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A DIOPHANTINE EQUATION INCLUDING FIBONACCI AND

FIBONOMIAL COEFFICIENTS
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Engineering Basic Science, Konya, TÜRKİYE

Abstract. In this paper, we solve the equation
m∑

k=0

[2m+ 1

k

]
F

± Ft = Fn,

under weak assumptions. Here, Fn is nth Fibonacci number and
[.
.

]
F

denotes

Fibonomial coefficient.

1. Introduction

For n ≥ 2, the Fibonacci sequence {Fn} is defined by recurrence relation

Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1.A few terms of Fibonacci sequence are 0, 1, 1, 2, 3, 5, 8, 13, ....
Its Binet formula is known as

Fn =
αn − βn

α− β

where α and β are the roots of the characteristic equation x2 − x− 1 = 0.
The Fibonacci companion sequence {Ln} is known as the Lucas sequence which

satisfies the same recurrence relations with Fibonacci sequence and the initials
L0 = 2, L1 = 1. A few terms of Lucas sequence are 2, 1, 3, 4, 7, 11, 18, 29, . . . . The
Binet formula of nth Lucas number is

Ln = αn + βn.
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Another concept of the paper is Fibonomial coefficient. For n ≥ k > 0, the
number

FnFn−1 . . . Fn−k+1

F1F2 . . . Fk

is known as Fibonomial coefficient inspired by the binomial coefficient and denoted
by

[
n
k

]
F
. Also, for k = 0, it is defined by

[
n
0

]
F

= 1. It is interesting that this

coefficient always gets integer values for n, k ∈ Z+.
The Diophantine equation

n! + 1 = m2 (1)

is known as Brocard-Ramanujan Diophantine equation. It is known that m = 4, 5
and 7 are the solutions of the this equation. These are not full solutions of the
equation (1). Berndt and Galway [1] showed that there are no further solutions
with m ≤ 109. The Brocard-Ramanujan equation is still open problem. A number
of mathematicians have contributed several generalizations and results regarding
this Diophantine equation. For example, Grossman and Luca [4] proved that the
equation

Fn = m1! +m2! + · · ·+mk!

has finitely many positive integers n for fixed k. Moreover, the case k ≤ 2 was
determined. The case k = 3 was solved by Bollman, Hernandez and Luca in
[2]. Luca and Siksek [9] found all factorials expressible as the sum of at least
three Fibonacci numbers. Marques handled the different versions of the Brocard-
Ramanujan equation including Fibonacci and Fibonomial coefficient (for the details
see [10], [11], [12]). In what follows, Szalay [13] solved the equation

Gn1
Gn2

. . . Gnk
+ 1 = G2

m

where the sequence {Gn} is either Fibonacci sequence or the Lucas sequence or the
sequence of balancing numbers, respectively. Recently, the author [5] proved that
the solutions of the equation

m∑
k=0

[
2m+ 1

k

]
F

± 1 = Fn (2)

are (m,n) = (1, 3) , (3, 14) according to the sign −. If the sing is +, then there is
no solution.

In this paper we focus on the generalization of the equation (2). Our result is
following,

Theorem 1. Let n and t are positive integers such that n ≡ t (mod 2) or n− t =
1, 3. The solutions of the equations

m∑
k=0

[
2m+ 1

k

]
F

± Ft = Fn (3)
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are
m 1 1 2 2
n 5 6 9 10
t 3 5 7 9

according to the sign +. If the sign is −, then the solutions are

m 1 1 2 2 4 4
n 3 1, 2 7 6 22 10
t 1, 2 3 6 7 10 22

.

2. Preliminary

Before going further, we give several lemmas to prove our theorem.

Definition 1. A primitive divisor p of Fn is a prime factor of Fn which does not

divide
n−1∏
j=1

Fj .

For example, we know that 29 | F14, but 29 ∤
∏13

j=1 Fj . Here, 29 is a primitive
divisor of F14. The following lemma guarantees the existence of a primitive divisor
for the Fibonacci sequence.

Lemma 1. A primitive divisor p of Fn exists whenever n ≥ 13 (see [3]).

We present several identities regarding Fibonacci and Lucas numbers that we
will use them later.

Lemma 2. We have the following
i. For any k ≥ 0, then FkLk = F2k.
ii. For any k ≥ 0, then Fk+3 − Fk = 2Fk+1 and Fk+3 + Fk = 2Fk+2.
iii. Let n and t are positive integers such that n ≡ t (mod 2). Then

Fn ∓ Ft =

{
Fn∓t

2
Ln±t

2
, if n ≡ t (mod 4)

Fn±t
2
Ln∓t

2
if n ̸≡ t (mod 4)

holds.
iv. For any k ≥ 0, then 3 | F4k.

Proof. (i) can be proven easily by using Binet formulas of the sequence Fibonacci
and Lucas. By the recurrence of Fibonacci sequence, we have Fn+3 −Fn = Fn+2 +
Fn+1 − Fn = 2Fn+1. This proves (ii).

iii. Assume that n ≡ t (mod 4), then we have followings,

Fn+t
2
Ln−t

2
=

α(n+t)/2 − β(n+t)/2

α− β
(α(n−t)/2 + β(n−t)/2)

=
1

α− β

(
αn − βn + (αβ)(n−t)/2(αt − βt)

)
= Fn + Ft.
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iv. We refer the book of Koshy [8] (Theorem 16.1, p. 196).
□

Lemma 3. Let m be a positive integer, then the identity
m∑

k=0

[
2m+ 1

k

]
F

=

m∏
k=1

L2k

holds (see [7]).

The proof of the following lemma is given in [6] as Lemma 2.3.

Lemma 4. For integers s > t > 1, the equation

Fr = Fs + Ft

is satisfied only for r − 1 = s = t+ 1.

3. Proof

Now, we will investigate the solutions of the equation (3) in two different cases
n ≡ t (mod 2) and n ̸≡ t (mod 2).

3.1. The case n ≡ t (mod 2). In this case, Lemma 2 (iii) yields the following
equations

m∑
k=0

[
2m+ 1

k

]
F

= Fn−t
2
Ln+t

2
(4)

or
m∑

k=0

[
2m+ 1

k

]
F

= Fn+t
2
Ln−t

2
. (5)

We will consider the equation (4). Lemma 3 yields that

L2L4 . . . L2m = Fn−t
2
Ln+t

2
.

If we multiply both sides with F2F4 . . . F2m and Fn+t
2
, then we have

(L2L4 . . . L2m)(F2F4 . . . F2m)Fn+t
2

= (F2L2)(F4L4) . . . (F2mL2m)Fn+t
2

= F4F8 . . . F4mFn+t
2

= (F2F4 . . . F2m)Fn−t
2
(Fn+t

2
Ln+t

2
)

= (F2F4 . . . F2m)Fn−t
2
Fn+t

where we use the fact FnLn = F2n that given in Lemma 2 (i). That is to say, we
get

F4F8 . . . F4mFn+t
2

= (F2F4 . . . F2m)Fn−t
2
Fn+t. (6)

Assume that m ≥ 5. Since 4m ≥ 20, we can use the Primitive Divisor Theorem
(PDT). If 4m > n + t, then there exists a prime p dividing F4m does not divide
F2, F4, . . .F2m, Fn−t

2
, Fn+t. So, the equation (6) does not hold. Similarly, if
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4m < n + t, then there exist a prime p such that p | Fn+t, but p ∤ Fi where
i = 4, 8, . . . 4m, n+t

2 . Since the inequalities 4m > n+ t and 4m < n+ t are not true,
then we get 4m = n+ t. After simplifying the equation (6), then the equation

F4F8 . . . F4m−4 = F2F4 . . . F2m−2F2m−t

follows where we use (n− t)/2 = 2m− t (because 4m = n+ t).
If m is even integer, then we have

F2mF2m+4 . . . F4m−4 = F2m−tF2F6 . . . F2m−6F2m−2. (7)

If m is odd integer, then

F2m+2F2m+6 . . . F4m−4 = F2m−tF2F6 . . . F2m−8F2m−4 (8)

follows. Since 4m − 4 ≥ 16, then we apply PDT again. If 2m − t ≥ 4m − 4, then
we have 4 − t ≥ 2m which is not possible as m ≥ 5 and t is positive integer. If
4m − 4 > 2m − t, then there exists a prime p dividing F4m−4. But p ∤ Fj where
j = 2, 6, . . . , 2m−6, 2m−2, 2m− t for the equation (7). Since we arrive at a similar
contradiction for the equation (8), we omit it. We get the similar calculations for
the equation (5).

Therefore, m ≤ 4. So, we have∑1
k=0

[
3
k

]
F
= 3 = Fn ∓ Ft,

∑4
k=0

[
9
k

]
F
= 17766 = Fn ∓ Ft∑2

k=0

[
5
k

]
F
= 21 = Fn ∓ Ft,

∑5
k=0

[
11
k

]
F
= 2185218 = Fn ∓ Ft.

Namely, we investigate the solutions of the equations

Fn ∓ Ft = 3 (9)

Fn ∓ Ft = 21 (10)

Fn ∓ Ft = 17766 (11)

and

Fn ∓ Ft = 2185218 (12)

Assume that the sign is −. We focus on the equations (9) and (10). Since F4 = 3
and F8 = 21, by Lemma 4 there is one solution of the equation Fn − Ft = F4 = 3
which is (n, t) = (5, 3). Similarly, the only solution of the equation Fn −Ft = F8 =
21 is (n, t) = (9, 7) . Consider the equation (11). By Lemma 2 (iii), we have

Fn − Ft = Fn∓t
2
Ln±t

2
= 17766 = 2 · 33 · 7 · 47.

Since 17766 is not the product of two Fibonacci and Lucas number, the equation
(11) has no solution. Similarly, there is no solution of the equation (12).

If the sign is + for the equations (9), (10), (11) and (12), then we obtain the
solutions given in the Table 1 below.
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Table 1. Solutions of the equations Fn + Ft = Fj

(n, t)
Fn + Ft = 3 (3, 2), (2, 3), (3, 1), (1, 3)
Fn + Ft = 21 (6, 7), (7, 6)

Fn + Ft = 17766 (22, 10), (10, 22)
Fn + Ft = 2185218 no solution

3.2. The case n ̸≡ t (mod 2). In this case, we will solve the equation (6) under
the conditions n− t = 1 or n− t = 3.

Firstly, we will deal with the case n− t = 1. This yields Fn ∓ Ft is a Fibonacci
number. Then the equation (3) turns to

m∑
k=0

[
2m+ 1

k

]
F

= Fx (13)

where Fn ∓ Ft = Fx and x ∈ Z+. After multiplying both sides with F2F4 . . . F2m,
we have

F4F8 . . . F4m = F2F4 . . . F2mFx.

Assume that m ≥ 4. Since 4m ≥ 16, we can use PDT which yields 4m = x. Then,

F4F8 . . . F4m−4 = F2F4 . . . F2m

follows which is a contradiction. Because left hand side of the equation is obviously
bigger than right hand side. Now, assume m ≤ 3.

If m = 1, then we have the equation Fx = Fn ∓ Ft = 3 = F4. We obtain
x = 4. So, the pairs (n, t) = (3, 2), (2, 3), (3, 1), (1, 3) are the solutions of the
equation Fn + Ft = 3. The pair (n, t) = (6, 5) is the only solution of the equation
Fn − Ft = 3 by Lemma 4.

If m = 2, then we get Fx = Fn ∓ Ft = 21 = F8. We get x = 8. The solutions of
Fn + Ft = 21 are (n, t) = (6, 7), (7, 6). The pair (n, t) = (10, 9) is the only solution
of the equation Fn − Ft = 21.

If m = 3, then we obtain L2L4L6 = 378 which is not a Fibonacci number. That
is, the equation (3.2) is not satisfied.

Now, assume that n− t = 3. Firstly, we handle the equation

m∑
k=0

[
2m+ 1

k

]
F

+ Ft = Fn.

By Lemma 2 (ii), we have

m∑
k=0

[
2m+ 1

k

]
F

= L2L4 . . . L2m = Fn − Ft = 2Fn−2.
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After multiplying both sides with F2F4 . . . F2m, we get

F4F8 . . . F4m = F2F4 . . . F2m2Fn−2. (14)

Assume that m ≥ 4. By PDT, there exists a primitive divisor p such that p | F4m.
If p = 2, then p can not be a primitive divisor since, at least, 2 | F6. This yields
that p ̸= 2. If 4m > n − 2, then p ∤ F2F4 . . . F2m2Fn−2 which is not possible. We
get the similar contradiction if n− 2 > 4m. So, we deduce 4m = n− 2. Then the
equation (14) reduces to

L2L4 . . . L2m−2 = 2F2m. (15)

where we use the fact F2n = FnLn. This is not possible for m ≥ 4. Because left
hand side of the equation (15) is greater than right hand side. Now, we assume
m ≤ 3. So, we have to solve the following equation

2Fn−2 = q

where q ∈ {L2 = 3, L2L4 = 21, L2L4L6 = 378}. Obviously, there is no solution. We
arrive at similar contradictions for the equation

m∑
k=0

[
2m+ 1

k

]
F

= L2L4 . . . L2m = Fn + Ft = 2Fn−1.

We do not give its details.
Finally, we complete the proof.
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