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1. Introduction
The approximation of functions by using linear positive operators introduced via q-Calculus and (p,q)-Calculus is currently
under intensive research. Firstly, generalizations of Bernstein polynomials based on the q-integers has been investigated by
Lupas [1] and Phillips [2]. Later, generalized q-Bernstein operators and the q-generalization of other operators were studied in
[3]-[8]. Also, in recent years, a nonlinear modification of the classical Bernstein polynomial has been introduced by Bede and
Gal [9]. All the max-product operators are nonlinear and piecewise rational, and they present, for many subclasses of functions,
essentially better approximation properties than the classical linear operators. In [10]-[13], Favard-Szász-Mirakjan operator of
max-product kind and Bernstein operator of max-product kind were studied. Duman constructed a nonlinear approximation
operator by modifying the q-Bernstein polynomial in [14].

In this study, we define nonlinear q-Favard-Szász-Mirakjan operators of max-product kind. But, before that the classical
Favard-Szász-Mirakjan operators (see [15]) and its q-generalization (see [16]) are given respectively by

Sn( f ,x) = e−nx
∞

∑
k=0

(nx)k

k!
f
(

k
n

)
(1.1)

and

Sn,q( f ,x) = Eq (−[n]qx)
∞

∑
k=0

([n]qx)k

[k]q!
f
(
[k]q
[n]q

)
, (1.2)
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where n ∈ N, f is bounded, f ∈C[0,+∞), x ∈ [0,+∞), q ∈ (0,1) and Eq(x) = ∑
∞
n=0 q

n(n−1)
2 xn

[n]q! .
The aim of this paper is to study the nonlinear approximation properties of q-Favard-Szász-Mirakjan operators of max-

product kind.
We first recall some basic definitions in q-calculus. Let parameter q be a positive real number and n a non-negative integer.

[n]q denotes a q integer, defined by

[n]q =

{
1−qn

1−q , q 6= 1
n, q = 1.

Let q > 0 be given. We define a q-factorial, [n]q! of k ∈ N, as

[n]q! =
{

[1]q[2]q...[n]q, n = 1,2, ...
1, n = 0.

The q-binomial coefficient
[

n
r

]
q

by

[
n
r

]
q
=

[n]q!
[n− r]q![r]q!

.

2. Construction of the Operators
The approximation properties of the classical Favard-Szasz-Mirakjan operators of max-product kind were investigated in [9]. In
this section, we construct nonlinear q-Favard-Szász-Mirakjan operators of max-product kind. We consider the operations ”∨ ”
(maximum) and ”.” (product) over the interval [0,+∞). Then ([0,+∞),∨, .) has a semiring structure and is called ”max-product
algebra” (see, for instance [13]).

Let C+[0,+∞) := { f : [0,+∞)→ [0,+∞) : f is continuous on [0,+∞)}. We define nonlinear q-Favard-Szász-
Mirakjan operators of max-product kind as follows:

F(M)
n,q ( f )(x) =

∨
∞
k=0 sn,k(x,q) f

(
[k]q
[n]q

)
∨

∞
k=0 sn,k(x,q)

, (2.1)

where n ∈ N, f ∈C+[0,+∞) , x ∈ [0,+∞), q ∈ (0,1) and sn,k(x,q) is given by

sn,k(x,q) =
([n]qx)k

[k]q!
. (2.2)

Since it easy to check that F(M)
n,q ( f )(0)− f (0) = 0 for all n, notice that in the notations, proofs and statements of all

approximation results in fact we always may suppose that x > 0.
Since f ∈C+[0,+∞) and sn,k(x,q) is positive for all x ∈ [0,+∞), F(M)

n,q ( f )(x) is a positive operator. Now, we show that
F(M)

n,q ( f )(x) is not linear operator on C+[0,+∞) .
Let f ,g ∈C+[0,+∞). Then, by definition we see that

f ≤ g =⇒ F(M)
n,q ( f )(x)≤ F(M)

n,q (g)(x). (2.3)

Thus, F(M)
n,q ( f )(x) is increasing with respect to f ∈C+[0,+∞). Besides, for any f ,g ∈C+[0,+∞) we have

F(M)
n,q ( f +g)(x)≤ F(M)

n,q ( f )(x)+F(M)
n,q (g)(x). (2.4)

In general, ω1( f ,δ ), δ > 0 denote the modulus of continuity of f ∈C+[0,+∞) defined by

ω1( f ,δ ) = sup{| f (x)− f (y)| : x,y ∈ [0,+∞), |x− y| ≤ δ}.

Now, using (2.3), (2.4) and also applying Corollary 2.3 in [11] or Corollary 3 in [13], we have the following inequality:

|F(M)
n,q ( f )(x)− f (x)| ≤

(
1+

1
δn

F(M)
n,q (ϕx)(x)

)
ω1( f ,δn), (2.5)

where n ∈ N, f ∈C+[0,+∞) , x ∈ [0,+∞), q ∈ (0,1) and ϕx(t) = |x− t|.



Nonlinear Approximation by q-Favard-Szász-Mirakjan Operators of Max-Product Kind — 106/114

3. Auxiliary Results

For each k, j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, let us denote

Mk,n, j(x,q) =
sn,k(x,q)

∣∣∣ [k]q[n]q
− x
∣∣∣

sn, j(x,q)
, (3.1)

mk,n, j(x,q) =
sn,k(x,q)
sn, j(x,q)

. (3.2)

It can easily see that if k ≥ j+1 then

Mk,n, j(x,q) =
sn,k(x,q)

(
[k]q
[n]q
− x
)

sn, j(x,q)
,

and if k ≤ j−1 then

Mk,n, j(x,q) =
sn,k(x,q)

(
x− [k]q

[n]q

)
sn, j(x,q)

.

Lemma 3.1. Let q ∈ (0,1). For all k, j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we get

mk,n, j(x,)≤ 1. (3.3)

Proof. We consider two cases: (i) k ≥ j and (ii) k < j.
Case (i). From (3.2), we have

mk,n, j(x,q)
mk+1,n, j(x,q)

=
[k+1]q
[n]q

1
x
.

Since the function h(x) = 1
x is non-increasing on

[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, from here we get

mk,n, j(x,q)
mk+1,n, j(x,q)

=
[k+1]q
[n]q

[n]q
[ j+1]q

=
[k+1]q
[ j+1]q

≥ 1

which immediately implies

m j,n, j(x,q)≥ m j+1,n, j(x,q)≥ m j+2,n, j(x,q)≥ ... .

Case (ii) We get

mk,n, j(x,q)
mk−1,n, j(x,q)

=
[n]q
[k]q

x≥
[n]q
[k]q

[ j]q
[n]q

=
[ j]q
[k]q
≥ 1,

which immediately implies

m j,n, j(x,q)≥ m j−1,n, j(x,q)≥ m j−2,n, j(x,q)≥ ...≥ m0,n, j(x,q).

Since m j,n, j(x,q) = 1 the proof of the lemma is finished.

Lemma 3.2. Let q ∈ (0,1), j ∈ {1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
.

(i) If k ∈ { j+1, j+2, ...} is such that [k+1]q−
√

qk[k+1]q ≥ [ j+1]q, then Mk,n, j(x,q)≥Mk+1,n, j(x,q).
(ii) If k ∈ {1,2, ..., j−1} is such that [k]q−

√
qk−1[k]q ≤ [ j]q, then

Mk−1,n, j(x,q)≤Mk,n, j(x,q).
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Proof. (i) Let k ∈ { j+1, j+2, ...} and [k+1]q−
√

qk[k+1]q ≥ [ j+1]q. Then, we can write that

Mk,n, j(x,q)
Mk+1,n, j(x,q)

=
[k+1]q
[n]q

1
x

[k]q
[n]q
− x

[k+1]q
[n]q
− x

.

Since the g(x) = 1
x

[k]q
[n]q
−x

[k+1]q
[n]q
−x

clearly is decreasing on the interval
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we have

g(x)≥ g
(
[ j+1]q
[n]q

)
=

[n]q
[ j+1]q

[k]q
[n]q
− [ j+1]q

[n]q
[k+1]q
[n]q
− [ j+1]q

[n]q

=
[n]q

[ j+1]q

[k]q− [ j+1]q
[k+1]q− [ j+1]q

.

Since the condition [k+1]q−
√

qk[k+1]q ≥ [ j+1]q is equivalent to [k+1]q−
√

[k+1]2q− [k]q[k+1]q ≥ [ j+1]q which implies

that [k+1]q ([k]q− [ j+1]q)≥ [ j+1]q ([k+1]q− [ j+1]q).
So, we achieve that

Mk,n, j(x,q)
Mk+1,n, j(x,q)

≥ 1,

which proves Lemma 3.2 (i).
(ii) Let k ∈ {1,2, ..., j−1} and [k]q−

√
qk−1[k]q ≤ [ j]q. Then, we can write that

Mk,n, j(x,q)
Mk−1,n, j(x,q)

=
[n]q
[k]q

x
x− [k]q

[n]q

x− [k+1]q
[n]q

.

Since the h(x) = x
x− [k]q

[n]q

x− [k+1]q
[n]q

clearly is increasing on the interval
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, we have

h(x)≥ h
(
[ j]q
[n]q

)
=

[ j]q
[n]q

[ j]q
[n]q
− [k]q

[n]q
[ j]q
[n]q
− [k−1]q

[n]q

=
[ j]q
[n]q

[ j]q− [k]q
[ j]q− [k−1]q

.

Since the condition [k]q+
√

qk−1[k+1]q≤ [ j]q is equivalent to [k]q−
√
[k]2q− [k]q[k1]q≤ [ j]q which implies that [ j]q ([ j]q− [k]q)≥

[k]q ([ j]q− [k−1]q).
So, we achieve that

Mk,n, j(x,q)
Mk−1,n, j(x,q)

≥ 1

which proves Lemma 3.2 (ii).

Lemma 3.3. Let q ∈ (0,1), j ∈ {0,1,2, ...} and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
. We get

∞∨
k=0

sn,k(x,q) = sn, j(x,q).

Proof. Firstly, we show that for fixed n ∈ N and 0≤ k we get

0≤ sn,k+1(x,q)≤ sn,k(x,q) ⇐⇒ x ∈
[

0,
[k+1]q
[n]q

]
.
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Indeed, from sn,k(x,q) =
([n]qx)k

[k]q! we have

0≤ sn,k+1(x,q)≤ sn,k(x,q)

0≤
([n]qx)k+1

[k+1]q!
≤

([n]qx)k

[k]q!
,

which after simplifications is obviously equivalent to

0≤ x≤
[k+1]q
[n]q

.

So, if we take k = 0,1,2, ..., then we achieve that

sn,1(x,q)≤ sn,0(x,q) ⇐⇒ x ∈
[

0,
[1]q
[n]q

]
,

sn,2(x,q)≤ sn,1(x,q) ⇐⇒ x ∈
[

0,
[2]q
[n]q

]
,

sn,3(x,q)≤ sn,2(x,q) ⇐⇒ x ∈
[

0,
[3]q
[n]q

]
,

so on,

sn,k+1(x,q)≤ sn,k(x,q) ⇐⇒ x ∈
[

0,
[k+1]q
[n]q

]
,

and so on.
From above inequalities, we can easily write:

i f x ∈
[

0,
[1]q
[n]q

]
then sn,k(x,q)≤ sn,0(x,q), f or all k = 0,1,2, ...,

i f x ∈
[
[1]q
[n]q

,
[2]q
[n]q

]
then sn,k(x,q)≤ sn,1(x,q), f or all k = 0,1,2, ...,

i f x ∈
[
[2]q
[n]q

,
[3]q
[n]q

]
then sn,k(x,q)≤ sn,2(x,q), f or all k = 0,1,2, ...,

and so on, as a result, we obtain

i f x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
then sn,k(x,q)≤ sn, j(x,q), f or all k = 0,1,2, ...,

which completes the proof of Lemma 3.3.

4. Approximation Results

Theorem 4.1. Let f : [0,+∞)→ [0,+∞) be bounded and continuous on [0,+∞) and q ∈ (0,1). Then we get the following
estimation∣∣∣F(M)

n,q ( f )(x)− f (x)
∣∣∣≤ 8ω1

(
f ;
√

x√
[n]q

)
, (4.1)

where n ∈ N, x ∈ [0,+∞) and

ω1( f ,δ ) = sup{| f (x)− f (y)| : x,y ∈ [0,+∞), |x− y| ≤ δ}.
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Proof. Taking q = qn ∈ (0,1) such that limn qn = 1, we deduce limn[n]qn = ∞. From (2.5), we have

|F(M)
n,q ( f )(x)− f (x)| ≤

(
1+

1
δn

F(M)
n,q (ϕx)(x)

)
ω1( f ,δn), (4.2)

where ϕx(t) = |x− t|. Thus, it is enough to estimate

An,q(x) := F(M)
n,q (ϕx)(x) =

∨
∞
k=0 sn,k(x,q)

∣∣∣ [k]q[n]q
− x
∣∣∣∨

∞
k=0 sn,k(x,q)

,

where x ∈ [0,+∞). Let x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, where j ∈ {0,1,2, ...} is fixed,

arbitrary. By Lemma 3.3 we can easily achieve

An,q(x) = max{Mk,n, j(x,q) : x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
,k = 0,1, ...}.

Firstly, we show that for j = 0 and k = 0,1,2, ... we obtain An,q(x)≤
√

x√
[n]q

for all x ∈
[
0, 1

[n]q

]
.

Indeed, for j = 0 we get Mk,n,0(x,q) =
([n]qx)k

[k]q!

∣∣∣ [k]q[n]q
− x
∣∣∣ which for k = 0 gives Mk,n,0(x,q) = x =

√
x
√

x ≤
√

x 1√
[n]q

. Fur-

thermore, for any k = 1,2, ... we have 1
[n]q
≤ [k]q

[n]q
and we obtain

Mk,n,0(x,q)≤
([n]qx)k

[k]q!
[k]q
[n]q

=
√

x
[n]k−1

q xk− 1
2

[k−1]q
≤
√

x
[n]k−1

q

[k−1]q[n]
k− 1

2 q
≤
√

x√
[n]q

.

Now we claim that for each Mk,n, j(x,q) when j = 1,2, ... and k = 0,1,2, ... the following inequality

Mk,n, j(x,q)≤
4
√

x√
[n]q

, ∀x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
, (4.3)

which immediately will imply that

An,q(x)≤
4
√

x√
[n]q

, ∀x ∈ [0,∞),n ∈ N,

and taking δn =
4
√

x√
[n]q

in (4.2) we complete the proof of Theorem 4.1.

In order to prove (4.3) we consider the following three cases: 1) k = j, 2) k ≥ j+1, 3) k ≤ j−1.
Case 1) If k = j then from (3.1) M j,n, j(x,q) =

∣∣∣ [ j]q[n]q
− x
∣∣∣. Since x ∈

[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
we can easily see that M j,n, j(x,q)≤ 1

[n]q
.

Since j ≥ 1 we have x≥ 1
[n]q

which implies

M j,n, j(x,q)≤
1
[n]q

=
1√
[n]q

1√
[n]q
≤
√

x
1√
[n]q

.

Case 2) Subcase a) We suppose that k ≥ j+1 and [k+1]q−
√

qk[k+1]q < [ j+1]q. We have from Lemma 3.1 that

Mk,n, j(x,q) = mk,n, j(x,q)
(
[k]q
[n]q
− x
)
≤

[k]q
[n]q
−

[ j]q
[n]q

.

By hypothesis, since

q[k]q−
√

qk[k+1]q < q[ j]q,

we have

Mk,n, j(x,q)≤
[k]q
[n]q
−

[k]q−
√

qk−2[k+1]q
[n]q

=

√
qk−2[k+1]q

[n]q
.
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Since k ≥ 2 and q ∈ (0,1), we obtain

Mk,n, j(x,q)≤
√
[k+1]q
[n]q

.

But we necessarily have k ≤ 3 j. Indeed, if we suppose that k > 3 j, then because g(k) = [k+1]q−
√

qk[k+1]q is increasing
with respect to k. Indeed, we can write that

g(k+1)−g(k) = [k+2]q− [k+1]q +
√

qk[k+1]q−
√

qk+1[k+2]q

≥ [k+2]q− [k+1]q +
√

qk[k+1]q−
√

qk[k+2]q

= qk+1−q
k
2

(√
[k+1]q−

√
[k+2]q

)
= qk+1− qk+1q

k
2√

[k+1]q−
√
[k+2]q

= qk+1

(
1− q

k
2√

[k+1]q−
√
[k+2]q

)

≥ qk+1

(
1− 1√

[k+1]q−
√
[k+2]q

)
> 0.

Hence, we get that [ j + 1]q > [k+ 1]q−
√

qk[k+1]q > [3 j + 1]q−
√

q3 j[3 j+1]q which implies the obvious contradiction
[3 j+1]q− [ j+1]q <

√
q3 j[3 j+1]q is to equivalent q j+1[2 j]q <

√
q3 j[3 j+1]q.

As a result, we achieve

Mk,n, j(x,q)≤
√
[k+1]q
[n]q

≤
√

[3 j+1]q
[n]q

≤
√
[4 j]q
[n]q

=
√

(1+q j)(1+q2 j)

√
[ j]q

[n]q

≤
√
(1+q j)(1+q2 j)

√
x√
[n]q
≤ 2

√
x√
[n]q

,

taking into account that
√

x≥
√

[ j]q
[n]q

.

Subcase b) We suppose that k ≥ j+1 and [k+1]q−
√

qk[k+1]q ≥ [ j+1]q. Since, the function
g(k) = [k+ 1]q−

√
qk[k+1]q is increasing with respect to k, it follows that there exits k ∈ {0,1,2, ...}, of maximum value,

such that

[k+1]q−
√

qk[k+1]q < [ j+1]q.

Let k̃ = k+1. Then for all k ≥ k̃ we have

[k+1]q−
√

qk[k+1]q ≥ [ j+1]q

and

Mk̃,n, j(x,q) = mk̃,n, j(x,q)
(
[k̃]q
[n]q
− x
)
≤

[k+1]q
[n]q

−
[ j]q
[n]q

.

Since

[ j]q ≥ [k+1]q−q j−
√

qk[k+1]q,
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we can see that

Mk̃,n, j(x,q)≤
[k+1]q
[n]q

−
[k+1]q−q j−

√
qk[k+1]q

[n]q

=
q j +

√
qk[k+1]q
[n]q

≤
1+
√
[k+1]q

[n]q
≤

2
√

[k+1]q
[n]q

≤ 4
√

x√
[n]q

.

The last above inequality follows from the fact that

[k+1]q−
√

qk[k+1]q < [ j+1]q,

necessarily implies k ≤ 3 j (see the similar reasoning in the above Subcase a)). Also, we get k̃ ≥ j + 1. Indeed, this is a
consequence of the fact that g is increasing function and because it is easy to see that g( j)≤ [ j+1]q.

By Lemma 3.2, (i) it follows that

Mk+1,n, j(x,q)≥Mk+2,n, j(x,q)≥ ...

So, we achieve Mk,n, j(x,q)≤ 4
√

x√
[n]q

for any k ∈ {k+1,k+2, ...}.

Case 3) Subcase a) We suppose that k ≤ j−1 and [k]q +
√

qk−1[k]q ≥ [ j]q. We have from Lemma 3.1 that

Mk,n, j(x,q) = mk,n, j(x,q)
(

x−
[k]q
[n]q

)
≤

[ j+1]q
[n]q

−
[k]q
[n]q

=
[ j]q +q j

[n]q
−

[k]q
[n]q

By hypothesis, we get

Mk,n, j(x,q)≤
[k]q +

√
qk−1[k]q +q j

[n]q
−

[k]q
[n]q

=

√
qk−1[k]q +q j

[n]q
≤
√

[k]q +1
[n]q

≤
√
[ j−1]q +1

[n]q
=

1√
[n]q

√
[ j−1]q +1√

[n]q

≤ 1√
[n]q

2
√

[ j]q√
[n]q

≤ 2
√

x√
[n]q

.

Subcase b) We suppose that k ≤ j− 1 and [k]q +
√

qk−1[k]q < [ j]q. Let k ∈ {0,1,2, ...} be the minimum value such that

[k]q +
√

qk−1[k]q ≥ [ j]q. Then k̃ = k−1 satisfies [k−1]q +
√

qk−2[k−1]q < [ j]q. Also we have

Mk−1,n, j(x,q) = mk−1,n, j(x,q)

(
x−

[k−1]q
[n]q

)
≤

[ j+1]q
[n]q

−
[k−1]q
[n]q

=
[ j]q +q j

[n]q
−

[k−1]q
[n]q

.
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Since [k]q +
√

qk−1[k]q ≥ [ j]q, we obtain

Mk−1,n, j(x,q)≤
[k]q +

√
qk−1[k]q +q j

[n]q
−

[k−1]q
[n]q

=
qk−1 +

√
qk−1[k]q +q j

[n]q
≤

2+
√

[k]q
[n]q

≤ 3

√
[ j]q

[n]q
≤ 3

√
x√
[n]q

.

By Lemma 3.2, (ii) it follows that

Mk−1,n, j(x,q)≥Mk−2,n, j(x,q)≥ ...≥M0,n, j(x,q).

So, we achieve Mk,n, j(x,q)≤
√

x√
[n]q

for any k ≤ j−1 and x ∈
[
[ j]q
[n]q

,
[ j+1]q
[n]q

]
.

Collecting all the above estimates we have (4.3), which completes the proof of Theorem 4.1.

5. A-Statistical Approximation
In this section, we will give an A-statistical approximation theorem for the (2.1) operators. Firstly, we have to replace a fixed
q ∈ (0,1) consider in the previous sections with an appropriate sequence (qn) whose terms are in the interval (0,1). This idea
was first used by Philips [2] for the q-Bernstein polynomials.

Let (qn)is a real sequence satisfying the following conditions,

0 < qn < 1 f or every n ∈ N, (5.1)

stA− lim
n

qn = 1 (5.2)

and

stA− lim
n

qn
n = 1. (5.3)

Note that the notations in (5.2) and (5.3) denote the A-statistical limit of (qn) where A = [a jn], ( j,n ∈ N) is an infinite non-
negative regular summability matrix, i.e., a jn ≥ 0 for every j,n ∈N and lim j ∑

∞
n=1 a jnxn = L provided that, for a given sequence

(xn), we say that (xn) is A-statistically convergent to a number L if, for every ε > 0, lim j ∑
∞

n:|xn−L|≥ε
a jnxn = 0 (see [17]).

We should remark that this method of convergence generalizes both the classical convergence and the concept of statistical
convergence which first introduced by Fast [18]. We give the following A-statistical approximation theorem.

Theorem 5.1. Let A = [an j] be a non-negative regular summability matrix and (qn) be a sequence satisfying (5.1)-(5.3). Then
for every f ∈C+[0,∞) we have

stA− lim
n

(
sup

x∈[0,∞)

∣∣∣F(M)
n,q ( f )(x)− f (x)

∣∣∣)= 0. (5.4)

Proof. Let f ∈C+[0,∞). Replacing q with (qn), taking supremum over x ∈ [0,∞) and using the monotonicity of the modulus
of continuity, we achieve from Theorem 4.1 that

En := sup
x∈[0,∞)

∣∣∣F(M)
n,q ( f )(x)− f (x)

∣∣∣≤ 8ω1

(
f ;
√

x√
[n]q

)
, (5.5)

holds for every n ∈ N. Then, let we prove

stA− lim
n

En = 0.
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From (5.1)-(5.3), we get

stA− lim
n

1√
[n]qn

= 0.

So we can write

stA− lim
n

ω1

(
f ;
√

x√
[n]q

)
= 0. (5.6)

So, the proof of Theorem 5.1 follows from (5.1)-(5.6) immediately.

We should note that the A-statistical approximation result in Theorem 5.1 includes the classical approximation by choosing
A = I the identity matrix.
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