let F ∈ IFS(X,T ), (Fi)i∈J ⊂ IFS(X,T ), G ∈ IFS(Y,K)
and (Gi)i∈J ⊂ IFS(Y,K). Then,

(1) If F1⊆̃F2, then (ϕ,ψ)(F1)⊆̃(ϕ,ψ)(F2).

(2) If G1⊆̃G2, then (ϕ,ψ)−1(G1)⊆̃(ϕ,ψ)−1(G2).

(3) F ⊆̃(ϕ,ψ)−1 ((ϕ,ψ)(F )). If (ϕ,ψ) is injective, then the equality holds.

(4) (ϕ,ψ)
(
(ϕ,ψ)−1(G)

)
⊆̃G. If (ϕ,ψ) is surjective, then the equality holds.

(5) (ϕ,ψ)
(⋃̃

i∈JFi

)
=
⋃̃
i∈J(ϕ,ψ)(Fi).

(6) (ϕ,ψ)
(⋂̃

i∈JFi

)
⊆̃
⋂̃
i∈J(ϕ,ψ)(Fi).

(7) (ϕ,ψ)−1
(⋃̃

i∈JGi

)
=
⋃̃
i∈J(ϕ,ψ)−1(Gi).

(8) (ϕ,ψ)−1
(⋂̃

i∈JGi

)
=
⋂̃
i∈J(ϕ,ψ)−1(Gi)

(9) (ϕ,ψ)−1(Gc) =
(
(ϕ,ψ)−1(G)

)c
.

(10) ((ϕ,ψ)(F ))
c ⊆̃(ϕ,ψ)(F c).

(11) If (ϕ,ψ) is surjective, then (ϕ,ψ)
(
X̃
)

= Ỹ .

(12) (ϕ,ψ)−1
(
ỸK

)
= X̃ (ϕ,ψ)−1 (Φ) = Φ.

(13) (ϕ,ψ) (Φ) = Φ.

Definition 2.8 [6] Let X 6= ∅ and T be a family of ifs- sets over X. An ifs-
topological space is a pair (X, T ) satisfying the following properties:

(T1) Φ, X̃ ∈ T
(T2) If F, G ∈ T , then F ∩̃G ∈ T
(T3) If Fi ∈ T , then

⋃̃
i∈J(Fi) ∈ T , ∀i ∈ J .

T is called a topology of ifs- sets on X. Every member of T is called open ifs-
set. If Gc ∈ T , G is said to be closed ifs- set in (X, T )

T 0 = {Φ, X̃} and T 1 = IFS(X,T ) are ifs- topologies on X.
The intersection of any family of ifs- topologies on X is also a ifs- topology on

X.
Definition 2.9 [16] Let (X, T1) and (Y, T2) be two ifs- topological spaces. (ϕ,ψ) :

(X, T1)→ (Y, T2) is called continuous if (ϕ,ψ)−1(G) ∈ T1, ∀G ∈ T2.
We see that (ϕ,ψ) is continuous iff the preimage of every closed fuzzy soft set is

closed.
If (ϕ,ψ) : (X, T1) → (Y, T2) and (ϕ

′
, ψ
′
) : (Y, T2) → (Z, T3) are fuzzy soft

continuous, (ϕ
′
, ψ
′
) ◦ (ϕ,ψ) is also fuzzy soft continuous.

3. Neighborhood Structures of Intuitionistic Fuzzy Soft
Topological Spaces

Definition 3.1 Let F ∈ IFS(X,T ) and α, β : T → [0, 1] be mappings such that
α(t) = 0,∀t ∈ T \ A, β(t) = 1,∀t ∈ T \ A and α(t) + β(t) ≤ 1. The intuitionistic
fuzzy soft set F is called ifs- point if F (t) = x(α(t),β(t)), ∀t ∈ T .

Here, F (t) = x(α(t),β(t)) is an intuitionistic fuzzy point for all t ∈ T .

Obviously, F (t)(y) =

{
(α(t), β(t)), if x = y;

(0, 1), otherwise

The ifs- point is denoted by x(α,β) and x is called its support.
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α(t) is called value of x(α,β) and β(t) is called non-value of x(α,β), ∀t ∈ T .
An ifs-point x(α,β) is called belong to an ifs-set G, denoted by x(α,β)∈̃G, if

x(α,β)⊆̃G (equivalently, α(t) ≤ gt(x) and β(t) ≥ g′t(x), for x ∈ X).
An ifs- point may be seen as a parameterized family of intuitionistic fuzzy point.
IFSP (X,T ) refers to the family of all ifs- points on X.
Two ifs- points x(α,β), y(λ,µ) are called distinct if their supports are distinct.

Theorem 3.1. Let G,H ∈ IFS(X,T ). Then G⊆̃H ⇔ x(α,β)∈̃G implies x(α,β)∈̃H
for any ifs-point x(α,β).

Proof. Let G⊆̃H and x(α,β)∈̃G. Then α(t) ≤ gt(x) ≤ ht(x) and β(t) ≥ g′t(x) ≥
h
′

t(x), ∀t ∈ T, x ∈ X. Thus, x(α,β)∈̃H.

Conversely, let α(t) = gt(x) and β(t) = g
′

t(x), ∀t ∈ T, x ∈ X. Then x(α,β) ∈
IFSP (X,T ) and x(α,β)∈̃G. From the hypothesis x(α,β)∈̃H. Thus, gt(x) = α(t) ≥
ht(x) and g

′

t(x) = β(t) ≥ h′t(x). Hence, G⊆̃H.

Theorem 3.2. Let G ∈ IFS(X,T ). G =
⋃̃

x(α,β)∈̃G
x(α,β), i.e., G is the union of

all its ifs-points.

Proof. Let G 6= Φ. Let y ∈ X. x(α(t),β(t)) = (xα(t), 1− x1−β(t)) for each t ∈ T .

(
⋃̃

x(α,β)∈̃G
x(α,β))(t)(y) =

 ∨
xα(t)∈gt

xα(t)(y),
∧

x1−β(t)∈(1−g
′
t)

1− x1−β(t)(y)


Here,

∨
xα(t)∈gt

xα(t)(y) = gt(y) and
∨

x1−β(t)∈(1−g
′
t)

x1−β(t)(y) = (1− g
′

t)(y).

So, g
′

t(y) = 1−
∨

x1−β(t)∈(1−g
′
t)

x1−β(t)(y) =
∧

x1−β(t)∈(1−g
′
t)

1− x1−β(t)(y).

Hence,
⋃̃

x(α,β)∈̃G
x(α,β) = G.

Proposition 3.3. Let (ϕ,ψ) be a soft map between X and Y .
(1) If x(α,β) ∈ IFSP (X,T ), then (ϕ,ψ)(x(α,β) ∈ IFSP (Y,K) and (ϕ,ψ)(x(α,β)) =

xϕ(x
(α,β)) = xϕ(x)(α,β) .

(2) If x(α,β)∈̃G, then (ϕ,ψ)(x(α,β))∈̃(ϕ,ψ)(G), where G ∈ IFS(X,T ).
(3) If x(α,β)∈̃(ϕ,ψ)−1(H), then (ϕ,ψ)(x(α,β))∈̃H, where H ∈ IFS(Y,K).

Proof. (1) For all k ∈ ψ(T ) and y ∈ Y ,
ϕ(x(α,β))(k)(y) =({ ∨

ϕ(z)=y

∨
ϕ(t)=k

xα(e)(z), if z ∈ ϕ−1(y)

0, otherwise
,

{ ∧
ϕ(z)=y

∧
ϕ(t)=k

xα(t)(z), if z ∈ ϕ−1(y)

1, otherwise

)
=

({
α(t), if y = ϕ(x), ψ(t) ∈ ψ(T )

0, otherwise
,

{
β(t), if y = ϕ(x), ψ(t) ∈ ψ(T )

1, otherwise

)
= xϕ(x)(α,β)(k)(y)

= xϕ(x
(α,β))

Hence, (ϕ,ψ)(x(α,β)) = xϕ(x)(α,β) .
(2) Now let x(α,β)∈̃G, then x(α(t),β(t)) ∈ G(t) for each t ∈ T and α(t) ≤

gt(x), β(t) ≥ g′t(x), x ∈ X.
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α(t) 6 gt(x) ≤
∨

ϕ(x)=ϕ(z)

∨
ψ(t)=k

gt(z)

= ϕ (gt)) (ϕ(x))
= ϕ(g)ψ(t)ϕ(x) for each t ∈ A ⊆ B.

β(t) ≥ g′t(x) ≥
∧

ϕ(x)=ϕ(z)

∧
ψ(t)=k

g
′

t(z)

= ϕ
(
g
′

t)
)

(ϕ(x))

= ϕ(g
′
)ψ(t)ϕ(x) for each t ∈ A ⊆ B.

Therefore, we get xϕ(x)(α,β) ∈ (ϕ,ψ)(G).

(3) Let x(α,β)∈̃(ϕ,ψ)−1(H). By (2) and since (ϕ,ψ)
(
(ϕ,ψ)−1(H)

)
⊆̃H, we ob-

tain (ϕ,ψ)(x(α,β))∈̃H.

Proposition 3.4. Let (Gi)i∈J ⊂ IFS(X,T ) and x(α,β) ∈ IFSP (X,T ). If x(α,β)∈̃
⋂̃

i∈J
Gi,

then x(α,β)∈̃Gi for each i ∈ J .

Proof. Let x(α,β)∈̃
⋂̃

i∈J
Gi, then we have x(α(t),β(t)) ∈

∧
i∈J

Gi(t) and

α(t) ≤
∧
i∈J

(gi)t(x) ≤ (gi)t(x) and β(t) ≥
∨
i∈J

(gi)
′

t(x) ≥ (gi)
′

t(x) for each t ∈

T, i ∈ J, x ∈ X.
Consequently, x(α,β)∈̃(Gi) for each i ∈ J .

Proposition 3.5. Let x(α,β), x(λ,µ) ∈ IFSP (X,T ). Then x(α,β)∪̃x(λ,µ) = x(α∨λ,β∨µ).

Proof. Straightforward.
Remark 3.1 x(α,β)∈̃G∪̃H does not imply x(α,β)∈̃G or x(α,β)∈̃H. By the fol-

lowing example we see the result.
Example 3.2 Let T = {t1, t2, t3} and X = {x1, x2, x3, x4} and define the soft

sets G,H and absolute fuzzy soft point xλT , where
g(t1) = {x1

1 ,
x2

1 ,
x3

0 ,
x4

0 }, g(t2) = {x1

1 ,
x2

1 ,
x3

1 ,
x4

0 }, g(t3) = {x1

0 ,
x2

1 ,
x3

1 ,
x4

1 },
g
′
(t1) = {x1

0 ,
x2

0 ,
x3

1 ,
x4

1 }, g
′
(t2) = {x1

0 ,
x2

0 ,
x3

0 ,
x4

1 }, g
′
(t3) = {x1

1 ,
x2

0 ,
x3

0 ,
x4

0 },
h(t1) = {x1

0 ,
x2

0 ,
x3

1 ,
x4

1 }, h(t2) = {x1

1 ,
x2

1 ,
x3

1 ,
x4

1 }, h(t3) = {x1

1 ,
x2

1 ,
x3

0 ,
x4

0 }.
h
′
(t1) = {x1

1 ,
x2

1 ,
x3

0 ,
x4

0 }, h
′
(t2) = {x1

0 ,
x2

0 ,
x3

0 ,
x4

0 }, h
′
(t3) = {x1

0 ,
x2

0 ,
x3

1 ,
x4

1 }.
Then G∪̃H = X̃ and x(α,β)∈̃g∪̃H, but x(α,β) /̃∈G and x(α,β) /̃∈H.

Theorem 3.6. Let x(α,β) ∈ IFSP (X,T ) and G,H ∈ IFS(X,T ). If x(α,β)∈̃G∪̃H,
then there exist x(α1,β1)∈̃G and x(α2,β2)∈̃H such that x(α,β) = x(α1,β1)∪̃x(α2,β2).

Proof. Let x(α,β)∈̃G∪̃H. Then x(α(t),β(t)) ∈ G(t) ∪ H(t) for each t ∈ T and

α(t) ≤ gt(x) ∨ ht(x), β(t) ≥ g′t(x) ∧ h′t(x) for each x ∈ X.
Therefore, α(t) ≤ gt(x) for some t ∈ T , α(t) 6 ht(x) for some t ∈ T and

β(t) ≥ g′t(x) for some t ∈ T , β(e) ≥ h′t(x) for some t ∈ T .

Now choose A1 = {t ∈ T : α(t) ≤ gt(x), β(t) ≥ g′t(x)} and A2 = {t ∈ T : α(t) 6
ht(x), β(t) ≥ h′t(x)} and choose

α1 : T → [0, 1] by α1(t) =

{
α(t), if t ∈ A1;

0, otherwise.

β1 : T → [0, 1] by β1(t) =

{
β(t), if t ∈ A1;

1, otherwise.
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and α2 : T → [0, 1] by α2(t) =

{
α(t), if t ∈ A2;

0, otherwise.

β2 : E → [0, 1] by β2(t) =

{
β(t), if t ∈ A2;

1, otherwise.

Since α1(t) ≤ ge(x) and β1(e) ≥ h′e(x) for each t ∈ A1, we get x(α1,β1)∈̃G.

Since α2(t) ≤ ht(x) and β2(t) ≥ h′t(x) for each t ∈ A2, we get x(α2,β2)∈̃H.
Therefore, x(α,β) = x(α1,β1)∪̃x(α2,β2).

Definition 3.2 Let x(α,β) ∈ IFSP (X,T ). An ifs-set G in (X, T ) is called a

neighborhood of x(α,β) if there exists H ∈ T such that x(α,β)∈̃H⊆̃G.
Ifs-set G is called open neighborhood of x(α,β) if it is open.
The family consisting of all neighborhoods of x(α,β) is said to be the system of

neighborhood of x(α,β) and denoted by UT (x(α,β)).

Theorem 3.7. Let (X, T ) be an ifs-topological space. G ∈ T if and only if G is a
neighborhood of each of its ifs-points.

Proof. Straightforward.
Definition 3.3 Let ε, ω : T → [0, 1] be a mapping and x(α,β) ∈ IFSP (X,T ).

ε is called compatible with α (ω is called compatible with β) if ε provides that
0 ≤ ε(t) ≤ α(t) (ω provides that 1 ≥ ω(t) ≥ β(t)) for each t ∈ T .

Theorem 3.8. Let (X, T ) be an ifs-topological space and U(x(α,β)) be the neigh-
borhood system of ifs-point x(α,β). Then we have the followings:

(N1) X̃ ∈ U(x(α,β)) and if G ∈ U(x(α,β)), then x(α,β)∈̃G.
(N2) If G, H ∈ U(x(α,β)), then G∩̃H ∈ U(x(α,β)).

(N3) If G⊆̃H and G ∈ U(x(α,β)), then H ∈ U(x(α,β)).
(N4) If G ∈ U(x(α−ε,β−ω)) for all ε compatible with α and ω compatible with β,

then G ∈ U(x(α,β)).
(N5) If G ∈ U(x(α1,β1)) and H ∈ U(x(α2,β2)), then G∪̃H ∈ U(x(α1,β1)∪̃x(α2,β2)).

(N6) If G ∈ U(x(α,β)), then there exists H ∈ U(x(α,β)) such that H⊆̃G and
H ∈ U(y(λ,µ)), ∀y(λ,µ)∈̃H.

Conversely, let for each ifs-point x(α,β) there exists a nonempty collection U(x(α,β))
of ifs-sets on X satisfying (N1)-(N6). Then the family T = {G ∈ IFS(X,T ) : G ∈
U(y(λ,µ)), ∀y(λ,µ)∈̃G} is an ifs-topology on X such that U(x(α,β)) is the family of
all neighborhoods of x(α,β) in (X, T ).

Proof. (N1)-(N3) are omitted.
(N4) Let G ∈ U(x(α−ε,β−ω)) for all ε compatible with α and ω compatible with

β. Then there exists H(ε,ω) ∈ T such that x(λ−ε,β−ω)∈̃H(ε,ω)⊆̃G.

Let H :=
⋃̃

(ε,ω)
H(ε,ω), then H ∈ T and H⊆̃G. By the Theorem 3.6 and since

Supε(t){α(t)−ε(t)} = α(t) and Infω(t){β(t)−ω(t)} = β(t), then
⋃̃

(ε,ω)
x(α−ε,β−ω) =

x(α,β)⊆̃
⋃̃

(ε,ω)
H(ε,ω) = H⊆̃G for all compatible ε(t) > 0 and ω(1) < 1.

So we have x(α,β)∈̃H⊆̃G, i.e., G ∈ U(x
(α,β)
A ).

(N5) Let G ∈ U(x(α1,β1)) and H ∈ U(x(α2,β2)). Then there exists M ∈ T such

that x(α1,β1)∈̃M⊆̃G and there exists N ∈ T such that x(α2,β2)∈̃N⊆̃H.
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Since x(α1,β1)∈̃M , then x(α1(t),β1(t)) ∈M(t) for each t ∈ T . From here, we obtain

α1(t) ≤ mt(x) and β1(t) ≥ m′t(x), x ∈ X.
Since x(α2,β2)∈̃N , then x(α2(t),β2(t)) ∈ N(t) for each t ∈ T . From here, we obtain

α2(t) ≤ nt(x) and β2(t) ≥ n′t(x), x ∈ X.

Then, we get mt(x)∨nt(x) ≥ α1∨α2 and m
′

t(x)∧n′t(x) ≤ β1∧β2 for each t ∈ T ,
x ∈ X.

So, x(α1,β1)∪̃x(α2,β2) = x(α1∨α2,β1∧β2)∈̃M ∪̃N and M ∪̃N ∈ T and M ∪̃N⊆̃G∪̃H.
Hence, G∪̃H ∈ U(x(α1,β1)∪̃x(α2,β2)).

(N6) Let G ∈ U(x(α,β)). Then ∃H ∈ T : x(α,β)∈̃H⊆̃G. Since H ∈ T , H is a
neighborhood of its points, i.e., H ∈ U(y(λ,µ)), ∀y(λ,µ). Since x(α,β) ∈ H, we have
H ∈ U(x(α,β)),. Therefore, since G ∈ U(x(α,β)) there exists H ∈ U(x(α,β)) such

that H⊆̃G and H ∈ U(y(λ,µ)), ∀y(λ,µ).
Conversely, let the subfamily U(x(α,β)) ⊂ IFSP (X,T ) satisfies the above six

conditions for each x(α,β) and let T = {G ∈ IFS(X,T ) : G ∈ U(y(λ,µ)), ∀y(λ,µ)∈̃G}.
We show that the family T is an ifs-topology on X.

(T1) By (N1), X̃ ∈ T and Φ ∈ T is vacuously satisfied.
(T2) Let G, H ∈ T and y(λ,µ)∈̃(G∩̃H). By Proposition 3.4 and the construction

of T , G and H ∈ U(y(λ,µ)). By (N2), we have G∩̃H ∈ U(y(λ,µ)). Hence, G∩̃H ∈ T .

(T3) Let G =
⋃̃

i∈J
Gi, where Gi ∈ T , ∀i ∈ J and y(λ,µ)∈̃G.

Let x ∈ X and assume that for each
∨
i∈J

(gi)(t)(x) = α(t) and
∧
i∈J

(gi)
′
(t)(x) = β(t)

for each t ∈ T .
Then α, β : T → [0, 1] be a mappings and x(α,β) ∈ G.
Now choose an ε compatible with α and a ω compatible with β.
For the ifs-point x(α−ε,β−ω) and e ∈ E there exists it ∈ J such that (g)it(t)(x) >

α(t)− ε(t) and (g)
′

it
(t)(x) < β(t)− ω(t).

Hence, x(α−ε,β−ω)∈̃
⋃̃

ie∈J
Git .

LetH :=
⋂̃

it∈J
Git and let y(λ,µ)∈̃H. Then, Sup(g)it(t)(y) ≥ λ(t) and Inf(g)

′

it
(t)(y) ≤

µ(t).

From here, ∀γ(t) > 0 ∃it0 ∈ J : (g)it0 (t)(y) > λ(t)− γ(t) and ∀γ′(t) > 0 ∃it0 ∈
J : (g)

′

it0
(t)(y) < µ(t)− γ′(t).

Without loss of generality, let λ(t) − γ(t) < (g)it(t)(y) and let µ(t) − γ >

(g)
′

it0
(t)(y).

Then, y(α−γ,µ−γ
′
)∈̃(G)it , where

λ(k) =

{
λ(e), if k = e ∈ E;

0, otherwise

µ(k) =

{
µ(e), if k = e ∈ E;

1, otherwise

By (N5),
⋃̃

t∈T
y(α(t)−γ(t),µ(t)−γ

′
(t))∈̃

⋃̃
it∈J

(G)it , then since ∨λ = λ and ∧µ = µ,

we get
⋃̃

it∈J
(G)it ∈ U(y(λ,γ,µ−γ

′
). By (N4), we get

⋃̃
it∈J

(G)it ∈ U(y(λ,µ)).
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Then, for x(α−ε,β−ω) there exists H such that H ∈ U(y(λ,µ)), ∀y(λ,µ)∈̃H and

x(α−ε,β−ω)∈̃H⊆̃G.

Hence G ∈ U(x(α−ε,β−ω), ∀ε > 0, ω < 1 and then by (N4)
⋃̃

i∈J
(G)i ∈

U(x
(α,β)
A ).

Thus, T is an ifs-topology on X such that U(x(α,β)) is the family of all neigh-
borhoods of x(α,β) in (X, T ).

Theorem 3.9. Let T and T ∗ be two ifs- topologies over X and Y , respectively
and (ϕ,ψ) be a soft mapping from X to Y , then we obtain following equivalent
statements:

(1) (ϕ,ψ) is continuous.
(2) for each ifs-point x(α,β) on X the inverse of every neighborhood of (ϕ,ψ)(x(α,β))

under (ϕ,ψ) is a neighborhood of x(α,β).
(3) for each ifs-point x(α,β) on X and neighborhood G of (ϕ,ψ)(x(α,β)), there

exists a neighborhood H of x(α,β) such that (ϕ,ψ)(H)⊆̃G.

Proof. (1)⇒ (2) Let G ∈ UT ∗
(
(ϕ,ψ)(x(α,β))

)
. Then there exists H ∈ T ∗ such

that (ϕ,ψ)(x(α,β))∈̃H⊆̃G. Since (ϕ,ψ) is continuous, (ϕ,ψ)−1(H) ∈ T and we get

x(α,β)∈̃(ϕ,ψ)−1(H)⊆̃(ϕ,ψ)−1(G).
(2)⇒ (3) LetG ∈ UT ∗

(
(ϕ,ψ)(x(α,β))

)
. By hypothesis (ϕ,ψ)−1(G) ∈ UT (x(α,β)).

Let choose
H := (ϕ,ψ)−1(G) ∈ UT (x(α,β)). Hence, we get (ϕ,ψ)(H) = (ϕ,ψ)

(
(ϕ,ψ)−1(G)

)
⊆̃G.

(3) ⇒ (1) Let G ∈ T ∗. Let x(α,β)∈̃(ϕ,ψ)−1(G). Then (ϕ,ψ)(x(α,β))∈̃G and
since G ∈ T ∗, we obtain G ∈ UT ∗

(
(ϕ,ψ)(x(α,β))

)
. By hypothesis there exists H ∈

U(x(α,β)) such that (ϕ,ψ)(H)⊆̃G. Then H⊆̃(ϕ,ψ)−1 ((ϕ,ψ)(H)) ⊆̃(ϕ,ψ)−1(G), for
H ∈ U(x(α,β)).

Therefore, H⊆̃(ϕ,ψ)−1(G), for H ∈ U(x(α,β)).
So, (ϕ,ψ)−1(G) ∈ T .

4. Conclusion

With this work, we generate an intuitionistic fuzzy soft topology by using the
system of intuitionistic fuzzy soft neighborhood. For this goal, firstly we have
defined the intuitonistic fuzzy soft point as a generalized of intutionistic fuzzy point.
Furthermore, one could study some structures in intuitionistic fuzzy soft topological
spaces related to neighborhood structures.

Acknowledgments. The authors are grateful to the reviewers and the editor for
their valuable suggestions that improved this paper.
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