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Abstract. In the present paper we construct a new approach structure called

Fell approach structure. We define the new structure by means of lower regular
function frames and prove that the Top-coreflection of this new structure is

the ordinary Fell topology. We also give analogue result for the extended Fell
topology and investigate some properties of Fell approach structure.

1. Introduction

Hyperspaces of topological spaces were initiated by Felix Hausdorff (1868) and
Leopold Vietoris (1891). The theory occupy an important place in the applications
of convex analysis, optimization theory and the theory of Banach spaces. Hyper-
spaces of topological spaces are an important way of obtaining information on the
structure of a topological space X. Although the most important and well-studied
hyperspace topologies on CL(X) are the Wijsman topology, the Hausdorff metric
topology and the hit and miss topologies. These topologies are investigated in [6].
Lowen and Wuyts [16] investigated the corresponding approach structures of the
Vietoris topology and the other are investigated by Lowen and Sioen in [11, 14].
In most of cases they obtained the well known hyperspace topologies as the Top-
coreflections of their new constructed approach structures.

The Fell topology is also known as a useful construct in terms of applications,
especially in convex analysis, probability theory and its applications to optimiza-
tion [1, 2]. In this paper we construct a new approach structure in the setting of
hyperspaces and we prove that its Top-coreflection is the well known Fell topology.
We also investigate some properties of this new structure in the setting of approach
theory.
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We refer to R.Lowen [12,17] for extensive literature to study on approach spaces
and we refer to G.Beer [4] for more information on hyperspace topologies.

2. Preliminaries

Throughout this work, given a nonempty set X, 2X denotes the set of all subsets
of X, 2(X) denotes the set of all finite subsets of X. Given a topological space (X, τ)
by CL(X) we denote the set of all closed subsets of X and K(X) represents the
set of all compact subsets of X, in addition W = CL(X) ∪ {∅}. The hit and miss
sets of a subset A in X are defined as

A− := {B ∈ CL(X) |B ∩A ̸= ∅} and A+ := {B ∈ CL(X) |B ⊂ A},
respectively. We also consider P:=[0,∞] with its usual order and complete lattice
structure as an additive semigroup. For any A ⊂ X, the indicator of A is defined
as

θA : X −→ P

x 7−→ θA(x) =

{
0 , x ∈ A
∞ , x /∈ A.

For a Hausdorff space (X, τ), the lower-Vietoris topology τ−V and the upper-Vietoris

topology τ+V on CL(X) are generated by the subbasis {V − | V ∈ τ} and the basis
{W+ |W ∈ τ}, respectively. The Vietoris topology is simply the supremum of its
upper part and lower part, i.e. τV = τ−V

∨
τ+V [6].

The upper-Fell topology τ+Fell on CL(X) is generated by the basis

{W+ |W ∈ τ ,W c ∈ K(X)}
and the Fell topology τFell on CL(X) is generated by the subbasis

{V − | V ∈ τ} ∪ {W+ |W ∈ τ ,W c ∈ K(X)} [6].

Approach spaces can be described in terms of several equivalent mathematical
structures; such as distance, limit operator, gauge, approach system, upper hull
operator and lower regular function frame. Now we recall the definition of lower
regular function frame.

A lower regular function frame [17] is a collection of functions L ⊆ PX with
the following properties:

(LR1) ∀K ⊆ L :
∨
K ∈ L,

(LR2) ∀K ⊆ L such that K is finite :
∧

K ∈ L (that is stable for finite infima),
(LR3) ∀µ ∈ L , ∀α ∈ P : µ+ α ∈ L (that is translation invariant),
(LR4) ∀µ ∈ L , ∀α ∈ [0, inf µ] : µ− α ∈ L.
A basis for a lower regular function frame L is a collection B ⊂ L such that any

function in L can be obtained as a supremum of functions in B. In addition while
Lowen and Wuyts [16] introducing the Vietoris approach structure, they gave a
notion of a basis and a subbasis for a lower regular function frame. If the collection
B ⊂ PX is stable for finite infima then B is a subbasis for a lower regular function
frame defined on X and if the subbasis B is translation invariant then B is a basis
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for a lower regular function frame on X. If B ⊂ PX , the smallest lower regular
function frame containing B (or the lower regular function frame generated by B)
is defined as

[B] = {sup
j∈J

inf
k∈Kj

µj,k | ∀j ∈ J, ∀k ∈ Kj : Kj finite , µj,k ∈ B}, (1)

and in this case we call B a subbasis of [B], if moreover B is closed for finite infima
we call B a basis for [B].

In [12] it is proved that a lower regular function frame, a distance and an ap-
proach system are equivalent mathematical structures. In addition for a given lower
regular function frame L the corresponding distance is defined as

δ(x,A) = sup{ρ(x) | ρ ∈ L, ρ|A=0} (2)

and for a given distance δ the corresponding approach system A is defined as

A(x) = {ψ ∈ PX | ∀A ⊂ X : inf
y∈A

ψ(y) ≤ δ(x,A)} (3)

If (X, τ) is topological space, then

Lτ = {µ ∈ PX | µ lower semicontinuous}

is a lower regular function frame on X. On the other hand; if there exists a
topology τ on X such that L = Lτ , then (X,L) is called a topological approach

space [12]. A function f : (X,L) → (X
′
,L′

) between approach spaces is called a

contraction if for all ν ∈ L′
, ν ◦ f ∈ L . The category whose objects are approach

spaces and morphisms are contractions is denoted by App. App is a topological
category and Top is embedded as a concretely coreflective subcategory of App. For
any approach space (X,L), Top-coreflection τ tcL determined by L is the topology
associated with the following topological closure operator:

clL(A) =
{
x ∈ X| sup

ρ∈L
ρ|A=0

ρ(x) = 0
}
; A ⊂ X. (4)

Note that the equality (4) can be written as

clL(A) =
⋂
ρ∈L

ρ|A
=0

{
ρ = 0} (5)

Before describing the construction process of the Fell approach structure, let us
give the definition of Vietoris approach structure investigated in [16] by means of
regular function frames. If µ ∈ PX , then the functions µ∧ and µ∨ are defined as

µ∧ : CL(X) −→ P
A 7−→ µ∧(A) = inf

x∈A
µ(x)

µ∨ : CL(X) −→ P
A 7−→ µ∨(A) = sup

x∈A
µ(x).
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Lowen andWuyts obtained in [16] that for the function θA of A ∈ CL(X), θ∧A = θA−

and θ∨A = θA+ and for a subcollection A in CL(X),

θ∩A = sup
A∈A

θA and θ∪A = inf
A∈A

θA. (6)

Given an approach space (X,L), L
∧
= {µ∧ |µ ∈ L} is a basis for a lower regular

function frame. The corresponding lower regular function frame is

L
∧
V = {sup

j∈J
µ∧
j | ∀j ∈ J : µj ∈ L}.

This approach structure is calledVietoris
∧
-structure. Moreover, L

∨
= {µ∨ |µ ∈

L} is a subbasis for a lower regular function frame. The corresponding lower regular
function frame is

L
∨
V = {sup

j∈J
inf
k∈Ij

µ∨
j,k | J ̸= ∅,∀j, k : Ij ⊂ J finite, µj,k ∈ L}.

This approach structure is called Vietoris
∨
-structure. Finally, the Vietoris

approach structure is a lower regular function frame with the subbasis L
∧
∪L

∨
.

We denote the expression “ such that ” by “ s.t. ” briefly.

3. The Fell Approach Structure

In this section we construct a new approach structure corresponding to the Fell
topology and investigate its properties. Here, CL(X) and K(X) denote the families
of the closed and the compact subsets, respectively, of the Top-coreflection τ tcL of
the approach structure L. To construct Fell approach structure, we modify the
function µ∧ defined by Lowen and Wuyts [16] using compact sets. Let µ ∈ PX and
B∈ K(X), we define the function

µ∧
B : CL(X) −→ P

A 7−→ µ∧
B(A) = inf

x∈A∩B
µ(x).

In the sequel the considered approach spaces are assumed to be Hausdorff approach
spaces [15] (X,L), that are the approach spaces such that their Top-coreflections
are Hausdorff. In the following result we proved that being a Hausdorff approach
space can be characterized by means of lower regular function frames.

Proposition 1. For an approach space (X,L), the following properties are equiv-
alent.

(i) (X, τ tcL ) is Hausdorff.

(ii) x ̸= y =⇒ (∃ρ, µ ∈ L ∋ ρ(x) > 0, ρ(y) = 0 and µ(x) = 0, µ(y) > 0).

Proof. Let (X, τ tcL ) be a Hausdorff space. Then

∃W,G ∈ τ tcL s.t. x ∈W, y ∈ G and W ∩G = ∅
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Since W ∈ τ tcL , we know that y ∈ X −W = clL(X −W ) and x /∈ X −W . Thus by
(4) it is clear that

∀ρ ∈ L s.t. ρ|X−W=0 : ρ(y) = 0

and

∃ρ
′
∈ L s.t. ρ

′

|X−W=0 : ρ
′
(x) > 0.

Similarly, since G ∈ τ tcL , x ∈ X −G and y /∈ X −G, one can obtain that

∀µ ∈ L s.t. µ|X−G=0 : µ(x) = 0

and

∃µ
′
∈ L s.t. µ

′

|X−G=0 : µ
′
(y) > 0.

On the other hand, when (ii) holds we have three posibilities: If ρ(x) < µ(y), then
by Proposition 2.2.8 in [17], y ∈ µ−1(]ρ(x),+∞[) ∈ τ tcL and x ∈ µ−1([0, ρ(x)[) ∈ τ tcL .
Moreover,

µ−1(]ρ(x),+∞[) ∩ µ−1([0, ρ(x)[) = ∅
Hence (X, τ tcL ) is Hausdorff. Similarly, if µ(y) < ρ(x) one can easily obtain the
same fact. And if µ(y) = ρ(x), by the assumption since we have that both µ(y)
, ρ(x) are positive, there exist a real number r such that 0 < r < µ(y). Then
x ∈ µ−1([0, r[) ∈ τ tcL and y ∈ µ−1(]r,+∞[) ∈ τ tcL . Moreover,

µ−1([0, r[) ∩ µ−1(]r,+∞[) = ∅
which completes the proof. □

Remark 1. In [7] and [8] Baran and Qasim gave different definitions of T0 and
T1 approach spaces. We hope that the characterization given in Proposition 1 will
lead a way to give an analogue definition of T2 spaces (Hausdorff spaces).

The following result gives some basic properties of the modified function given
in the beginning of this chapter.

Proposition 2. If (X,L) is an approach space, then the following statements are
valid.

(i) ∀A,C ∈ CL(X), ∀B ⊂ K(X) s.t. |B| <∞ :

min
B∈B

inf
x∈B∩C

θA(x) = inf
x∈(∪B)∩C

θA(x),

(ii) ∀A ∈ CL(X),∀B ∈ K(X) : (θA)
∧
B = θ(A∩B)− ,

(iii) ∀A ⊂ CL(X) , ∀B ∈ K(X) : (θ∪A)
∧
B = infA∈A(θA)

∧
B ,

(iv) ∀A ∈ CL(X) , B ⊂ K(X) and |B| <∞ : (θA)
∧
∪B = minB∈B(θA)

∧
B .
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Proof. (i) It is straightforward. (ii) Let C ∈ CL(X). Since (θA)
∧
B can only take on

two values, ∞ or 0, we must consider two possible cases. Whenever (θA)
∧
B(C) = ∞

then it means that B∩C = ∅ or A∩B∩C = ∅. In both cases, clearly C /∈ (A∩B)−

and thus θ(A∩B)−(C) = ∞. Also, whenever θ(A∩B)−(C) = ∞, one can easily show
that (θA)

∧
B(C) = ∞. For the second possibility, (θA)

∧
B(C) = 0 iff A ∩ B ∩ C ̸= ∅

which means that C ∈ (A ∩B)−. Hence θ(A∩B)−(C) = 0.
(iii) Let C ∈ CL(X). By (6) we obtain

(θ∪A)
∧
B(C) = inf

x∈B∩C
θ∪A(x) = inf

x∈B∩C
inf
A∈A

θA(x)

and so if B ∩ C = ∅, then
inf
A∈A

(θA)
∧
B(C) = inf

A∈A
inf

x∈B∩C
θA(x) = ∞.

If B ∩ C ̸= ∅, then by (6) we obtain

(θ∪A)
∧
B(C) = inf

x∈B∩C
θ∪A(x)

= inf
x∈B∩C

inf
A∈A

θA(x)

= inf
A∈A

inf
x∈B∩C

θA(x)

= inf
A∈A

(θA)
∧
B(C).

(iv) Let C ∈ CL(X). For the finite subcollection B ⊂ K(X), if (∪B)∩C = ∅, then
(θA)

∧
∪B(C) = inf

x∈(∪B)∩C
θA(x) = ∞

and

min
B∈B

(θA)
∧
B(C) = min

B∈B
inf

x∈B∩C
θA(x) = ∞.

If (∪B) ∩ C ̸= ∅, then by (i) we obtain

min
B∈B

(θA)
∧
B(C) = min

B∈B
inf

x∈B∩C
θA(x)

= inf
x∈(∪B)∩C

θA(x)

= (θA)
∧
∪B(C).

□

Proposition 3. In an approach space (X,L), the collection

L
∧

Fell = {µ∧
B | µ ∈ L, B ∈ K(X)}

is a subbasis for a lower regular function frame on CL(X) and the corresponding
lower regular function frame is

L
∧
Fell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.
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Proof. For all µ ∈ L, B ∈ K(X) , α > 0 and A ∈ CL(X), clearly

(µ∧
B + α)(A) = µ∧

B(A) + α = inf
x∈A∩B

µ(x) + α = inf
x∈A∩B

(µ+ α)(x) = (µ+ α)∧B(A).

Since L is translation invariant, we have (µ+α)∧B ∈ L
∧

Fell thus L
∧

Fell is translation

invariant. Therefore, L
∧

Fell is a subbasis for a lower regular function frame. Thus
we obtaine the following family;{

inf
µ∈Lj

B∈Kj

µ∧
B | Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
,

which is a basis for a lower regular function frame, and the lower regular function
frame generated by this basis is

L
∧
Fell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.

□

We call the approach structure L
∧
Fell as Fell

∧
- approach structure.

Theorem 1. The collection L
∨
∪L

∧
Fell is a subbasis for the lower regular function

frame;

LFell =

{
sup
j∈J

(
inf

µ∈Lj

B∈Kj

µ∧
B

∧
inf

µ∈Ltj

µ∨) | Lj ,Ltj ⊂ L,Kj ⊂ K(X),

Lj ,Ltj and Kj are finite

}
.

Proof. Since L
∨

and L
∧

Fell are both translation invariant, so L
∨
∪L

∧
Fell is. Thus

this union is a subbasis for a lower regular function frame. Hence L
∨

∪ L
∧

Fell

generates a lower regular function frame (see (1)) which coincides with LFell. □

We call the approach structure LFell as Fell approach structure. Now we
should point out that this generalization is meaningful by introducing its relation
with the ordinary Fell topology.

If L is a lower regular function frame, then it was shown in [16] that

∀µ ∈ L : {µ = 0}+ = {µ∨ = 0}. (7)

The following lemma gives analogue equalities for our modified functions µ∧
B when-

ever µ ∈ L, B ∈ K(X).

Lemma 1. In an approach space (X,L), the following holds

(i) ∀µ ∈ L,∀B ∈ K(X) : {µ∧
B = 0} =

(
{µ = 0}

⋂
B
)−
,
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(ii) For all K ∈ K(X),( ⋂
ρ∈J

{ρ = 0}
)−

=
⋂
ρ∈J

{ρ = 0}− =
⋂
ρ∈J

{ρ∧K = 0}

where J = {ρ ∈ L | ρ|K = 0}.

Proof. (i) To prove the equality we shall show that µ : (X, τ tcL ) → P is lower
semicontinuous. For an arbitrary α > 0 if x /∈ {µ ≤ α} since we can consider the
mapping ρ := (µ− α)

∨
0 that lies in L, x /∈ {ρ = 0}. Thus by (5)

x /∈
⋂
ρ∈L

ρ|{µ≤α}
=0

{ρ = 0} = clτ{µ ≤ α}.

Therefore {µ ≤ α} is a closed subset in the Top-coreflection τ tcL of L. Hence µ is
lower semicontinuous. Now let us consider the claimed equality:

A ∈ {µ∧
B = 0} ⇐⇒ inf

x∈A∩B
µ(x) = 0.

By the fact that a lower semicontinuous mapping takes on its infimum value on a
compact set [9], we obtain

inf
x∈A∩B

µ(x) = 0 ⇐⇒ ∃x ∈ A ∩B : µ(x) = 0

⇐⇒ A ∩B ∩ {µ = 0} ≠ ∅
⇐⇒ A ∈ ({µ = 0} ∩B)−.

(ii) Let K ∈ K(X), then

A ∈
( ⋂

ρ∈J
{ρ = 0}

)−

⇐⇒ A
⋂( ⋂

ρ∈J
{ρ = 0}

)
̸= ∅

⇐⇒ ∃a ∈ A and a ∈ {ρ = 0} for all ρ ∈ J
⇐⇒ A ∩ {ρ = 0} ≠ ∅ for all ρ ∈ J
⇐⇒ A ∈

⋂
ρ∈J

{ρ = 0}−.

For the second equality

A ∈
⋂
ρ∈J

{ρ = 0}− =⇒ ∀ρ ∈ J : A ∈ {ρ = 0}−

=⇒ ∀ρ ∈ J : ∃a ∈ A s.t. ρ(a) = 0

=⇒ ∀ρ ∈ J : inf
a∈A

ρ(a) = 0.
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Moreover, since K ∈ CL(X), by (5) we know that

K = clL(K) =
⋂
ρ∈J

{ρ = 0}.

Thus, if A ∈ K−, then the first equality provides that

∀ρ ∈ J : inf
a∈A∩K

ρ(a) = 0

thus

∀ρ ∈ J : A ∈ {ρ∧K = 0}.
Consequently, we obtain that A ∈

⋂
ρ∈J {ρ∧K = 0}. Conversely, if A ∈

⋂
ρ∈J {ρ∧K =

0}, then
∀ρ ∈ J : inf

a∈A∩K
ρ(a) = 0.

By the lower semicontinuity of ρ and compactness of A ∩K,

∃a ∈ A ∩K s.t. ρ(a) = 0 for all ρ ∈ J .
Therefore

∀ρ ∈ J : A ∩ {ρ = 0} ≠ ∅.
Hence, A ∈

⋂
ρ∈J {ρ = 0}− which completes the proof.

□

Remark 2. Lowen and Wuyts [16] proved that if (X,L) is a topological approach

space, then (CL(X),L
∧
V ), (CL(X),L

∨
V ) and (CL(X),LV ) are topological approach

spaces.

With the following theorem we investigate the analogue fact for our new struc-
tures.

Theorem 2. Whenever L is a topological approach structure on X, L∧
Fell and LFell

are topological approach structures on CL(X).

Proof. By Proposition 2.1.2 (5) in [17] (page 93-94), it suffices to prove that θ{µ∧
B=0} ∈

L∧
Fell for all µ ∈ L and B ∈ K(X). With respect to the same theorem (i) we know

that θ{µ≤ε} ∈ L for all ε > 0. Thus (θ{µ≤ε})
∧
B ∈ L∧

Fell for all ε > 0 and B ∈ K(X).
By Proposition 2 (ii) we have (θ{µ≤ε})

∧
B = θ({µ≤ε}∩B)− . Therefore by (LR1); in or-

der to complete the proof it is sufficient to show that θ{µ∧
B=0} = supε>0 θ({µ≤ε}∩B)− .

Since the indicator function takes on only two values, we shall consider both of the
possibilities. Let A ∈ CL(X)

θ{µ∧
B=0}(A) = 0 ⇐⇒ A ∈ {µ∧

B = 0}
⇐⇒ ∀ε > 0 : ∃xε ∈ A ∩B s.t. µ(xε) ≤ ε

⇐⇒ ∀ε > 0 : A ∩B ∩ {µ ≤ ε} ≠ ∅
⇐⇒ ∀ε > 0 : A ∈ (B ∩ {µ ≤ ε})−
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⇐⇒ ∀ε > 0 : θ(B∩{µ≤ε})−(A) = 0

⇐⇒ sup
ε>0

θ(B∩{µ≤ε})−(A) = 0.

In addition

sup
ε>0

θ({µ≤ε}∩B)−(A) = ∞ ⇐⇒ ∃ε > 0 s.t. θ({µ≤ε}∩B)−(A) = ∞

⇐⇒ ∃ε > 0 s.t. A /∈ ({µ ≤ ε} ∩B)−

⇐⇒ ∃ε > 0 s.t. A ∩ ({µ ≤ ε} ∩B) = ∅
⇐⇒ ∃ε > 0 s.t. A ∩B ⊂ {µ > ε}
=⇒ ∃ε > 0 s.t. inf

x∈A∩B
µ(x) ≥ ε

=⇒ θ{µ∧
B=0}(A) = ∞.

On the other hand if θ{µ∧
B=0}(A) = ∞, then

A /∈ {µ∧
B = 0} =⇒ inf

x∈A∩B
µ(x) > 0

=⇒ ∃ε > 0 s.t. inf
x∈A∩B

µ(x) > ε

⇐⇒ ∃ε > 0 s.t. A ∩B ∩ ({µ ≤ ε}) = ∅
⇐⇒ ∃ε > 0 s.t. A /∈ ({µ ≤ ε} ∩B)−

=⇒ ∃ε > 0 s.t. θ({µ≤ε}∩B)−(A) = ∞
=⇒ sup

ε>0
θ({µ≤ε}∩B)−(A) = ∞

Hence L∧
Fell is a topological approach structure. Since L∧

Fell and L∨
V are topological

approach structures [16], one can obtain easily that LFell is a topological approach
structure . □

The facts given in the following lemma are expressed by Lowen and Wuyts in [16]
(see page 288 line 23). There L is expressed as a regular function frame and in [17]
that structure is renamed as lower regular function frame.

Lemma 2. Let L be a lower regular function frame on X then
(i) If B is a basis for L, then C := {{ρ = 0} | ρ ∈ B} is a basis for the collection of
closed subsets of τ tcL .
(ii) If S is a subbasis for L, then T := {{µ = 0} | µ ∈ S} is a subbasis for the
collection of closed subsets of τ tcL [16].

Remark 3. It was proved by Lowen and Wuyts in [16] that Top-coreflections of

L
∧
V ,L

∨
V and LV are τ+V , τ

−
V and τV , respectively. Lowen and Wuyts also showed

that if (X,L) is any approach space, Top-coreflection of L
∨
V coincides with (τ tcL )

−
V ,

whereas there is no relation between Top-coreflections of L
∧
V ,LV and (τ tcL )

+
V , (τ

tc
L )V ,

respectively on the whole of CL(X). Nevertheless, the following equalities hold only
on K(X), that is
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τ tc
L

∧
V

= (τ tcL )
+
V and τ tcLV

= (τ tcL )V .

Now we show that the Top-coreflection τ tcL∧
Fell

of the approach structure L∧
Fell is

the upper Fell topology on CL(X) and Top-coreflection τ tcLFell
of the Fell approach

structure LFell is the Fell topology on CL(X).

The following theorem is the main result of this paper.

Theorem 3. For a lower regular function frame L on X, the following properties
hold.

(i) τ tcL∧
Fell

= (τ tcL )
+
Fell ,

(ii) τ tcLFell
= (τ tcL )Fell .

Proof. (i) Since L∧Fell = {µ∧
B |µ ∈ L, B ∈ K(X)} is a subbasis for L∧

Fell, by Lemma
2 (ii) we obtain that the family

S =

{
{µ∧

B = 0} | µ ∈ L, B ∈ K(X)

}
is a subbasis for the collection FL∧

Fell
of closed subsets of (CL(X), τ tcL∧

Fell
). Moreover,

B = {K− |K ∈ K(X)}

is a basis for the collection F+
LFell

of closed subsets of (CL(X), (τ tcL )
+
Fell). It is

sufficient to prove that S ⊂ B in order to obtain FL∧
Fell

⊂ F+
LFell

. Thus let A ∈ S,
then

∃µ ∈ L,∃B ∈ K(X) s.t. A = {µ∧
B = 0}.

Therefore by Lemma 1 (i), A = {{µ = 0}∩B}− and by the lower semicontinuity of
µ, we obtain {µ = 0} ∩ B ∈ K(X) and then FL∧

Fell
⊂ F+

LFell
. On the other hand,

by the fact that K(X) ⊂ CL(X) and by (5)

A ∈ B =⇒ ∃K ∈ K(X) : A = K−

=⇒ A =

( ⋂
ρ∈J

{ρ = 0}
)−

, where J = {ρ ∈ L | ρ|K=0}.

Moreover, by Lemma 1 (ii) and since {ρ∧K = 0} ∈ S for all ρ ∈ J we obtain that
F+

LFell
⊂ FL∧

Fell
.

(ii) We know that L∧Fell
⋃
L∨ = {µ∧

B | µ ∈ L, B ∈ K(X)}
⋃
{ν∨ | ν ∈ L} is a

subbasis for LFell. By Lemma 2 (ii),

S1 =

{
{η = 0} | η ∈ L∧Fell

⋃
L∨

}
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is a subbasis for the collection FLFell
of the closed sets of (CL(X), τ tcLFell

). In
addition

S2 =

{
F+ | F ∈ CL(X)

}⋃{
K− |K ∈ K(X)

}
,

is a subbasis for the collection (FL)Fell of closed subsets of (CL(X), (τ tcL )Fell). Now
we shall prove that S1 ⊂ S2 in order to obtain that FLFell

⊂ (FL)Fell. Let A ∈ S1,
then

∃η ∈ L∧Fell
⋃
L∨ : A = {η = 0}.

Thus we have two possibilities. If η ∈ L∧Fell , then

∃µ ∈ L,∃B ∈ K(X) : A = {µ∧
B = 0}

Lemma 1 (i) provides that A ∈ S2. If η ∈ L∨, then

∃µ ∈ L ∋ A = {µ∨ = 0}

and by (7) A ∈ (FL)Fell. On the other hand when A ∈ S2 we have two posibilities.
If there exists F ∈ CL(X) s.t. A = F+, by (5) and (7) we obtain

A =

( ⋂
ρ∈L

ρ|F
=0

{ρ = 0}
)+

=
⋂
ρ∈L

ρ|F
=0

{ρ = 0}+ =
⋂
ρ∈L

ρ|F
=0

{ρ∨ = 0} ∈ (τLFell
)c.

If there exists K ∈ K(X) ⊂ CL(X) for which A = K−, then respectively (5) and
Lemma 1 (ii) provides that

A = K− =

( ⋂
ρ∈L

ρ|K
=0

{ρ = 0}
)−

=
⋂
ρ∈L

ρ|K
=0

{ρ∧K = 0} ∈ FLFell
.

Hence it follows that (FL)Fell ⊂ FLFell
. □

The following example gives rise to observe how one shall construct the members
of the subbasis of the Fell approach structure step by step. To make it more clear
we considered the topological case.

Example 1. Let LU be the induced frame on R, where U is the usual topology on
R. In this case, of course, τ tcLU

= U . Now we shall consider CL(R) with its Fell
approach structure. Here L∨ = {µ∨|µ : (R,U) → P lower semi continuous} and
L∧Fell = {µ∧

B |µ : (R,U) → P lower semi continuous and B ∈ K(R)}. If we let the
lower semi continuous mapping µ : R −→ P defined as

µ(x) =

{
x2, x > 1

1− x2, x ≤ 1 ,
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then µ∨ ∈ L∨ and µ∧
B ∈ L∧Fell . For A ∈ CL(R), µ∧

B(A) = ∞ whenever A ∩B = ∅
and if A ∩ B ̸= ∅ there exist x0 ∈ A ∩ B such that µ∧

B(A) = µ(x0). Particularly,
θA ∈ LUFell

for each A ∈ CL(R). Because if we let B = [0, 1], then by Proposition
2.1.2 (3) in [17], (θ{µ=0})

∧
B ∈ LUFell

. And one can easily see that (θ{µ=0})
∧
B = θA.

Now we construct an approach structure corresponding to the extended Fell
topology. Extended Fell topology τeFell is a topology on W = CL(X) ∪ {∅} with
subbasis {

V −|V ∈ τ
}⋃{

W+|W ∈ τ ,W c ∈ K(X)
}

where W+ is considered as the set of subsets of W which belongs to W. While
constructing the extended Fell approach space, the domains of µ∧

B and µ∨ are
assumed to be W instead of CL(X).

Proposition 4. If (X,L) is an approach space, then

L
∧

eFell = {µ∧
B | µ ∈ L, B ∈ K(X)}

is a subbasis for a lower regular function frame and the corresponding frame is

L
∧
eFell =

{
sup
j∈J

inf
µ∈Lj

B∈Kj

µ∧
B | J ̸= ∅,Lj ⊂ L,Kj ⊂ K(X),Lj and Kj are finite

}
.

Proof. The proof goes along the same lines in Proposition 3. □

Theorem 4. The collection L
∨
∪L

∧
eFell is a subbasis for a lower regular function

frame. The corresponding lower regular function frame is

LeFell =

{
sup
j∈J

(
inf

µ∈Lj

B∈Kj

µ∧
B

∧
inf

µ∈Ltj

µ∨) | Lj ,Ltj ⊂ L,Kj ⊂ K(X),

Lj ,Ltj and Kj are finite

}
Proof. The proof goes along the same lines in Theorem 1. □

The approach structures L
∧
eFell and LeFell are called extended Fell

∧
-approach

structure and extended Fell approach structure, respectively. In the following
result we give the fact that the Top-coreflection of extended Fell approach structure
is the extended Fell topology on W.

Theorem 5. For a lower regular function frame L on X, the following properties
hold

(i) τ tcL∧
eFell

= (τ tcL )
+
eFell ,

(ii) τ tcLeFell
= (τ tcL )eFell .

Proof. The proof goes along the same lines in Theorem 3. □
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In [16] the measure of compactness of an approach space (X,L) is given as

χc(X) = sup
F∈F (X)

inf
x∈X

sup
F∈F

sup
ρ∈L
ρ|F =0

ρ(A)

where F (X) is the set of all filters on X. If an approach space has an index of
compactness equal to zero, then in [10] it is said to be 0-compact. Lowen and
Wuyts [16] proved that the index of compactness of X can be reformulated in terms
of FS-sets; that is a subset B of L such that infµ∈C µ = 0 for each finite subcollection
C of B. For a subbasis B of L, if an FS-set is contained in B we say it is an FS-set
in B. The set of all FS-sets in B is denoted by Bs(B) and the following equality
holds.

χc(X) = sup
I∈Bs(B)

inf
x∈X

∨
I(x)

Here, for clarity we shall write χc(XL) instead of χc(X). In the following theorem
we show that extended Fell ∧-approach space is 0-compact and then it gives a result
which mentions that the compactness index of (W,LeFell) is zero.

Theorem 6. χc(CL(XL∧
Fell

)) = 0 for any approach space (X,L).

Proof. Consider the subbasis L
∧

Fell for L
∧
Fell. We shall prove that

∀I ∈ Bs(L
∧

Fell) : inf
A∈CL(X)

∨
I(A) = 0

Let I ∈ Bs(L
∧

Fell), i.e I is an FS-set in L∧
Fell, then for {µ∧

K} ∈ 2(I) where µ ∈
L and K ∈ K(X) we obtain that

inf
A∈CL(X)

µ∧
K(A) = 0

Clearly for all A ∈ CL(X), A ∩K ⊂ X and so µ∧
K(X) ≤ µ∧

K(A). Then

µ∧
K(X) ≤ inf

A∈CL(X)
µ∧
K(A)

Therefore µ∧
K(X) = 0. Since K ∈ K(X) is arbitrary it follows that∨

I(X) = sup
µ∧
B∈I

µ∧
B(X) = 0.

Consequently infA∈CL(X)

∨
I(A) = 0. □

Corollary 1. χc(WLeFell
) = 0 for any approach space (X,L).

Proof. The compactness of (W, τeFell) is given in [4] and we know that an approach
space with a compact topological coreflection is 0-compact [17]. By these two facts,
Theorem 5 provides that the compactness index of the extended Fell approach space
is zero. □
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Proposition 5. For a lower regular function frame L on X, the following proper-
ties hold.

(i) If ρ ∈ LeFell s.t. ρ|D = 0 whenever D ⊂ CL(X), then ρ|CL(X)
∈ LFell and

(ρ|CL(X)
)|D = 0,

(ii) If ν ∈ AeFell(B), then ν|CL(X)
∈ AFell(B) for an arbitrary B ∈ CL(X).

Proof. (i) If ρ ∈ LeFell s.t. ρ|D = 0, then by the definition of LFell and the facts

about restriction of a function, clearly ρ|CL(X)
∈ LFell and (ρ|CL(X)

)|D = 0.

(ii) By (2) and (3) it is clear that

AeFell(B) =

{
ϕ ∈ PW | ∀D ⊂ W : inf

D∈D
ϕ(D) ≤ sup

ρ∈LeFell
ρ|D=0

ρ(B)

}
.

If ν ∈ AeFell(B), then

∀D ⊂ W : inf
D∈D

ν(D) ≤ sup
ρ∈LeFell
ρ|D=0

ρ(B). (8)

Thus (8) is also true for an arbitrary subfamily D of CL(X). In addition, for all
D ∈ D ⊂ CL(X), it is obvious that ν|CL(X)

(D) = ν(D). Therefore

inf
D∈D

ν|CL(X)
(D) = inf

D∈D
ν(D) ≤ sup

ρ∈LeFell
ρ|D=0

ρ(B).

To complete the proof we shall prove that

sup
ρ∈LeFell
ρ|D=0

ρ(B) ≤ sup
µ∈LFell
µ|D

=0

µ(B).

For an arbitrary α > 0 suppose that

∀µ ∈ LFell s.t. µ|D = 0 : µ(B) < α (9)

If ρ ∈ LeFell s.t. ρ|D = 0, then by (i) it is clear that ρ|CL(X)
∈ LFell and

(ρ|CL(X)
)|D = 0. Thus by (9) supρ∈LeFell

ρ|D
=0

ρ(B) ≤ α which completes the proof. □

An approach space (X,L) is said to be LC1 iff its Top-coreflection is locally
compact [13]. By using Corollary 5.1.4 in [4], we obtain the following result as an
analogue of the same Corollary by means of approach theory.

Theorem 7. If (X,L) is a LC1-Hausdorff approach space, then (W,LeFell) is a 0-
compact Hausdorff approach space and (CL(X),LFell) is a LC1 Hausdorff approach
space.
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Proof. It was first observed in [5] that (W, τeFell) is a Hausdorff topological space.
In Theorem 5 we proved that the Top-coreflection of (W,LeFell) is (W, τeFell).
Then by these two facts and Corollary 1 it is clear that (W,LeFell) is a 0-compact
Hausdorff space. Since (X,L) is LC1, we know that (X, τ tcL ) is locally compact.
Then (CL(X), (τ tcL )Fell) is locally compact by Corollary 5.1.4 in [4]. Consequently
(CL(X),LFell) is LC1 by Theorem 3 (ii) and definition of the property LC1, respec-
tively. Then the proof is completed since (X, τ tcL ) is locally compact. Because, in [3],
it is said that being locally compact provides that (W, τeFell) is Hausdorff and so the
subhyperspace (CL(X), τFell) is. Thus by Theorem 3 clearly (CL(X),LFell) is a
Hausdorff approach space. In addition it can be easily seen by Proposition 1, when-
ever (W,LeFell) is assumed to be a Hausdorff approach space. Let A,B ∈ CL(X)
and A ̸= B, then

∃ρ, µ ∈ LeFell ∋ ρ(A) > 0, ρ(B) = 0 and µ(A) = 0, µ(B) > 0.

By Proposition 5 (i), we know that ρ|CL(X)
, µ|CL(X)

∈ LFell. Therefore by the fact

that, ρ|CL(X)
(A) = ρ(A) and µ|CL(X)

(A) = µ(A) for each A ∈ CL(X), we obtain

ρ|CL(X)
(A) > 0, ρ|CL(X)

(B) = 0 and µ|CL(X)
(A) = 0, µ|CL(X)

(B) > 0.

Hence (CL(X),LFell) is a Hausdorff approach space. □
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